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Hazard and safety analysis are important tools to mitigate risks and prevent
disasters in many industries. The complicated interactions between industrial
processes and production chains are often modeled in fault trees [31], Bayesian
networks [26], and other graphical models [15], that support reasoning under
uncertainty. Probabilistic reasoning is however computationally hard. To remedy
this problem, knowledge compilation aims to find a concise representation that
supports getting fast results on queries regarding the same probabilistic model.

Many representation languages [5,14,22,29,32] have been studied for this
purpose, analytically as well as experimentally, demonstrating a clear tradeoff

PARAGNOSIS: A Tool for Parallel
Knowledge Compilation

Giso H. Dal'®™)  Alfons Laarman?, and Peter J. F. Lucas!

! Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, Enschede, The Netherlands
{g.h.dal,peter.lucas}@utwente.nl
2 Leiden Institute of Advanced Computer Science, Leiden University,
Leiden, The Netherlands
a.w.laarman@liacs.leidenuniv.nl

Abstract. PARAGNOSIS (https://doi.org/10.5281/zenodo.7312034,
https://zenodo.org/badge/latestdoi/560170574, Alternative url: https://
github.com/gisodal /paragnosis, Demo url: https://github.com/gisodal/
paragnosis/blob/main/DEMO.md) is an open-source tool that supports
inference queries on Bayesian networks through weighted model counting.
In the knowledge compilation step, the input Bayesian network is encoded
as propositional logic and then compiled into a knowledge base in deci-
sion diagram representation. The tool supports various diagram formats,
including the Weighted-Positive Binary Decision Diagram (WPBDD)
which can concisely represent discrete probability distributions.

Once compiled, the probabilistic knowledge base can be queried in the
inference step. To efficiently implement both steps, PARAGNOSIS uses sim-
ulated annealing to split the knowledge base into a number of partitions.
This further reduces the decision diagram size and crucially enables par-
allelism in both the compilation and the inference steps. Experiments
demonstrate that this partitioned approach, in combination with the
WPBDD representation, can outperform other approaches in the knowl-
edge compilation step, at the cost of slightly more expensive inference
queries. Additionally, the tool can attain 15-fold parallel speedups using
64 cores.
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between the succinctness of the language —with often exponential separations—
and the tractability of important operations on them. These operations can
roughly be divided into manipulation operations and queries. The former plays
an important role in the compilation step, which builds the knowledge base,
while the latter are used to query it. For this reason, the budget for manipulation
operations is often greater, since this step needs to happen only once.

To the best of our knowledge, PARAGNOSIS is the first parallel knowl-
edge compilation and inference tool for Bayesian networks with discrete vari-
ables. It compiles networks into the Weighted-Positive Binary Decision Diagram
(WPBDD). Our chosen parallelization approach through partitioning can reduce
the effort spent on compilation because the decomposition of a propositional the-
ory is known to yield smaller symbolic representations, which has previously been
shown in model checking [15,17,25,28]. Empirical results with PARAGNOSIS con-
firm this [13]. This improvement is offset by a potential increase in the time spent
on inference, although our experiments still demonstrate good performance due
to the smaller representations. The parallelization approach is orthogonal with
regard to target representation languages [11], as we demonstrated with four
different representations.

The performance of PARAGNOSIS compares favorably [10,11] against other
knowledge compilers, like SDD, CUDD and ACE, which target SDD [14],
OBDD [3] and d-DNNF [16], respectively. The scalability of the tool is good for
larger networks and for both compilation and inference, exhibiting over tenfold
speedups. PARAGNOSIS achieves this through its unique compositional approach
and use of parallelism.

In this paper, we present the tool PARAGNOSIS. To help readers understand
how the tool works, a high-level overview of the theoretical concepts is given
(Sect. 2 and 3) that underly its implementation (Sect.4). We only offer a user-
oriented description of the used BDD, and partitioning and parallelization con-
cepts (see [10,11] for in-depth descriptions and core algorithms). Performance
results are presented in Sect. 5. Some examples, figures and definitions are bor-
rowed from previously published works that describe the theoretical foundation
of PARAGNOSIS [10,12]. We finally discuss how this tool relates to others in
its field (Sect.6). Compared to previous work, we have improved PARAGNOSIS
to handle queries other than marginalization, including conditional probabili-
ties and automatic posterior computations of all unobserved variables. We also
added several inference query optimizations through parallelism, and a graphical
visualization is provided of compiled representations.

2 Background

2.1 Bayesian Networks

A Bayesian network (BN) B is a probabilistic graphical model that represents a
joint probability distribution over its variables. Let X = {X1,...,X,,} be a set
of random variables.
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Values of a variable X; are denoted in lowercase. We denote with P(X = x)
the probability that (Xi,...,X,) = (z1,...,2,), le. X; =x;, for i =1,... n.
Let I C [n], then X; ={X; |ie,X; € X}.

Definition 1 (Bayesian Networks). A Bayesian network B = (G, P) is a
DAG G = (V, E), with nodes V and edges E C 'V XV, that models a factorization
of joint probability distribution P(Xy) defined over random variables Xy as:

P(Xy =av) = [[ P(Xy =2 | Xpaw) = 2pa(w)); (1)
veV

such that there is a one-to-one correspondence between nodes V' and variables
Xy, and the conditional probability distribution of X, € Xy given its parents
Xpa(v) is specified as P(X, | Xpa(v)). A Conditional Probability Table (CPT)
displays the conditional probabilities P(X, | Xpa(v)) of a single variable X,, with
respect to its mutually dependent random variables Xpa (y)-

Ezample 1 (Bayesian Network). Fig. 1 shows a BN B defined over variables X =
{4, B} (Fig. 1b), its CPTs (Fig. 1a)

P(A=1)| P(A=2)| P(A=3)
08 | o1 | o1 (A—(B)

A|| P(B=1]A) | P(B=2|A)
1
2

0.5 0.5
P(X)=P(B|A)P(A
09 09 (X) = P(BlA)P(A)

3 0 1
(a) Conditional probability tables. (b) Bayesian network.

Fig. 1. Bayesian network with local structure.

Posterior probabilities can be computed —a process called inference— using
well-known lemmas in probability theory, such as Bayes’ theorem P(X|Y) =
%, marginalization P(X) = > P(X,Y = y), and the factorization

property (Definition 1).

2.2 Knowledge Compilation

Bayesian networks represent concise factorizations of probability distributions
by using conditional independence assumptions. The size of the factorization
has direct implications toward the cost of reasoning, i.e., probabilistic inference.
A more expressive model must be used to further improve a BN’s factorization in
order to exploit additional independences [5]. A prominent way of achieving this
is to find a more concise and canonical representation, called a knowledge base,
such as a Binary Decision Diagram (BDD) [3]. Compiling a BN into a decision
diagram (DD) representation is commonly referred to as knowledge compila-
tion [16], or simply compilation.
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Encoding. BNs are defined over multi-valued domains. Prior to compiling it
to a DD, we require an encoding to transition from the multi-valued domain
to the Boolean domain. There are multiple ways to do this. We choose to first
translate a BN into a Boolean formula with dedicated variables to represent
probabilities [5,12].

Conjunctive Normal Form (CNF) is commonly used to facilitate compilation.
This CNF is constructed as follows. We create for every X, € X a set of atoms
at(X;) = {1, ..., m, }. Semantically, z; € at(X,) represents X, being equal its i*"
value. An atom wj is introduced for every unique probability in X,’s CPT, i.e.,
w; can refer to multiple distinct entries in X,,’s CPT if they represent the same
probability. This associated probability is obtained by pr(w;) € [0, 1]. Function
pr returns 1 if no probability is associated with its argument. Finally, a clause is
created for each unique valuation of X,, CPT (e.g. for each probability) disjoined
with a probability associated w; that belongs to that valuation. Also, clauses are
added to prevent inconsistent valuation representations, e.g., a variable having
multiple values at the same time. We now show this by example, but detailed
descriptions can be found in [12]

Ezample 2 (Bayesian Network encoding).

Let BN B = (G, P), with G = (V, E), be defined over variables Xy = {A, B}
as described in Example 1. For simplicity, we will focus on just variable A. To
encode the BN we create atoms at(A) = {a1,a2,a3}. A’s CPT has 3 distinct
entries and only two distinct probabilities. We create w; for valuations A = 1
and create wy for A =2 and A = 3, with pr(w;) = 0.8, pr(wz) = 0.1.

The CNF representation follows:

(a1 Vag Vaz) A (@i Vaz) A(ar Vaz) A(az Vas) A
((Tl\/wl) A\ ((172\/602) A\ (@VWQ)
The first row is solely concerned with preserving valuation consistency (A can

only have one value). The second row has a clause for each valuation/probability.
The encoding includes the following models for variable A:

‘Models ‘Weights
1ar | @ a5 wi | @z pr(ws) pr(@z) =0.8-1=0.8
Q‘H‘ag‘ﬁg‘ﬁ‘wg‘pr(oTl)»pr(wg): 1-0.1 =0.1
3‘(71‘@‘653‘H‘wg‘pr(ﬁ)-pr(wg):1-0.1:0.1

Note that the weighted model count sums to 1.0 for this selection of
models. However, there are more models, e.g., model aj,as,a3,w;,w2, model
a1,a2,a3,w1,ws, etc. Only minimal models sum to 1.0, i.e., models with the most
amount of negations.
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Compilation. Now that we have an encoding, we can look at its compilation
to a WPBDD in particular. A WPBDD is an ordered BDD that represents a
concise factorization of a Boolean formula f as a (rooted) directed acyclic graph
with decision nodes, and two terminal nodes labeled with 1 and 0. Each non-
terminal node v is labeled with a Boolean variable var(v) = z, and has two
children, hi(v) and lo(v), with a set of weight variables wg(v) at the edge to
node hi(v). Edges to nodes hi(v) and lo(v) are solid and dotted, respectively, as
shown in Fig. 2a. Its logical equivalent is shown in Fig.2b. Each root-terminal
path contains a variable at most once, and in a particular total or partial order.

/ Y ~
var(v) node v A lo(v)
- / N\
wg(v) - var(v) A
4 / N\
hi(v) lo(v) wg(v) hi(v)
(a) WPBDD node. (b) WPBDD node circuit.

Fig. 2. The semantics of a WPBDD node.

‘ az A A Vv 1 * +
N /\ /\ / N\ 7\ 7\ / N\
w2 | w2 w1 @ w2 1 az A N 0 01 1 0 = * 0
7\ 7\ /\ /\
v w2 1 a1 A 01 1 0
@ /\ 7\
wir 1 08 1

(a) WPBDD for
variable A. (b) Logical circuit. (c) Arithmetic circuit.

Fig. 3. Performing inference in Example 3.

A CNF encoding as described above acts as an entry point for the language
compiler [20]. Such compilers target different variations of DDs.

The respective DD is built using the typical bottom-up strategy [3], by apply-
ing DD operations to construct a DD representing the encoded formula from the
previous step. The process of compiling into a respective DD is by far the most
expensive operation, compared to the inference step, which is linear in the size
of the knowledge base as desired.
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Inference. Inference is performed through Weighted Model Counting on the
DD, WMC for short [5,17]. This process sums the weight of every variable assign-
ment. In the decision diagram, these assignments are represented by paths and
the weights by edge labels (see the example WPBDD in Fig. 1 (c)). Since these
paths often overlap in the DD structure, inference through model counting is
linear in the size of the target representation [16].

Let’s look at a WPBDD compilation and inference example. A WPBDD
exactly represents the encoding provided. In order to perform inference we can
trivially transform the logical circuit that the WPBDD represents into an arith-
metic circuit.

Ezample 8 (Compilation and inference). Consider only variable A in Example 1.
The compiled representation is shown in Fig. 3a for variable ordering az < as <
al. We have not optimized the representation in order to make the upcoming
discussion easier. Reduction rules specific to WPBDDs allow the removal of the
az node to further reduce its size. Each path from the root to the 1-terminal
semantically implies evidence. There are three possible paths shown below. If we
have evidence prior to traversing the compiled representation, we only consider
the paths that are consistent with the evidence.

Path Logic Semantics
az — 1 aiNazANaz A=3
az --+az — 1 aiNas ANas A=2

az --»az a1 — 1 arANazNaz A=1

The underlying logical circuit is shown in Fig. 3b (obtained with the circuit in
Fig. 2b). To perform inference, we need to instantiate the equivalent arithmetic
circuit. Figure 3¢ shows the instantiated circuit that allows us to compute P(A =
3) = 0.1, by setting valuation (a1, as,as) = (0,0, 1).

3 Weighted Model Counting Methodologies

We distinguish between two methodologies within the field of probabilistic infer-
ence through WMC. Traditional (or monolithic) Weighted Model Counting and
Compositional Weight Model Counting. The former is described in Sect. 2. The
latter is introduced by PARAGNOSIS, and expands traditional compilation with
partitioning. The purpose of partitioning is to alleviate high compilation costs.
Figure 4 shows an overview of the underlying principles behind the two method-
ologies, divided into two steps: compilation and inference. On the left, we have
the monolithic and on the right, we have the compositional approach.

In-depth descriptions of compositional WMC in scrupulous detail can be
found in [10], however, we consider it to be out of scope for this article and will
proceed to give a more high-level description here. The concrete implementation
of PARAGNOSIS is described in Sect. 4.
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Fig. 4. Compilation and inference process. PARAGNOSIS uses the compositional app-
roach depicted on the right.

3.1 Compilation to a Compositional Knowledge Base

We first describe compilation as all steps required to obtain a DD. In addition to
traditional compilation, PARAGNOSIS introduces partitioning to further improve
overall performance [13]. It finds a partitioning that decomposes the BN into
independent components. A component is a set of nodes that are not connected
to nodes outside of the component by removing edges from the BN. The fewer
removals the better, with regard to inference complexity. This method thus keeps
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CPTs intact, as the partitioning happens on a BN node level, not deeper. We
give a partitioning demonstration later, using Example 4. With the partitioning
in hand, the following steps can be performed independently, per partition. Each
partition is considered an independent BN from this point on.

With monolithic compilation, we would only be able to amortize the cost
of compilation by performing many inference queries. With partitioned com-
pilation, we shift some of this cost over to the inference side, yielding overall
performance improvements in cases where we would traditionally not be able to
compile a knowledge base due to time or memory restrictions [13].

3.2 Inference

After compilation, we arrive at the inference step.

In case the user chose to partition the BN during the compilation step,
PARAGNOSIS performs an adapted WMC step to recombine the compiled DDs.
A partition’s representation should be connected to another when they share a
common variable. This implies that we need to traverse partitions according to
some partial order. It can be represented by a tree, which we suitably refer to
as a composition-tree [10].

The order in which we choose to traverse partitions (combined with common
variable relations) determines how they are connected. As we traverse one par-
tition, its sink is connected to the next partition’s root. Now that all partitions
form one connected component, we can proceed as previously described with a
traversal we are already familiar with from WMC. We discuss how partitioning
influence inference complexity in Sect. 6.

Ezxample 4 (Partitioned compilation and composition). Consider the BN from
Example 1. Figure 5a shows a partitioning. Each partitioning can then indepen-
dently be compiled to a target representation, i.e. a WPBDD, OBDD, SDD, etc.
Figure 5b and 5¢ show the WPBDD representations of the partitions. Note that
partition G also includes at(A) = {a1,az2,a3} in its compiled representation,
because B depends on A in the BN. Figure 5d shows how the compiled repre-
sentations are connected to form one connected component. This facilitates its
traversal as a monolithic structure and enables WMC.

4 PARAGNOSIS

We present the overview of PARAGNOSIS’s architecture in Fig. 6, including its
inputs and outputs. It implements the principles outlined in Fig.4 and Sect. 3.
PARAGNOSIS is a collection of two applications written in C++. The compilation
step is implemented by the COMPILER, whereas the inference step is implemented
by the INFERENCE ENGINE. We provide a high-level view of the implementations
in the following sections. In-depth descriptions on the used partitioning tech-
nique are provided in [10,13], and how they created independencies are exploited
through parallelism in [11].
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0] ] 1ol

(b) Partition G, (c) Partition Ga,
compiled with order: compiled with order: )
as < az < ay. a1 < as < az < by <bs. (d) Composed representation.

Fig. 5. Partitioning a BN for Example 4.

PARAGNOSIS comes with a wrapper script called pg, simplifying compilation
and inference steps. Compiling the ‘icy roads’ network to a WPBDD and directly
visualizing it (using DOT) is as easy as running the following command:

> pg compile icy_roads --method wpbdd --dot
Computing posteriors for variables ‘Holmes’ and ‘Icy’ can be achieved by:
> pg inference --posteriors="Holmes,Icy" icy.-roads

An extended tool demo is also available!.

4.1 The COMPILER

As shown in Fig. 6, the COMPILER takes as input a discrete BN in the original
HUGIN’s .net format [23]. The compiler is responsible for creating a decision
diagram from the provided BN and writes these to output files. The principles
outlined in Sect.3 provide an orthogonal framework with regard to the tar-
get representation. However, PARAGNOSIS chooses to target Weighted Positive
Binary Decision Diagrams (WPBDD), because it is a dedicated representation
for probabilistic inference. (We discuss differences with other representations in
Sect. 6.)

! Demo: https://github.com/gisodal /paragnosis/blob/main/DEMO.md.
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Fig. 6. PARAGNOSIS’s architecture.

The COMPILER can introduce a partitioning to further improve overall per-
formance [13]. With a user-provided number of partitions, a partitioning is found
for the BN. Using simulated annealing, this partitioning is optimized by minimiz-
ing the sum of the tree-width of all partitions. Tree-width is a metric commonly
used to indicate the complexity of BNs [6]. Optionally, a partitioning can also
be provided by the user. With the partitioning in hand, the following steps can
be performed in parallel, per partition. Theoretically, compilation is as fast as
the slowest compiling partition [11].

Compilation is critically dependent upon a good variable ordering. The size
of the resulting WPBDD (or any other ordered DD) is determined by it. The
COMPILER can optionally be provided with a variable ordering as input. When
not provided by one, an ordering is created automatically using the min-fill
heuristic [5]. Further refinement can be attained when the user requires it. It is
achieved by minimizing the tree-width of candidate orderings, using simulated
annealing.

4.2 The INFERENCE ENGINE

The INFERENCE ENGINE takes as input probabilistic queries, and the COMPILER’s
output (Fig.6). At its core, the INFERENCE ENGINE is able to perform probabilis-
tic inference through marginalization. It does so using WMC (Sect. 3.2. Given
a user-provided set of probabilistic queries, the corresponding marginalizations
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are performed. Prior to every WMC run, we need to instantiate the variables in
the WPBDD, reflecting the marginalization we want to achieve. Proper variable
instantiations in the WPBDD are attained by using the COMPILER’s variable
mapping to map BN variables to WPBDD variables.

Notice that each marginalization is an independent run of WMC, just with
different variable instantiations. A trivial optimization here is that we can run
every call to WMC in parallel. Theoretically reducing the cost of computing the
posterior probabilities for all instantiations of unobserved variables combined to
the single WMC call that requires the most resources.

Parallelism is notoriously difficult to exploit in sparse graphs such as
BNs [4,9]. Introducing a partitioning during the compilation step can achieve the
required independence such that parallelism can be exploited at the level of indi-
vidual WMC runs [13]. Compiled partitions are composed using a composition-
tree. This tree is the structure by which we traverse each partition’s corre-
sponding WPBDD [10]. The independence among a parent’s children in the
composition-tree can be used to run WMC in those parts in parallel, i.e., inde-
pendent sub-trees can run in parallel [11].

5 Performance of PARAGNOSIS

We re-report some experimental results on the performance of PARAGNOSIS
to substantiate our claims on its performance. All above experiments ran on a
system with AMD Opteron 6376 processors, with 500+ Gb of RAM.

We have previously [10,12] compared WPBDD compilation costs to those of
OBDDs and ZBDDs (using the CUDD 3.0.0 library), SDDs [14] (using the SDD
1.1.1 library), and OBDDs.?%:4 Much care is taken to create a fair comparison
between libraries. We set up a head-to-head procedure, where each compiler was
swapped-in and out. This ensures that the same steps are performed to produce
each respective representation. The same ordering is thus tested with compiler
and representation. Details of the experimental setup can be found in [10,13].
The results are again reported in Table1 and show favorable runtimes for the
WPBDD approach.

For inference, in previous work [10], we chose to compare to Ace (version
3.0) and to the junction tree algorithm using the publicly available Dlib library
(version 18.18).5:6 In previous works, PARAGNOSIS has also compared favorably
to the HUGIN library (version 8.4).7 [12]

We compared the aforementioned methods by measuring the speed by which
they could solve the same set of probabilistic queries. Queries are created ran-
domly, i.e., with a random number of observed variables and a random configu-
ration. A query is created and fed to each method [10].

2 CUDD is available at http://vlsi.colorado.edu/~fabio/.

3 The SDD compiler is available at http://reasoning.cs.ucla.edu/sdd/.

4 The WPBDD compiler is available at https://github.com/gisodal /paragnosis//.
® Ace is available at http://reasoning.cs.ucla.edu/ace/.

5 Dlib is available at http://dlib.net/.

" HUGIN is available at http://www.hugin.com/.
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Table 1. Compilation runtime (milliseconds), where |at(X)| are the number encoding
variables for BN variables X, - implies compilation failure by exceeding 15 min or 500
Gb of RAM memory.

Bayesian |at(X)| | Partitioned | t-WPBDD | OBDD SDD d-DNNF
Network t-WPBDD

sachs 24 0.148 0.100 | 1.932 29.119 92.179
student farm 25 0.117 0.106 | 1.403 4.646 118.641
printer ts 58 0.230 0.198 | 1.757 6.628 97.956
boblo 60 0.213 0.213 | 3.792 27.920 118.202
child 60 0.195 0.331 | 4.564 96.344 117.620
insurance 89 0.494 20.365 | 267.967 12337.980 | 680.771
weeduk 90 18.415 6.091 | 429.110 - 3472.012
alarm 105 0.407 0.467 | 10.085 400.158 157.163
water 116 5.185 1635.935 | 16034.149 | - 1009.578
powerplant 120 0.268 0.361 | 9.409 119.856 159.193
carpo 122 0.426 0.420 | 13.910 119.122 137.955
win95pts 152 0.874 1.386 | 193.919 902.473 173.762
hepar2 162 1.444 1.567 | 414.316 31119.984 | 287.980
fungiuk 165 22.186 45.559 | 1667.940 - 12193.593
hailfinder 223 1.061 3.748 | 422.270 14350.353 | 354.151
3nt 228 0.696 2.397 | 344.902 4259.798 424.939
4sp 246 0.849 5.090 | 991.545 7041.476 573.015
barley 421 611.830 23290.743 | - - -

mainuk 421 584.409 23443.483 | - - -

andes 440 3.267 224.648 | - - 7785.916
pathfinder 520 17.279 18.057 | 22741.434 | 137591.643 | 2813.821
mildew 616 42.611 576.852 | 244920.444 | - 885305.099
muninl 992 11.929 53899.548 | - - -

pigs 1323 4.444 348.872 | - - 20623.511
link 1793 174.897 19412.863 | - - -

diabetes 4682 1297.221 2622.924 | - - -

munin2 5376 96.809 926.789 | - - 235544.805
munin3 5601 52.350 1088.710 | - - 102338.718
munin4 5645 718.358 2565.931 | - - 162054.255
munin 5651 1407.531 2360.196 | - - 161133.160

The results are again reported in Table2 and show favorable runtimes for
the WPBDD approach, even for the partitioned approach. It shows the average
runtime of a query across the aforementioned set of tested queries. While parti-
tioning in theory can shift some workload from compilation to inference, it can
also further reduce the size of the knowledge base, which explains these results.

In future experimental work, it would be interesting to compare PARAGNOSIS
against Mora [2] which takes the new approach by reducing the inference problem
to a probabilistic program. This new approach has not yet been compared to
any of the above tools.
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Table 2. Inference runtime averaged per query (milliseconds), where - implies inference
failure by exceeding 15 min, or compilation failure.

Bayesian Partitioned | t-WPBDD | d-DNNF | DLIB
Network t-WPBDD

sachs 0.023 |0.011 2.975 ?
student farm 0.035 |0.016 2.813 2627.214
printer ts 0.007 |0.006 2.852 ?

boblo 0.054 |0.034 3.713 3545.921
child 0.345 |0.036 5.695 3545.921
insurance 7.486 |1.874 36.884 |7
weeduk 0.607 |0.262 30.908 | 3586.316
alarm 0.187 |0.115 6.513 3547.504
water 25.176 | 74.135 33.512 -
powerplant 0.025 |0.032 6.249 3393.056
carpo 0.138 |0.037 5.739 3515.298
win95pts 0.371 |0.635 9.680 3220.060
hepar2 0.247 |1.133 18.659 | 3463.509
fungiuk 18.822 |5.290 42.814 3567.136
hailfinder 25.137 | 1.747 19.618 | 2448.653
3nt 18.411 | 8.250 21.559 ?

4sp 5.748 | 1.277 30.043 ?

barley 1399.542 |1798.278 |- -
mainuk 1377.117 | 1782.512 |- -

andes 178.610 | 185.205 144.691 | 7
pathfinder 5.394 |0.639 30.686 |7
mildew 351.788 | 552.496 208.582 | -
muninl 7183.857 |6836.045 |- -

pigs 248.866 | 70.266 179.088 |-

link 9893.431 |- - -
diabetes 968.839 |618.687 |- -
munin2 107.788 | 207.768 384.055 |-
munin3d 828.535 |140.398 263.751 |-
munin4 280.275 | 318.687 402.651 |-

munin 377.117 | 302.675 416.733 | -

6 Discussion

PARAGNOSIS shows that parallelism can benefit knowledge compilation and
inference for Bayesian networks. Our chosen parallelization approach is based
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on partitioning. This approach has previously been used to speed up symbolic
model checking [19,25,28]. We additionally find that the partitioning introduces
a tradeoff between compilation times and inference times, sacrificing some per-
formance in inference to gain parallel scalability.

The computational complexity of inference is linear in the size of the target
representation [16]. However, it increases when partitioning is employed. A com-
piled partition in a composition-tree must be exponentially traversed in the size
of the cutset that separates it from its parent. One traversal for each instantiation
of the cutset variables. However, this is compensated by a number of principles.
(1) the combined size of all partition BDDs is significantly reduced compared
to the monolithically compiled BDD [13]; (2) partition BDDs only represent a
portion of its total, reducing traversal resources; (3) each child instantiation can
be traversed in parallel, potentially reducing traversal cost of exponential traver-
sals to the cost of 1 [10]; (4) as partition BDDs are small, cache locality start to
play an important role, giving an advantage over monolithic BDDs [11]. Beyond
the complexity introduced by cutsets, inference remains linear. Small cutsets can
therefore play a crucial role in performance. Separate empirical investigations on
partitioning and parallelism show their respective contribution to PARAGNOSIS’s
performance [10,11].

The parallelization approach of PARAGNOSIS is orthogonal to the chosen
target representation of the knowledge base, which we demonstrated by using it
for four different target representations [11]. As a consequence, the approach is
to a certain extent orthogonal to the exploitation of local structure [30] by those
representations, as local structure can still be exploited within the partitioned
subproblems. For instance, we showed that causal dependence is fully exploited
when using decision diagram representations in the partitions.

For target representations, many choices exist [5,7,14]. Since our partitioning
technique exploits the treewidth [6] of the representation [10, §5], and the algo-
rithms are based on message passing [10, §4], other representations like ADD
and d-DNNF can be parallelized alike. While our earlier work [11] compared
the performance of PARAGNOSIS against various of these other representations,
showing competitive performance, here we will point out some differences bet-
ween the other representations and suggest future work.

Like AADD [29], and its similar cousins SLDD [34], FEVBDD [32] and
QMDD [24], our target representation WPBDD factors out probabilities on the
edges of the diagram, resulting in more succinctness than for instance achieved
with ADD [1], QuiDD [33] and MTDD [8]. However, unlike AADD, it only factors
according to the structure of the Bayesian network, which sacrifices succinctness
but ensures exact representation of the floating point numbers. The latter can
be quite important in practice, as rounding errors from manipulation opera-
tions can rapidly propagate in the discrete data structure, resulting in numerical
instability [21,27,35].

The effects of different variable orders are known to be crucial in many repre-
sentation languages. Representations like d-DNNF [5] and SDD [14], allow more
freedom in the order and could potentially improve the results of PARAGNOSIS.
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Early versions of PARAGNOSIS also tried different parallelization approaches,

like the fine-grained task-based scheduling of Sylvan [18], which has shown that
good parallel scalability is possible for model checking problems in BDDs, ADDs
(also called Multi-Terminal DDs), and MDDs (Sylvan uses a version called List
DD [19]). In future work, we hope to establish why this approach did not yield
good performance for knowledge compilation as well.
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