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For many clinical problems in patients the underlying pathophysiological process changes in the course
of time as a result of medical interventions. In model building for such problems, the typical scarcity of
data in a clinical setting has been often compensated by utilizing time homogeneous models, such as
dynamic Bayesian networks. As a consequence, the specificities of the underlying process are lost in
the obtained models. In the current work, we propose the new concept of partitioned dynamic
Bayesian networks to capture distribution regime changes, i.e. time non-homogeneity, benefiting from
an intuitive and compact representation with the solid theoretical foundation of Bayesian network
models. In order to balance specificity and simplicity in real-world scenarios, we propose a heuristic
algorithm to search and learn these non-homogeneous models taking into account a preference for less
complex models. An extensive set of experiments were ran, in which simulating experiments show that
the heuristic algorithm was capable of constructing well-suited solutions, in terms of goodness of fit and
statistical distance to the original distributions, in consonance with the underlying processes that gener-
ated data, whether it was homogeneous or non-homogeneous. Finally, a study case on psychotic depres-
sion was conducted using non-homogeneous models learned by the heuristic, leading to insightful

answers for clinically relevant questions concerning the dynamics of this mental disorder.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Understanding the evolution of disease processes lies at the
heart of clinical medicine as insights into how effective a particular
treatment is able to cure a disease are based on this. Not surpris-
ingly, most textbooks on clinical medicine and pathology contain
extensive descriptions of how a disease progresses and likely
reacts to particular treatments in the course of time. Yet, there
has been very little research where these qualitative descriptions
have been substantiated in a detailed, quantitative way. In
research, the temporal dimension is usually only explored by
describing the outcome of treatment after some time. One of the
problems faced by researchers who wish to obtain such insight is
the relatively small size of clinical datasets. Often, data concerns
something from a hundred to a few hundreds of patients. However,
the wish to develop a temporal model usually increases the
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demands for data, and as a consequence various simplifying
assumptions have to be made.

A solution that is usually considered in clinical problems is to
build a model that covers the entire time span, without distin-
guishing any of its time points [1-5]. Therefore, the model has
the same properties for every instant, whether the second or the
last one, e.g. as modeled by the well-known first-order homoge-
neous Markov chains [6]. A generalization of Markov chains to
multivariate problems are dynamic Bayesian networks [7,8], DBNs
for short, which are a family of models that has been applied to a
number of real-world domains, such as medicine [9-12] and bioin-
formatics [13-15]. Such probabilistic graphical models allow to
reason about the interactions of features of interest in an intuitive,
temporal and compact fashion, while having a sound basis in prob-
ability theory. This will yield more robust models, making the use
of these models attractive when dealing with small datasets. How-
ever, while it solves the robustness problem, it introduces an unde-
sirable effect: there is no distribution specificity over the time
series. Hence, one will never learn the details of the underlying
process as was the aim in the first place.
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It is known that in many clinical situations the dependences
between symptoms and signs change over time, as in the case of
intervention studies, where different sets of correlations are
naturally expected in the course of time, due to the nature of this
kind of study. Hence, a temporal graphical model that is allowed
to vary in structure and probability distribution as a function of
time would capture these complex dynamics, providing a better
fitting and more insightful model that really helps in understand-
ing the underlying process. Although the notion of non-
homogeneous time model is certainly not new, the innate technical
difficulties to learn Bayesian network-based models for time series
has forced most of the developed models to employ a number of
approximations. Typically, these have been concentrated on bio-
logical processes, where regime shifts are assumed to be smooth
[14,16,15]. It is difficult to suppose that these assumptions are
naturally valid for processes with a different nature, where the
variety of eligibility criteria and unexpected patient response to
drugs can make the distribution regimes over time vary widely.
Thus, a systematic algorithm that finds the appropriate time points
to obtain new time-dependent parameters, taking into account
the scarcity of data and the wish to obtain a robust model, is
needed. To the best of our knowledge, this idea has never before
been explored in learning Bayesian network-based models from
data.

In this work, we propose a heuristic procedure to explore and
learn over the space of non-homogeneous time dynamic Bayesian
networks, taking into account the balance between specificity and
simplicity. The approach starts with a fully homogeneous model,
and incrementally replaces parts of it by sub-models that are valid
for specific time periods. The increase of complexity is allowed if
there is a two-part split of one of the current sub-models that is
able to improve the fit over a training and test setting. The
heuristic makes few assumptions regarding the process, the main
one being the fact that the process duration is partitioned in the
same way for every feature involved. We call this new kind of
non-homogeneous time models partitioned dynamic Bayesian
networks.

In order to demonstrate the applicability of the type of non-
homogeneous time graphical models proposed here, an extensive
set of simulations and real-world-based experiments were carried
out. Simulating experiments showed that the heuristic algorithm
was capable of constructing adequate solutions, in terms of good-
ness of fit and statistical distance to the original distributions, in
consonance with the underlying processes that generated data,
whether it was homogeneous or non-homogeneous. As a conse-
quence, the advantages over homogeneous models as DBNs are
highlighted when the underlying data generation process was
not homogeneous. The experimental setup allowed to shed light
on the behavior of the heuristic to learn proper models in the case
of small datasets, which indicated that it tends to operate in a more
conservative manner when dealing with these difficult situations,
although still being capable of producing time-flexible and accu-
rate models. Concerning more general settings, the experiments
provided evidence that the greedy strategy has a proper behavior
in the vast majority of simulations. Additionally, a study case on
psychotic depression was conducted, where the models learned
by the heuristic were discussed in detail. Then, the models learned
for the psychiatry data were used to provide plausible answers for
clinically relevant questions concerning this mental disorder,
taking into account the time granularity of the original study for
rendering predictions regarding symptom association on diverse
future instants.

The remainder of this paper is organized as follows. Section 2
describes related literature of time homogeneous and non-
homogeneous dynamic Bayesian networks in clinical and
biological domains, followed by basic definitions concerning

Bayesian networks in Section 3. The heuristic procedure to learn
non-homogeneous time dynamic Bayesian networks is presented
in Section 4.2. Simulations to evaluate the learning procedure are
discussed in Section 5, while the models learned from psychiatry
data (psychotic depression) are discussed in Section 6. Clinically-
oriented discussions based on the psychiatry models are provided
in Section 7, and lastly Section 8 gives the conclusions and sugges-
tions for future research.

2. Related research

There has been quite some research on the application of
Bayesian network models to the clinical domain. To a lesser extent,
models that take time into account, such as dynamic Bayesian net-
works, have been considered in the past. Relevant research include
obtaining problem insight by analyzing the structure and parame-
ters of a DBN, and the use of DBN models for specific tasks such as
diagnosis and prognosis. For example, the learned structure of a
DBNs has been explored for finding correlations among different
brain regions in several disorders, such as schizophrenia [3] and
Alzheimer’s disease [4]. These results have been used to confirm
known correlations as well as to reveal new ones. Furthermore,
the sensitivity of the influence of parameter variation in DBNs
has been investigated in the context of ventilator-associated
neumonia [17].

Another aspect of DBNs explored in the clinical domain is the
predictive ability for several tasks, e.g. diagnosis [10,1] and
prognosis [2]. An advantage of modeling stochastic processes using
models as DBNs lies in the capability of producing updated
predictions as new observations become available while the
process progresses. This can be achieved by taking into account
some form of patient history, producing potentially more accurate
predictions. Real cases have shown the benefits of this type of mul-
tiple prediction, e.g. to diagnose ventilator-associated pneumonia
[10]. The application of DBNs and similar models in clinical
domains has been compared to similar formalisms in a recent
survey [9].

Although DBNs have been reasonably studied for their capabil-
ity to deal with clinical problems, this is not the case for more flex-
ible models, e.g. when the time homogeneity assumption is
rejected. These models address mainly the analysis of change in
structure at individual time points, in the scope of a specific dis-
ease process [18]. On the other hand, more sophisticated models
have been developed in other fields, mainly on biological processes
[13,16,15,14]. In particular, these models are constructed certain
assumptions often motivated by domain knowledge; for example,
in some biological processes the intensity of interactions change
over time, but no interaction is created or destroyed [16]. These
models deviate from the partitioned dynamic Bayesian networks
(PDBNs for short) that are proposed here, essentially in three
points. Firstly, additional restrictions are usually imposed to the
model structure, ranging from constrained intra-temporal interac-
tions [14,15] to completely fixed structure with flexibility on the
parameter space only [16]. Furthermore, neighboring homoge-
neous parts of the process are assumed to differ in a smooth
fashion, while the family of PDBNs models does not impose this;
the basic assumption in PDBNs is that the process duration is par-
titioned in the same way for every feature involved. Consequently,
these two points imply that PDBNs indeed render a different class
of models. The other distinction refers to the learning approach,
which is based on sampling strategies in many works in bioinfor-
matics [13-16], which in turn can depend on additional assump-
tions in order to be feasible. Earlier work on models to represent
non-homogeneous stochastic processes include research on engi-
neering problems [19].
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Clearly, clinical problems are potentially prone to exhibit a tem-
poral behavior that may be different from the biological processes
studied so far. To illustrate this, consider the case of intervention
studies, where specific criteria exist to define eligible patients.
Consequently, imposing the previous assumptions on the manner
in which pieces of the process evolve can forbid capturing the tem-
poral dynamics accurately. Therefore, there is a need to define and
construct models of non-homogeneous time in a systematic man-
ner, which will be able to reveal more about the underlying struc-
ture of processes in clinical domains.

3. Preliminaries

Bayesian networks, BNs for short, provide a convenient and
intuitive way to express probabilistic dependences and indepen-
dences among random variables by means of a graphical structure.
As such, they provide a compact representation of a joint distribu-
tion, which is crucial in real problems, e.g. in medicine, genetics,
and climatology, where the number of variables and their domains
can be considerably large. In particular, the manner in which
parameters of a BN are elicited is local, in the sense that it involves
the specification of a set of conditional distributions for each indi-
vidual variable. This contrasts to a naive enumeration of the joint
distribution which inevitably loses the opportunity to capture
properties of the distribution. Such structural properties are advan-
tageous when eliciting network parameters from experts.

In the following, we present some definitions and fix the nota-
tion. Each random variable (r.v.) is denoted by an upper-case letter,
such as X,Y and Z; sets of random variables by bold face upper-
case letters, e.g. X,Y and Z, while each value taken on by a r.v. by
lower case letters, as in val(X) = {a,b,c}, where val(X) denotes
the domain of X. A set of random variables indexed by a time inter-
val [t;,t,] is denoted, for example, by X“1*2), We employ the terms
‘random variables’ and ‘nodes’ of a graph interchangeably.

Furthermore, in a finite time series, a fixed set of random vari-
ables X ={Xi,...,Xn}, where each X; is known as a feature, is
observed repeatedly over a set of time points t =0, ..., T. The set
of features X is indexed by time t, resulting on a time series made
of the variables X" For eachi = 1,...,n, the variables X" consist
of template variables of the feature X;, i.e. they all have the same
domain. We say that the duration or length of such time series is
equal to T + 1 time points, where an instantiation of the variables
X7 are referred to as a sequence of the time series. Hence, an
instantiated time series correspond to a dataset containing a col-
lection of sequences of that time series. In practice, in a dataset
of sequences each random variable X,@ accommodates multiple
values, where each one is an instantiation of the variable as
observed on each sequence (e.g. a symptom measured at time ¢t
for multiple patients).

3.1. Bayesian networks and time

Let X = {Xi,...,X,} be a set of random variables, and G = (X,A)
be a directed acyclic graph with node set X and arcset AC X x X. A
Bayesian network B over X is a pair (G, P), such that the joint distri-
bution of X factorizes over G, i.e.

n

- Xn) = [[P(XiIm(Xi) (1)

i=1

P(X1,..

where 7(X;) stands for the set of parents of node X; in G, and P
denotes a set of conditional probability distributions (CPDs), also
known as conditional probability tables (CPTs) when the variables
are finite. A consequence of the factorization of P in terms of G is
that the independences that are codified in G must hold in P as well.

One of the most popular probabilistic models to handle time
series are Markov chains (MCs) [6]. A Markov chain is a stochastic
process consisting of a collection of random variables
(X9, ...,XD), where all the variables have the same domain, usu-
ally known as the state space of the chain. The number of param-
eters needed to define the joint P(X?,...X™) can be substantially
large, what would forbid applying such model to many real appli-
cations, e.g. due to the large amounts of data required to learn such
highly parameterized distribution. The typical solution for this
issue is to assume two properties, namely, the Markovian property
(also known as memoryless system property), and the time homo-
geneity property [8]. Consequently, the joint of a typical MC can be
computed as:

T-1
P(XOT) = PX ) [TPX VX ) )
=0

where P(X'?) is known as the initial distribution, and P(X*"V|X®) is
known as the transition distribution. Note that a MC can be
seen as a particular case of BNs, specifically a BN with structure
X0 ..o xM™,

In multivariate problems, a natural generalization of MCs are
the dynamic Bayesian networks [20,8]. As such, DBNs model a mul-
tidimensional variable X over a time horizon [0, T], where a vari-
able at time t+ 1 might be reached directly from variables at t
and t + 1 only. Hence the transitions of a DBN can be seen as a local
model of X conditioned on its parents, and therefore can be rep-
resented as a conditional Bayesian network. A conditional Bayesian
network over X" conditioned on X is a directed acyclic graph
with node set X UX**" that defines a conditional distribution

POX X = T[POx i) o
i=1

where 7(X;) C X® UX**D,

Since a DBN is Markovian, it follows that a single conditional BN
is sufficient to capture the transition behavior over the entire pro-
cess duration. Hence, a dynamic Bayesian network is defined as a
dynamic system over (X,...,X™), which initial distribution is
given by a Bayesian network B, over X%, and transition distribu-
tion is given by a conditional Bayesian network over X‘*! condi-

tioned on X. Putting these two pieces together produces an
unrolled DBN, i.e. a Bayesian network with joint

n T-1n

PX) = TTPX° 1m(Xs, B) [T [PX " 1m(Xi, ) “)

i=1 t=0i=1

where 7(X;, B) denotes the parent set of X; according to the struc-
ture of the BN B. Note that the parent sets of each node are not
indexed by time, since the distribution is time homogeneous.

The transition structure in a DBN associates to each node a par-
ent set containing nodes from the previous instant (i.e. at t) and
from the current instant (i.e. at t + 1). In the context of all nodes
of a conditional BN, the set of arcs that go from t to t + 1 are called
inter-temporal arcs, while the arcs from a variable at t+1 to
another variable at t + 1 are called intra-temporal arcs.

Example 3.1. In a disease process that lasts for 8 weeks, two
symptoms (denoted by features A and B) and the administered
drug quantity (denoted by feature D) are observed weekly. A DBN
is used to model this problem, where the structures of the initial
BN By and the conditional BN B — that models transitions are
shown at the top of Fig. 1. From these two structures, the
corresponding unrolled DBN can be obtained, as shown at the
bottom of Fig. 1.
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Fig. 1. An example of DBN for a disease process that lasts over [0, 7].

Example 3.2. Based on Example 3.1, probabilistic queries can be
computed making use of the structure. If the initial symptoms
and drug quantities are known for a patient at t = 0, one might
be interested in a prediction for the symptom A two weeks further;
therefore, the distribution P(A®|A®, B® D) must be computed.
As A? is indirectly connected to the observed variables, the con-
necting variables are marginalized out according to the structure,
resulting in

P(A(Z) |A(0) (0) D(O)) =20 D(l,P(A(2>,A(1>7D(1>|A(0),B(0).D(O>)

= ZA(U_D(I)P(A“”A(O), D(O))p(D(l)|B(0)7 D(O))
% P(A(Z) |A(1),D(1>)

If new evidence becomes available, an updated distribution is com-
puted, e.g. as in P(A?|AY BV A® B® DO Interestingly, B is
irrelevant for the prediction of A%’ on both queries, as deduced from
the structure.

3.2. Psychotic depression

In Section 6, the value of the techniques developed in this paper
is demonstrated by data from patients whom have been treated for
psychotic depression. Psychotic depression is a mental disorder in
which depressive and psychotic symptoms are present. Due to the
psychotic symptoms, as hallucinations and delusions, psychotic
depression is considered a severe subtype of Major Depressive
Disorder (MDD). The interaction between these two kinds of symp-
toms makes the clinical treatment challenging, often requiring a
combination of antidepressant and anti-psychotic drugs [21]. Due
to its complex, dynamic nature, the temporal analysis of the inter-
action between the diverse symptoms and signs supports the
insight for determining an adequate treatment of the patient.
Because of the complexity, it is also valuable to determine the
potential future trajectories of a patient, after observing the cur-
rent symptoms. These kind of practical questions can be properly
formulated and answered with different types of temporal Baye-
sian networks, as DBNs and partitioned DBNs introduced in the
next section.

Quantitatively, depression can be measured by means of rating
scales, such as the Hamilton depression rating scale (HDRS17),
which is a 17-item scale that accounts for several aspects of
depression [22]. Each item of the scale assumes an integer value,
starting from O and increasing proportionally to the intensity of
the symptom. The final measurement of depression can, then, con-
sist of the total sum of the 17 items, or the sum of a selection of
part of the HDRS, e.g. the melancholia sub-scale [23]. In some
cases, symptoms can be considered individually as well. On the
other hand, features of psychosis are considered dichotomized
variables, taking values on 0 if the symptom is absent, and 1 other-
wise. Whereas the Hamilton depression rating scale appears to be
useful as a tool for the psychiatrist, it lacks the ability to support
the development of insight into the dynamics of the disease.

4. Partitioned dynamic Bayesian networks

Models of non-homogeneous time are defined from a set of
transition distributions, followed by associating them to a partition
of the duration of a time series. The terminology that is used to
describe this type of model in the literature is not uniform
[14,16,15], added to the fact that the definition itself of what is a
non-homogeneous time model is inconstant as well. In this work,
the central idea relies on making the dependence on time by par-
titioning the time series duration and associating each part to a
homogeneous model, i.e. a DBN valid within a sub-range of the
time series. As such, we refer to this class of models as partitioned
dynamic Bayesian networks. We proceed in the following towards a
formalization of PDBNSs, its associated concepts, and lastly a proce-
dure to learn PDBNs by exploring the search space heuristically.

4.1. Model specification

Let a time partition of a set of integers {0,1,...,T} be a set of
k > 0 intervals (0, t;], (t1,t2],. .., (t_1, ], such that (1) t; > 0 and
ty =T; and (2) i > j implies that t; > t;, for every i,j=1,... k. If
(t;, tj] is one of these intervals, denote by ¢; the cut of the interval.
Hence, a time partition has a cut set of the form {t;,t5,...,t}.
These notions are useful to combine the partitioning of a temporal
process with distribution transitions, as follows.
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Let (Bi, ..., Bx) be a collection of conditional BNs over XV con-

ditioned on X“ . As such, each i-th conditional BN has a set of CPDs
P;. Consider a time partition of [0,T] into k cuts; let each cut

i=1,...,kbe associated to a B;. A partitioned dynamic Bayesian net-
work with k cuts, denoted by PDBN-k, is a dynamic system over
(X, ..., X™y in which the transition distribution for every pair

of time points (t,t + 1) is given by the B; associated with the cut
that contains such pair. We use the term distribution cut to denote
a cut in the context of a PDBN. It follows from this definition that a
DBN is a PDBN with a single cut at {T}, and hence, it is a PDBN-1.

The joint distribution of an unrolled PDBN with k cuts
{t1,ta2,...,t} can be obtained from the previous definitions and
assumptions as:

P(X®Ty = HP X
i=1

k t—1 n

n(X, Bo)[ [ T1 TIP X" 1mXi, B))  (5)

r=1t=t,_1i=1

where to = 0 and P, refers to the CPDs pertaining to the conditional
BN B,. Note that the parent set of each X; is coupled to a B, in
n(X;,B;), and thus no time indexing is needed, since within the
scope of each conditional BN the process is homogeneous.

Example 4.1. Consider the disease process of Example 3.1. A
PDBN-2 is defined for this problem, consisting of two cuts {2,7},
which initial structure (5Bp) and transition structures are shown on
Fig. 2. Each cut of the PDBN is associated to a conditional BN,
namely, By_, dictates the transitions in {0,...,2}, and B, 7 the
transitions in {2,...,7}.

Unrolling this PDBN-2 for the process duration yields the joint

HPO X" 17X, Bo)) T [TPo-2X(" " m(Xi, Bo-2))
o<t<1 i
X H HP2

XV |m(Xi, By 7)) (6)
2<t<6 i

where X = {A,B,D},X; € X, and P;_; refers to the CPDs pertaining to
the conditional BN 5;_;.

4.2. A heuristic search procedure

In this section, we present a heuristic algorithm to build PDBNs
in an incremental fashion from a dataset of sequences. As in many
clinical studies there is typically a scarcity of data, mainly in terms
of number of sequences (e.g. represented by patients), the central
idea of the procedure is to prefer less complex models. In order
to achieve this, the heuristic assumes that a proper criterion for
model selection that prevents overfitting is used, which is naturally
dependent on the application domain and characteristics of the
data. Hence, when constructing a model, the heuristic iteratively
increases the complexity as long as it is beneficial for its score; if
adding complexity is not, the procedure stops adding further com-
plexity. Additionally, the procedure has a hill-climbing behavior by
not further exploiting previous less complex solutions that were
less promising when analyzed by the algorithm.

4.2.1. Algorithm description

Taking the aforementioned factors into account, we designed a
procedure that starting from a DBN follows a sequence of incre-
mental refinements to evolve it into a more specialized model. A
refinement corresponds to split one of the transition distributions
of the current PDBN. At each iteration a new cutting point is added
without destroying the cuts already found previously. Conse-
quently, the procedure is greedy since it does not explore the
branching of solutions that are less interesting at each iteration.
Nevertheless, it is important to consider that the strategy to search
over the space of PDBNs is crucial, since the number of possible

manners in which a discrete time series can be partitioned is com-
putationally intractable. In order to be flexible, the complexity of
the produced models can be controlled, as it is an input parameter
of the algorithm.

The heuristic algorithm to learn PDBNs is presented in Algo-
rithm 1. In order to be generic for different scoring criteria used
to construct and evaluate PDBNs, we emphasize the search for
cut sets instead of PDBNs explicitly. The algorithm starts with
the current best cut set as the singleton C = {T}, which stands
for a fully homogeneous model. Let us denote by s the size of the
current cut set. Entering the outer loop (Line 2) will first evaluate
new cut sets with size s + 1, each one consisting of the current C
unified with a new cut that does not exist in C (Line 3). After finish-
ing the inner loop, it is verified whether the current iteration has
found an improved cut set, i.e. a cut set whose evaluation is better
than C. In case positive, C is replaced by the best cut set among
those (Lines 5 and 6). The algorithm continues this incremental
construction of cut sets while the current iteration is capable of
producing a new cut set with size (s + 1) that overcomes the cur-
rent C and the maximum number of cuts (the input parameter k)
is not reached. At the end (Line 8), the heuristic returns the
PDBN-k’ learned from the best cut set found, where k' < k.

Algorithm 1. Builds a PDBN

Input: D, a dataset of sequences with length (0,...,T);
k, the maximum size of the cut set, 1 <k <T
Output: a PDBN-K, where k' < k.
: C« {T}, where s = |C].
: while |C| < k do
For each c € {1,...,T} — C, construct a new cut set
CuU {c}. Denote the new cut sets by C = {Cy,...,C}, where
1<r<T—-|Cj+1and1<ixgr
Evaluate each cut set in C by means of a criterion f.

W N =

o

5: if there is a new cut set C; € C such that f(G;) > f(C)
then

6: Assign to C the C; that maximizes {f(Cy),...,f(C;)}.

7: else break the loop.

8: Return the PDBN-k’ learned from the cut set C, where k' = s.

4.2.2. Evaluation criterion

As Algorithm 1 shows, the criterion f abstracts the learning of
PDBNs. This is motivated by the fact that choosing a proper evalu-
ation strategy depends on the application and the characteristics of
the data, which makes it difficult to set a single criterion that
works best for all problems [24]. Generally speaking, a multitude
of model selection criteria can be employed to determine how f
is concretely implemented; some well-known criteria include
cross-validation (e.g. based on the model’s likelihood) and infor-
mation theory criteria (e.g. Akaike information criterion - AIC -
and Bayesian information criterion - BIC) [25]. For example,
employing AIC would correspond to implement Line 3 first learn-
ing a PDBN using the full dataset (i.e. all the sequences), then com-
puting the AIC of the resulting model over the full dataset as well,
which value would correspond to f. Similarly, each sub-DBN can be
learned using a standard Bayesian-network learning algorithm,
typically falling within search-and-score and constraint-based
approaches [8].

An important criterion for the present purpose of learning
dynamic models from a small dataset is to avoid overflexible mod-
els that may overfit and reflect high variance in model learning.
Five- or ten-fold cross-validation overestimates prediction error
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Fig. 2. An example of PDBN-2. Each transition structure is denoted by B;_;, i.e. it governs each transition from tto t + 1 in {i,...,j}. Nodes on the left and the right side occur at

t and t + 1 respectively, except for the initial BN.

and thus punishes overfitting. As a consequence, it can be com-
bined with likelihood for model selection and a method to punish
model complexity, as for example provided in AIC and BIC, is not
required [26].

4.2.3. Complexity

Initially, the cut set maintained by the algorithm is C = {T}. At
the first iteration of the outer loop, new cut sets with size s + 1 are
built, consisting of C plus a new element; there are T — 1 manners
to make this inclusion. At the second iteration, there are T — 2 pos-
sible cut sets to be constructed, and so on, until the last iteration, in
which there is only one cut to be inserted in the current C. Thus,
the total number of cut sets constructed by the heuristic is in
O(T?), considering the worst case.

Naturally, the dominant part of the heuristic’s total cost corre-
sponds to learning models. In the case of learning DBNs, the input
can be seen as a transition dataset (X, X'), consisting of all the data
(X® X™Y) §=0,...,T—1, merged, as if there were a single time
transition. Note that this construction is sound since the model is
time-homogeneous. If the original dataset D consists of m
sequences (of length T + 1), this merged dataset will consist of
mT short sequences (of length 2). Thus, abstracting the cost of
learning a DBN by means of a cost function g will lead to a cost
of O(g(mT)) to learn a DBN. The case of learning PDBNs-k, k > 1,
can be seen as learning k sub-DBNs made of potentially different
number of sequences, as dictated by the cut set of the PDBN. Note
that when the number of cuts is maximal, it implies learning T sub-
DBNs, each one from a transition dataset (X, X" consisting of
m short sequences. As each of these sub-DBNs would cost g(m),
learning such PDBN would require O(Tg(m))). Thus, the cost
dynamics of the heuristic moves between these two cost estima-
tions as the size of the cut set changes.

5. Empirical evaluation via simulations
5.1. Simulation parameters

We considered experiments with simulated data to obtain a
more general assessment of the proposed method for learning
PDBNs'. Time series with varying length and number of sequences
were generated, resulting in diversified datasets. Specifically, we con-
sidered the number of features, denoted by n € {2,6,10,14,18},
where each time series is composed by sequences with length of 10
or 30 points. Hence, simulations accounted for time series ranging
from 20 to 540 random variables in total. For each n and time series
length, datasets were randomly generated containing different
number of sequences, denoted by d € {100, 500, 2000, 5000}. Thus,

1 The implementation is available at http://www.cs.ru.nl/~mbueno.

simulations allowed a reasonable evaluation in terms of different fea-
ture spaces and dataset sizes.

On each simulation, a random DBN or PDBN-k was constructed,
consisting of n binary features per instant t. Structurally, a random
PDBN-k consists of k random sub-DBNs, where each random sub-
DBN had its graphical structure uniformly generated at random
[27], and distribution parameters determined randomly as well
(no noise was introduced in the model’s parameters). Hence, each
node of an unrolled PDBN assumed a Bernoulli distribution. Given
a random PDBN-k and a random cut set of length k, whose last cut
corresponds to the length of the sequences that are to be sampled
from the model, four disjunct datasets were constructed, one for
each value of d. In other words, a common underlying model was
used for each group of simulations since the experiments also
aimed at studying the effect on the heuristic’s capabilities over dif-
ferent quantities of data.

Each dataset was generated from either a DBN or a PDBN (i.e.
both random structure and parameters). The initial aim is to verify
experimentally whether the construction algorithm is able to learn
the adequate “kind” of model, wrt. the reference model (a random
DBN or PDBN) used to simulate data. Moreover, the cuts of the
learned models were compared to the cuts of the reference models,
where we use the following notation: if the cuts of the reference and
learned models are equal, we write =; if the cuts of the learned
model include all the cuts of the reference one, we write C +a,
where a denotes the number of additional cuts included by the
learned model; finally, if none of these criteria is met, we write
¢ . Although these two criteria are useful to perform a structural
comparison in terms of the number and position of distribution
cuts, they obviously do not provide information about the distance
between the probability distributions of two models. To this end,
the Kullback-Leibler divergence [25] between the marginal
distribution of each feature at each t, denoted by X\”, was
considered. Specifically, on each simulation, it is computed
S KLPX ) QXY)), for all i=1,...,n, and t=0,...,T, ie. the
sum of the divergences between the marginal distributions as dic-
tated by two distributions P and Q, in this case a reference distribu-
tion and a learned distribution respectively. Note that this criterion
differs from the usual KL divergence over the entire joint distribu-
tion, which is computationally prohibitive for most of the simula-
tions covered in this section. As usual, the KL divergence should
be minimized, reflecting the amount of extra information needed
to codify P using Q.

5.2. Learning and evaluating PDBNs

In the experiments of this paper, we implemented the evalua-
tion criterion by means of a 10-fold cross-validation. Cross-
validation minimizes the effect of overfitting (see Section 4.2.2);
we describe the procedure in detail in the following. Let
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Ci = {t1,...,t} beacut set of a time series over [0, T]; in the context
of Algorithm 1, C; corresponds to the a new cut set that is built in
Line 3. For each cross-validation fold, the training data is used to
learn a PDBN-k with cut set C;, while the test data is used to com-
pute the log-likelihood of such PDBN. After processing all the folds,
the mean of the log-likelihoods is taken, which represents the eval-
uation value of the cut set C;, indicated in Algorithm 1 by f(C;).
Finally, when deciding between two cut sets (e.g. as in Line 5),
the algorithm chooses the one having the higher mean log-
likelihood. Once the heuristic search has finished (i.e. after leaving
the outer loop of Algorithm 1), and the best cut set has been deter-
mined, a PDBN with such cut set is learned using the full dataset, i.e.
both training and test data. Such PDBN corresponds to the output of
the procedure.

In order to learn a PDBN-k, k homogeneous models are learned
using the corresponding portions of the training data according to
its cut set. Each of the k sub-DBNs is learned separately. As it hap-
pens with Bayesian networks learning, typically search-and-score
and constraint-based methods are used during learning; in the
experiments of this section and Section 6 the AIC criterion was
employed to score each sub-DBN, which means yielding a score
proportional to the likelihood of the model and a penalization term
for the complexity. This is the case for example when showing the
resulting model in the psychiatry case (Section 6).

5.3. Results and discussion

The results of simulations with data generated from DBNSs,
PDBNs-2 and PDBNs-3 models are shown on Tables 1-3 respec-
tively. Note that a DBN was learned on every case to serve as a
baseline method, specially when simulating data from non-DBNs;
the ability of the learned DBNs are indicated on the sixth column
of the tables. The models learned by the heuristic from DBN data
(Table 1) had structural partitioning in accordance with the refer-
ence models on most cases, showing that the heuristic was capable
of retrieving the adequate type of model. When the returned mod-
els were not a DBN, these were mostly slightly more complex ones
(i.e. PDBNs-2). Interestingly, the KL divergence between the
learned PDBNs and the respective reference models are compara-
ble to the divergence of the learned DBNs, i.e. although consisting
of additional transition distributions, the learned PDBNs captured
the reference distribution as good as the learned DBNs did.

The models returned by the heuristic based on data produced
by PDBNs-2 and PDBNs-3 (Tables 2 and 3) support analogous
points discussed just before. Furthermore, these tables show that
the KL divergences of the PDBNs learned heuristically were sub-
stantially lower than those of the learned DBNs, i.e. the former
are closer to the reference ones. This fact was more prominent
when the length of the time series was increased to 30. Intuitively,
a DBN “averages” over the distribution underlying data; if most of
the transitions were originated from a single distribution, then the
few remaining ones will tend to have less impact on the distribu-
tion learned by the DBN. On the PDBNs-2 and PDBNs-3 cases
where the first cut was situated around half of the sequence dura-
tion, there were at least two different transition patterns, what
tends to make a DBN less representative of each individual transi-
tion. Overall, it is worth noting that the cases where the heuristic
procedure was not capable of constructing models with the same
structural partition of transitions as the reference models do have
some particularities. Namely, these cases contain little features
(mostly n = 2) or have few sequences. Despite not returning the
exact type of model, the KL divergences of these PDBNs were
noticeably smaller than the divergences of the learned DBNs, sug-
gesting that the heuristic is capable of finding alternative “routes”
with good fit in unfavorable scenarios.

Table 1

Simulations with data generated by DBNs, where n and d denote the number of
features and the number of sequences respectively. The heuristically learned models,
the reference models and the learned DBNs are abbreviated as Heur, Ref, and Le. DBN
respectively.

n d Model Cut sets Cuts S KL S KL
(Heur.) (Ref. and Heur.) diff. (Le.DBN) (Heur.)

Time series length = 10

2 100 DBN 9) = 0.04 0.04

2 500 DBN 9) = 0.01 0.01

2 2000 DBN 9) = 0 0

2 5000 PDBN-2 (9);(7,9) c+1 0 0

6 100 DBN 9) = 0.17 0.17

6 500 DBN 9) = 0.04 0.04

6 2000 DBN 9) = 0.01 0.01

6 5000 DBN 9) = 0.01 0.01
10 100 DBN 9) = 0.24 0.24
10 500 DBN 9) = 0.09 0.09
10 2000 DBN 9) = 0.02 0.02
10 5000 DBN 9) = 0.02 0.02
14 100 DBN 9) = 0.38 0.38
14 500 DBN (9) = 0.07 0.07
14 2000 DBN 9) = 0.03 0.03
14 5000 DBN 9) = 0.02 0.02
18 100 DBN (9) = 0.23 0.23
18 500 DBN 9) = 0.07 0.07
18 2000 DBN 9) = 0.03 0.03
18 5000 DBN 9) = 0.02 0.02
Time series length = 30

2 100 DBN (29) = 0.01 0.01

2 500 DBN (29) = 0.01 0.01

2 2000 DBN (29) = 0 0

2 5000 PDBN-2  (29);(1,29) c +1 0.01 0.01

6 100 DBN (29) = 0.16 0.16

6 500 DBN (29) = 0.03 0.03

6 2000 DBN (29) = 0.02 0.02

6 5000 DBN (29) = 0.02 0.02
10 100 DBN (29) = 0.13 0.13
10 500 DBN (29) = 0.04 0.04
10 2000 DBN (29) = 0.03 0.03
10 5000 DBN (29) = 0.02 0.02
14 100 DBN (29) = 0.26 0.26
14 500 DBN (29) = 0.07 0.07
14 2000 DBN (29) = 0.04 0.04
14 5000 DBN (29) = 0.04 0.04
18 100 DBN (29) = 0.3 0.3
18 500 DBN (29) = 0.08 0.08
18 2000 DBN (29) = 0.05 0.05
18 5000 DBN (29) = 0.04 0.04

A summary of the results presented in Tables 1-3 is given in
Table 4. Each row of the table aggregates simulations of DBNSs,
PDBNs-2 and PDBNs-3 according to the number of features and
sequence length.

5.4. Small datasets

Finally, the simulations showed that the models learned by the
heuristic from the smallest datasets (i.e. those containing 100
sequences) were simpler than the reference models used to gener-
ate simulated data on virtually every case. Hence, it was evidenced
experimentally that the heuristic tends to operate in a conservative
mode when there is scarcity of data; in other words, no overfitting
was observed on these simulations.

With regard to the structural partitioning and quality measure-
ments for these models: (1) the cuts of the learned models were all
part of the cut sets of the reference models, on almost all cases
(note that this includes all the cases with a ¢ ); and (2) the diver-
gences of the learned PDBNs were substantially smaller than those
of DBNSs, specially when data was generated from PDBNs-3,
indicating a decent learning ability of the heuristic in the difficult
situation of small datasets.
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Table 2
Simulations with data generated by PDBNs-2. For each case, the best values on the KL
divergences are given in bold and followed by an asterisk.

Table 3
Simulations with data generated by PDBNs-3.

n d Model Cut sets (Ref. and  Cuts > KL > KL
n d Model Cut Sets (Ref. and Cuts ST KL ST KL (Heur.) Heur.) diff. (Le.DBN)  (Heur.)
(Heur.)  Heur.) diff. (Le.DBN) (Heur.) Time series length = 10
Time series length = 10 2 100 PDBN-2 (1,6,9); (6,9) z 2.73 0.26°
2 100 PDBN-4 (1,9); (1,2,4,9) c+2 018 0.08 2 500 PDBN-4 (1,6,9);(1,2,6,9) c +1 2.8 0.02"
2 500 PDBN-2 (1,9) = 0.16 0.02' 2 2000 PDBN-3 (1,6,9) = 2.79 0.01
2 2000 PDBN-4 (1,9);(1,5,7,9) c+2 019 0.01° 2 5000 PDBN-4 (1,6,9); (1,4,6,9) c +1 278 0
2 5000 PDBN-4 (1,9);(1,5,8,9) c+2 019 0.01 6 100 PDBN-3  (2,6,9) = 3.37 0.25"
6 100 PDBN-2 (6,9) = 1.88 0.14° 6 500 PDBN-3 (2,6,9) = 3.09 0.04'
6 500 PDBN-2 (6,9) = 1.81 0.03 6 2000 PDBN-3 (2,6,9) = 291 0.02°
6 2000 PDBN-2 (6,9) 1.76 0.01° 6 5000 PDBN-3 (2,6,9) = 2.94 0.01
6 5000 PDBN-2 (6,9) = 1.76 0.01° 10 100 PDBN-2 (6,8,9); (6,9) s 2.99 1.83
10 100 DBN (8,9); (9) ¢ 1.06 1.06 10 500 PDBN-3 (6,8,9) = 2.85 0.07"
10 500 PDBN-2 (8,9) = 0.96 0.05" 10 2000 PDBN-3 (6,8,9) = 2.8 0.02"
10 2000 PDBN-2 (8,9) = 0.95 0.02" 10 5000 PDBN-3 (6,8,9) = 2.78 0.02'
10 5000 PDBN-2 (8,9) = 0.95 0.01 14 100  PDBN-2  (2,3,9); (3,9) ¢ 6.5 1.61°
14 100 PDBN-2 (3,9) = 3.07 0.37 14 500 PDBN-3  (2,3,9) = 5.41 0.1
14 500 PDBN-2 (3,9) = 2.68 0.1 14 2000 PDBN-3 (2,3,9) = 4.96 0.04'
14 2000 PDBN-2 (3,9) = 2.39 0.03" 14 5000 PDBN-3 (2,3,9) = 4.76 0.02'
14 5000 PDBN-2 (3,9) = 2.35 0.02 18 100 DBN (1,8,9); (9) z 217 2.17
18 100 DBN (1,9); (9) o 157 157 18 500 PDBN-3 (1,8,9) = 1.85 0.1
18 500 PDBN-2 (1,9) = 1.04 0.09' 18 2000 PDBN-3 (1,8,9) = 1.7 0.03"
18 2000 PDBN-2 (1,9) = 0.93 0.02 18 5000 PDBN-3 (1,8,9) = 1.52 0.02'
18 5000 PDBN-2 (1,9) = 0.78 0.02"
Time series length = 30
Time series length = 30 2 100 PDBN-3  (15,17,29) = 1.97 0.1
2 100 PDBN-2 (15,29) = 5.05 0.09 2 500 PDBN-3  (15,17,29) = 1.93 0.02"
2 500 PDBN-2 (15,29) = 5.05 0.02 2 2000 PDBN-6 (15,17,29); c +3 1.92 0.02"
2 2000 PDBN-7 (15,29); c+5 507 0.02" (1,6,15,17,22,29)
(2,6,15,20,26,28,29) 2 5000 PDBN-5 (15,17,29); c +2 1.92 0.01°
2 5000 PDBN-4 (15,29); c+2 508 0.01 (3,15,16,17,29)
(10,15,25,29) 6 100 PDBN-3  (18,19,29); s 17.15 153
6 100 PDBN-2 (18,29) = 15.8 0.12° (17,19,29)
6 500 PDBN-2 (18,29) = 15.7 0.04" 6 500 PDBN-3  (18,19,29) = 17.09 0.05"
6 2000 PDBN-2 (18,29) = 15.76 0.02° 6 2000 PDBN-3 (18,19,29) = 17.13 0.03"
6 5000 PDBN-2 (18,29) = 15.95 0.02' 6 5000 PDBN-3 (18,19,29) = 17.12 0.02'
10 100 PDBN-2 (20,29) = 7.24 0.26° 10 100 PDBN-3  (20,24,29) = 25.57 0.38
10 500 PDBN-2 (20,29) = 7.25 0.12 10 500 PDBN-3  (20,24,29) = 25.69 0.07"
10 2000 PDBN-2 (20,29) = 7.2 0.06° 10 2000 PDBN-3  (20,24,29) = 25.59 0.05
10 5000 PDBN-2 (20,29) = 713 0.03" 10 5000 PDBN-3  (20,24,29) = 25.09 0.03’
14 100 PDBN-2 (21,29) = 9.29 0.35 14 100 PDBN-3  (8,21,29) = 15.53 047
14 500 PDBN-2 (21,29) = 9.09 0.09' 14 500 PDBN-3  (8,21,29) = 153 0.17
14 2000 PDBN-2 (21,29) = 9.09 0.06° 14 2000 PDBN-3 (8,21,29) = 15.15 0.07"
14 5000 PDBN-2 (21,29) = 9.02 0.04' 14 5000 PDBN-3 (8,21,29) = 15.05 0.04'
18 100 PDBN-2 (17,29) = 13.02 0.34" 18 100 PDBN-3  (1,17,29) = 12.63 0.61
18 500 PDBN-2 (17,29) = 12.82 0.1 18 500 PDBN-3 (1,17,29) = 12.07 0.11
18 2000 PDBN-2 (17,29) = 12.57 0.06" 18 2000 PDBN-3 (1,17,29) = 12.03 0.06"
18 5000 PDBN-2 (17,29) = 12.64 0.05" 18 5000 PDBN-3 (1,17,29) = 11.97 0.05"
6. Learning temporal models of psychotic depression
6.1. Bayesian networks in psychiatry Table 4

The use of probabilistic graphical models in psychiatry has been
fairly narrow. Existing research is mainly restricted to semi-
automatic and fully handcrafted approaches, namely, learning only
the parameters from data [28,5] and eliciting both structure and
parameters from descriptive statistics and expert knowledge
[29,30]. Although making use of expert knowledge might be neces-
sary, e.g. in order to include established medical knowledge, the
use of a data-driven approach has been able to discover new and
unexpected insights in a multitude of fields. Furthermore, an
advantage of BN models that can be of interest in psychiatry stud-
ies lies on making predictions when provided with incomplete evi-
dence (e.g. only a few symptoms). This feature has been explored
in some studies [29,30], however at the individual level of a few
patients (whether real or artificial), consequently, there is still a
need for understanding associations between different variables
in a more comprehensive and systematic way. This can include
inferences for a population of patients, in order to reveal more

Summary of simulations with DBNs and PDBNs. The second column refers to the
average of Y  KL(DBN)- 3" KL(PDBN), hence positive values indicate higher
divergences of DBNs. The third column shows the average of >~ KL(PDBN). The fifth
and sixth columns show the mean number of additional cuts (when a C + a occurs.)
and the number of ¢ occurrences.

n DBNs-PDBNs PDBNs Equal cut Additional Other cut
sets (total) cut sets sets (total)
Time series length =10
2 0.95 0.04 5(12) 1.5 1(12)
6 1.58 0.06 12(12) 0 0(12)
10 1.02 0.29 10(12) 0 2(12)
14 2.49 0.23 11(12) 0 1(12)
18 0.63 0.36 10(12) 0 2(12)
Time series length = 30
2 2.31 0.03 7(12) 2.6 0(12)
6 10.82 0.17 11(12) 0 1(12)
10 10.81 0.1 12(12) 0 0(12)
14 8.02 0.14 12(12) 0 0(12)
18 8.2 0.15 12(12) 0 0(12)
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general knowledge about, for example, the predictive power
among different sets of features.

In particular, among the literature on BNs in psychiatry, time
has not been a factor taken into account in a systematic manner
so far. Except for the case that considers only the begin and the
end of a treatment [28], research that takes into account the real
time granularity has not been developed to this moment. A few
important instances can be controlled treatments and longitudinal
diagnosis, where the examination of some form of history or time
series measurements would allow a more global comprehension
of, for example, the evolution of mental illnesses and a more accu-
rate and detailed diagnosis. Even in the absence of some of the fea-
tures as input, models that capture a time dimension, as dynamic
Bayesian networks [8], are still able to deliver predictions about
future instants, what can be difficult for methods rooted on regres-
sion, for example. Furthermore, these can be regarded from a single
point (e.g. the time point after the last measurement of the fea-
tures) to multiple future time points. Besides prediction, temporal
models can also be used to find associations taking into account
the time dimension.

Within the field of psychiatry, diseases that have been covered
under a BN approach include depression [28,29,31], social anxiety
[5], schizophrenia [30], as well as analyzing the use of BNs on diag-
nosis in psychiatry [32]. Moreover, there is a lack of research of
temporal models on psychotic depression, which besides being a
severe mental disorder, brings an additional complexity due to
the presence of both psychotic and depressive symptom factors.

6.2. Problem description and data preprocessing

To illustrate the use of non-homogeneous time probabilistic
models and the heuristic construction procedure proposed in this
work, we selected a case in psychiatry. It comprises a dataset from
an original study designed to compare the efficacy of three drug
treatment strategies (imipramine, venlafaxine and venlafaxine-
quetiapine) in a sample of patients with psychotic depression over
7 weeks [33]. The primary outcome of the study aimed at investi-
gating which strategy allowed superior reductions of depressive
and psychotic symptoms at treatment endpoint. In this work, in
turn, we aim at answering a different research question: to which
extent do depressive and psychotic symptoms interact over time? To
this end, temporal models as DBNs and PDBNs are shown to be
adequate since a large range of hypothesis can be verified sup-
ported by those, while modeling explicit relationships between
psychotic and depressive symptoms. We first discuss the results
obtained by the heuristic algorithm when applied over psychiatry
data, aiming at providing: (1) a more technical perspective based
on fitting assessment between DBNs and PDBNs and (2) an inves-
tigation of the dependences in the graphical structure. Then, in
Section 7 we make use of the obtained models to clinically-
oriented research questions, as the one mentioned earlier.

Differently from the original study, in which the primary out-
come was the sum of the 17-item Hamilton depression rating scale
(HDRS17, see Section 3.2) [22], in this work we considered the
individual symptoms of the HDRS17. The dataset consists of 122
patients’ data, from which 100 are patients that completed the
treatment. Given the limited data, we used the 6-item melancholia
sub-scale (HDRS6) [23] instead of the complete HDRS17, consisting
of the features shown on Table 5. Using the melancholia sub-scale
is, therefore, twofold: it avoids the usage of the complete HDRS17
upon the available scarce dataset, whereas HDRS6 is able to cap-
ture the core symptoms of depression [23]. In addition, two psy-
chotic symptoms were considered (hallucinations and delusions),
totalizing eight features.

The somatic general item takes values on {0,1,2}, where the
value 0 means the item is absent, and the value 2 means it is clearly

Table 5
Summary of psychiatry data.

Psychotic Depression dataset [33]
Number of sequences 122 (100) patients

(complete)

Number of time 8 (incl. baseline)
points

Depressive Depressed mood (Dm), Guilt, Work and Activities
symptoms (Ac), Psychomotor Retardation (Re), Psychic Anxiety
(HDRS6) (Ap), and Somatic General (Sg)

Psychotic symptoms
Study’s period and
location

Hallucinations (Ha) and Delusions (De)
2002-2007, The Netherlands

present. The other items of HDRS6 are graded on {0,1,2,3,4},
where 0 means the item is absent, and 4 means the item is severe
[22]. To use as much data as possible, the incomplete cases were
imputed with the same method as in the original study [33],
namely, the last observation carried forward (LOCF). The frequen-
cies of the imputed data at each week are shown on Table 6. An
additional step in data preprocessing to cope with the limitation
of dataset size consisted of discretizing each item as binary vari-
ables on {low, high}, as follows: {0,1} was mapped to low, while
{2,3,4} (for five-valued variables) and {2} (for the three-valued
variable) were mapped to high.

6.3. Heuristic learning

Applying the heuristic procedure over the data first yields a
DBN, with mean log-likelihoods —351.18. In the first iteration of
the heuristic refinement, it tries to find a model with two cuts that
is fitter than the DBN, which in fact was possible, precisely a PDBN-
2 with cuts {4,7} and fit of —345.53, as show on left side of Fig. 3.
Although not expanded further, the model with cuts {6,7} was
also fitted better than the DBN (mean equal to —350.31). Since
the algorithm found an improvement over the current best solu-
tion (the DBN), it updates the best solution to the most fit PDBN-
2 and continues the heuristic search, now over PDBNs-3. As the
right plot of Fig. 3 shows, the search again could find an improved
solution, precisely a PDBN-3 with an additional cut just before the
last cut, leading to a new cut set {4,6,7} and mean log-likelihood
of —344.80. Consequently, a new iteration is began over PDBNs-4,
however, no further improvement could be achieved this time
since the most fit PDBN-4 had a mean of —362.61 (plot not shown),
leading to the termination of the procedure. Hence, the model
returned was a PDBN-3 with cuts at {4,6,7}.

A more detailed examination of the time partitioning of the
resulting PDBN-3 can reveal insight on the underlying dynamics
of the psychiatric treatment. In general lines, it suggests that the
dynamics governing roughly the first half of the treatment’s dura-
tion is distinguished from the remaining weeks. The second half of
treatment is further dichotomized since the transition pattern to
the last week is distinguished as well. Hypothesis can be devised
from this structural partitioning, e.g. whether there are one or
more symptoms that have stronger influence on the others in the
first stage, and whether the last transition is distinguished due to
a possible stabilization. Nonetheless, clinically relevant questions
as these need a stronger assessment based on the graphical struc-
ture and distributions of each of the three components of the
model, as covered in the next section.

6.4. Transition structures

The structure of the DBN is shown on Fig. 4, while the structure
of the conditional BNs that compose the PDBN-3 are shown on
Figs. 5 and 6. For a clearer exposition, each conditional BN was split
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Relative frequencies of HDRS6 items of psychiatry data at each week, where w denotes the respective weighted means (in bold).

t Depressed mood Guilt Work and activities
0 1 2 3 4 w 0 1 2 3 4 w 0 1 2 3 4 w
0 0 0 0.04 0.35 0.61 3.57 0.04 0.05 0.14 0.14 0.63 3.27 0 0 0.15 0.49 0.36 3.21
1 0.01 0.02 0.14 0.41 0.43 3.23 0.04 0.07 0.2 0.23 0.45 2.98 0 0 0.21 0.52 0.27 3.06
2 0.05 0.07 0.26 0.39 0.23 2.69 0.09 0.15 0.24 0.2 0.33 2.52 0 0.02 0.34 0.5 0.14 2.76
3 0.1 0.13 0.26 0.29 0.22 2.4 0.15 0.23 0.25 0.16 0.22 2.07 0.01 0.08 0.35 0.4 0.16 2.61
4 0.16 0.17 03 0.2 0.17 2.07 0.24 0.23 0.2 0.14 0.19 1.81 0.02 0.12 04 0.34 0.12 243
5 0.22 0.16 0.23 0.22 0.17 1.97 0.3 0.2 0.2 0.12 0.17 1.67 0.02 0.14 0.43 0.29 0.12 2.34
6 0.25 0.12 0.27 0.2 0.15 1.87 0.34 0.16 0.18 0.15 0.17 1.66 0.03 0.19 0.36 0.3 0.12 2.29
7 0.26 0.15 0.26 0.2 0.13 1.79 0.34 0.23 0.16 0.1 0.17 1.52 0.07 0.25 037 0.2 0.11 2.03
t Psychomotor retardation Psychic anxiety Somatic general
0 1 2 3 4 w 0 1 2 3 4 w 0 1 2 w
0 0.16 0.3 0.31 0.22 0.02 1.65 0.03 0.14 0.27 0.37 0.19 2.54 0.1 0.3 0.61 2.54
1 0.15 0.33 0.34 0.16 0.02 1.59 0.11 0.16 0.29 0.29 0.16 2.22 0.16 0.34 0.51 2.22
2 0.27 0.3 0.29 0.12 0.02 1.34 0.18 0.22 03 023 0.07 1.8 0.22 043 0.34 1.8
3 0.33 0.35 0.22 0.08 0.02 111 0.29 0.25 0.23 0.16 0.07 1.47 0.34 0.39 0.27 1.47
4 0.4 0.31 0.2 0.07 0.02 0.98 0.3 0.26 0.2 0.17 0.06 1.42 0.27 0.48 0.25 142
5 0.53 0.21 0.18 0.06 0.02 0.81 0.39 0.2 0.24 0.12 0.05 1.24 0.39 0.42 0.2 1.24
6 0.52 0.27 0.13 0.06 0.02 0.77 0.39 0.16 0.23 0.17 0.04 13 0.41 0.38 0.21 13
7 0.62 0.18 0.12 0.06 0.02 0.66 0.38 0.26 0.19 0.12 0.05 1.2 0.4 0.36 0.24 1.2
Mean log—likelihood Mean log—likelihood
=502 —440 =377 -314 —252 =502 —440 =377 -314 —252
DBN + ° +D:| """"" + Current best } """""""""""" |:|:| """" {
s |3 T PP R T}t
cucsrf ]}
Cuts =247 | E ****** 1
bl Tr o
Cuts =347  froreeees E ————————— 1
Cuts =471 frooorrooo] KR
Cuts=5,7 - }[D oo | Cuts=4571 +D] """"" i
Cuts = 6,7 - [I— [ 1 | cus=4671 }IZD ————— !

(a) First iteration: 2 cuts.

(b) Second iteration: 3 cuts.

Fig. 3. Boxplots for each stage of the heuristic over psychiatry data. The means are represented by a diamond symbol.

(b) Intra-temporal arcs.

(a) Inter-temporal arcs.

Fig. 4. Structure of the DBN learned from the psychiatry data. Nodes on the left side
of the inter-temporal arcs occur at time t, while those on the right at t+ 1.
De = Delusions, Ha = Hallucinations, Dm = Depressed mood, Gu = Guilt, Ac = Work
and activities, Re = Psychomotor retardation, Ap = Psychic anxiety, and Sg = Somatic
general.

into inter-temporal arcs (i.e. those from t+ 1 to t) and intra-
temporal arcs (those delimited to each point t+ 1). Note that
DBN’s and PDBN-3’s initial structure are naturally the same. Both
models indicate the existence of a self-influence for every feature
when moving from present to future. More precisely, if A is a fea-
ture, the chain A” — A"*Y has been regularly learned for both DBN
and PDBN-3, indicating (part of) the direct effect received by A“V.

7. Model assessment from a clinical perspective

In this section we approach the use of the learned models for
psychotic depression, specially the DBN and the PDBN-3, to sup-
port answering clinical-oriented questions.

7.1. Symptoms’ marginals over time

The previous sections showed that the PDBN-3 learned by the
heuristic procedure provided: a better fit and a richer transition
structure information with respect to other evaluated PDBNs,
including the DBN. A complementary and practical assessment of
these models compare the marginal frequencies of each symptom
per week, as seen in data, with the respective model-based marginal
distributions. Table 7 presents the empirical and model-based
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(a) First cut: [0,4].

(b) Second cut: [4, 6].

(c) Third cut: [6,7].

Fig. 5. Inter-temporal arcs of the PDBN-3 learned from the psychiatry data.

t+1
t+1

(a) First cut: [0,4].

(b) Second cut: [4,6].

t+1

(¢) Third cut: [6,7].

Fig. 6. Intra-temporal arcs of the PDBN-3 learned from the psychiatry data.

marginals for each symptom per week, where the value assumed is
either true or high. A summary of this information is presented at
Table 8.

Concerning the psychotic symptoms, the PDBN-3 produced
marginals that are closer to the empirical data than the DBN on
average. With respect to depressive symptoms, a superior fit was
achieved by the PDBN-3, except for the symptom psychomotor
retardation.

7.2. Predictive symptoms over time

As discussed before, selecting an adequate structure is an
important step to capture the underlying distribution in data as
precisely as possible. As a probabilistic graphical model, the
structure of PDBNs can be systematically verified for statistical
independences among two sets of random variables by means of

d-separation properties [8], essentially testing the paths between
the respective nodes in the structure. As the Figs. 5 and 6 show,
the marginal statistical dependences, both direct and indirect (i.e.
through paths with two or more arcs), dominated over the mar-
ginal independences. Nevertheless, the independence relation -p
(or its counterpart 7M‘p) is qualitative, in the sense that two vari-
ables being dependent does not directly inform about any intensity
in which this dependence occur.

In this context, we approach a research question within the field
of psychiatry, specially in psychotic depression: to which extent do
psychotic and depressive symptoms interact during treatment? This
question can be rephrased more concretely as: how predictive are
the psychotic symptoms to depressive symptoms, and vice versa? To
answer this question, statistical (in)dependences play a key role,
since it is the fundamental criterion to decide on dependence
and independence. However, it must be complemented to allow
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Table 7

Marginal distributions over time: psychiatry data and learned models (the latter minus the former). The time span is split according to the cut set of the PDBN-3. The values that

are closer to the empirical frequencies are indicated in bold.

Symptom Marginal probability (%)

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7
Delusions
Data 91.0 72.1 59.0 47.5 40.2 36.1 32.0 303
DBN —0.09 0.43 0.32 2.03 1.93 0.22 -0.18 -1.95
PDBN-3 -0.09 -0.88 -1.32 0.28 0.16 0.38 1.6 0.11
Hallucinations
Data 23.8 15.6 16.4 13.1 131 115 13.9 11.5
DBN 0.03 3.69 -0.25 0.68 -1.06 -0.77 —4.26 —2.62
PDBN-3 0.03 2.77 -1.59 —0.58 -1.95 -0.01 -2.05 —1.66
Depressed mood
Data 100.0 97.5 88.5 77.0 67.2 62.3 62.3 59.0
DBN -0.83 -4 —-2.22 2.02 4.96 4.07 -1.07 -2.06
PDBN-3 —0.83 —-4.39 —3.66 -1.08 0.67 4.02 2.5 1.76
Guilt
Data 91.0 88.5 76.2 62.3 533 50.0 50.0 42.6
DBN —0.03 —5.78 -2.37 3.09 4.56 1.49 -3.76 -0.84
PDBN-3 —0.03 —6.72 -3.92 0.9 2.03 3 117 -0.07
Activities
Data 100.0 100.0 98.4 91.0 86.1 83.6 77.9 68.0
DBN -0.83 —4.36 —6.87 -3.87 -3.13 —4.52 -2.36 447
PDBN-3 -0.83 -3.03 -4.14 0.16 1.73 -0.18 2.72 2.66
Retardation
Data 54.9 52.5 434 32.0 28.7 254 20.5 19.7
DBN -0.1 —6.18 —4.38 1.32 -0.01 -0.41 1.77 0.39
PDBN-3 -0.1 -4.3 —-2.96 1.78 -0.45 -2.73 —0.86 —-2.32
Psychic anxiety
Data 82.8 73.0 59.8 45.9 43.4 41.0 443 36.1
DBN -0.01 —4.76 -1.04 5.93 3.04 1.07 -5.76 —0.57
PDBN-3 -0.01 —5.54 -3.19 2.87 —0.56 3.36 0.17 1.98
Somatic general
Data 60.7 50.8 344 27.0 254 19.7 213 23.8
DBN —0.02 —-6.71 0.83 3.03 1.2 4.47 0.94 -3.05
PDBN-3 -0.02 —7.28 -0.95 1.15 -0.29 1.57 -1.63 —-3.33

Table 8 The baseline point (t = 0) was discarded since it was a weak pre-

Summary of percentage differences of learned models to the marginal frequencies of
psychiatry data. The absolute values are used to compute the means. The best means
are indicated in bold followed by an asterisk.

Feature Mean diff. (DBN) Mean diff. (PDBN-3)
Delusions 0.89 0.6

Hallucinations 1.67 133

Depressed mood 2.65 2.36

Guilt 2.74 223

Activities 3.8 1.93

Retardation 1.82° 1.94

Psychic anxiety 2.77 221

Somatic general 2.53 2.03

an assessment of the intensity of dependence among different
dependent variables, aiming ultimately at discovering adequate
predictors, i.e. features capable of performing an effective predic-
tion of the interested symptoms. Intuitively, a symptom is a good
predictor if each of its groups (i.e. its values) induces a different
distribution on the predicted symptom; in other words, it should
allow to reasonably distinguish the predicted symptom.

In this section, the odds ratio criterion is employed to determine
the strength of predictors. A subset of time points was selected as
conditioning points to observe a psychotic (resp. depressive)
symptom and then compute the ORs of future time points for each
depressive (resp. psychotic) symptom. Using multiple points
allows to evaluate the dynamics of predictive capability as treat-
ment progresses and more information become available. These
conditioning points were selected to match approximately the
cut points of the PDBN-3 learned heuristically, namely, {1,4,6}.

dictor for most of these predictions.

In order to compute an OR, suppose X is a psychotic symptom
observed at some point (e.g. at t = 1), and Y is a depressive symp-
tom that will be predicted at t=i,i>1; therefore,
val(X) = {true, false} and val(Y) = {low, high}. Then, the odds ratio
to predict Y given X is:

odds(Y" = high)X"V = true)

~ odds(Y" = high|X') = false)

~ P(YY = high|X") =true)/(1—P(Y" = high|X"") = true))

~ P(Y"Y = high|XV =false) /(1 — P(Y" = high|XV = false))
7

We fix that each depressive variable Y is predicted with level
high, hence, the OR indicates the chances of having level high in
the future according to each group of a psychotic symptom X. If
OR > 1, then it is more likely that the depressive symptom Y will
have level high if the patient comes from the group with X = true
compared to the patients coming from the group X = false; if
OR < 1, it is more likely to observe Y at high in the group
X = false than in the group X = true; finally, if OR = 1, there is no
association between X and Y, i.e. knowing the group of this partic-
ular psychotic symptom does not affect the predictions for this
depressive symptom. For the sake of terminology, an OR > 1 is also
called a positive correlation, while an OR < 1 indicates a negative
correlation. Note that for the case when X is depressive and Y is
psychotic, we fix true for X, and high and low in the numerator
and denominator for Y respectively.

OR(Y?|x™M)
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Additionally, to evaluate of the significance of the association
between each X and Y, tables of contingency were constructed
based on expected counts from the model. The Fisher’s exact test
was employed to evaluate the statistical significance of these,
under a significance level of o = 0.05.

7.2.1. Predictors for depression

Table 9a shows the ORs for psychotic symptoms one week after
baseline (i.e. at t = 1), acting as predictors for depression. These
results suggest that delusions at that point had an at least reason-
able association with the symptoms depressed mood and guilt, i.e.
for at least half of the future points that were predicted. On the
other hand, hallucinations at t =1 showed to be less associated
to the depressive symptoms. Nonetheless, somatic general con-
trasts with this pattern, as it has been predicted by hallucinations
almost until the end of the remaining weeks of treatment. The
other case where some dependency on this predictor was noticed

Table 9

QOdds ratios for psychotic symptoms as predictors. An OR greater than 1 indicates
that the level high on the depressive symptom is more likely to be observed in the
group true than in the group false of the psychotic symptom. Results marked in bold
and ~ stand for a statistically significant association.

Symptom and predictor t=2 t=3 t=4 t=5 t=6 t=7

(a) Odds ratios based on t = 1
Depressed mood

Delusions" 515 339 272" 175 138 144

Hallucinations" 113 15 146 159 166  1.48
Guilt

Delusions™ 384 327 275 211 184 162

Hallucinations" 1.1 112 12 1.2 1.3 1.29
Activities

Delusions™ 353 223 245 142 14 1.45

Hallucinations" 134 104 138 138 16 1.47

Retardation
324 322 24 2.02 1.67 1.35

Delusions"

Hallucinations™ 115 116 124 133 125 135
Psychic anxiety

Delusions") 133 121 116 127 133 146

Hallucinations™ 254" 266 241 165 132 131
Somatic general

Delusions 096 095 08 0.7 064 082

Hallucinations™ 3317 327 286 307 297 223
Symptom and t=5 t=6 t=7 Symptom and t=7
predictor predictor

(b) Odds ratios based on t = 4 (left) and t = 6 (right)
Depressed mood Depressed mood

Delusions® 3.09° 226" 217  Delusions® 2.72

Hallucinations® 198 214 1.71 Hallucinations® 1.67
Guilt Guilt

Delusions® 415" 293 234 pelusions® 3.62°

Hallucinations® 119 131 14 Hallucinations® 12
Activities Activities

Delusions'¥ 226 181 259 pelusions® 5.66'

Hallucinations® 252 153 161 Hallucinations® 1.61
Retardation Retardation

Delusions 297 202 198 Delusions® 2.04

Hallucinations® 14 125 136 Hallucinations® 1.34
Psychic anxiety Psychic anxiety

Delusions'¥ 188 188 221 pelusions® 3.52°

Hallucinations® 218 153 145 Hallucinations® 1.25
Somatic general Somatic general

Delusions'¥ 0.97 087 099 Delusions'® 1.14

Hallucinations'® 652" 618 491 Hallucinations'® 431’

is psychic anxiety, however for a shorter period of time (three
weeks forward).

With respect to the predictive power of psychotic symptoms
observed at t =4 and t = 6 (Table 9b, left and right respectively),
delusions stood as predictor of depressed mood and guilt, in this
situation as a stronger predictor (all three future predictions were
significant). Other depressive symptoms were mostly weakly asso-
ciated to delusions. Hallucinations at these time points showed a
more restricted behavior than before, since it acted as predictor
of somatic general only, although by significant associations.

7.2.2. Predictors for psychosis
In the following, we evaluate how predictive the depressive
symptoms are to predict psychotic symptoms. Note that ORs are

not symmetric; for example, we calculate P(Som.gen”|Del®) to
assess whether delusions is predictive to somatic general, while

we compute P(Del”|Som. gen'”) to assess whether somatic gen-
eral is predictive to delusions. Note that these two might represent
distinct quantities.

Table 10a shows the odds ratio for each depressive symptom
observed at t = 1. As the results indicate, the depressive symptoms
were not significantly strong to predict delusions, except
depressed mood, guilt and retardation, which accounted for a weak
association (precisely, two weeks ahead of the reference measure-
ment). Regarding hallucinations, there is virtually no depressive
symptom predictor for the case of t = 1.

Table 10

0Odds ratios for depressive symptoms as predictors. An OR greater than 1 indicates
that the level true on the psychotic symptom is more likely to be observed in the
group high than in the group low of the depressive symptom. Results marked in bold
and " stand for a statistically significant association.

Symptom and predictor t=2 t=3 t=4 t=5 t=6 t=7

Odds ratios based on t =1

Delusions . .
Depressed mood™® 53 6.91 5.04 4.2 3.66 3.21
Guilt™ 291" 286 221 216 19 1.62
Activities" 2.79 2.78 2.05 1.75 1.53 1.31
Retardation® 249° 211 18 1.57 137 138
Psychic anxietym 1.18 1.19 1.18 1.26 1.27 1.22
Somatic general(” 0.91 0.97 0.96 1.07 1.07 1.16

Hallucinations
Depressed mood® 0.58 0.49 0.42 0.83 0.9 0.75
Guilt™ 0.84 0.86 0.78 0.78 0.79 0.67
Activities" 0.51 0.44 0.38 0.38 0.41 0.31
Retardation” 1.08 0.93 0.91 0.81 0.93 1.07
Psychic anxietym 1.84 2.05 1.71 1.83 1.39 1.52
Somatic generalm 3.04 29 2.54 1.86 1.86 1.94

Symptom and t=5 t=6 t=7 Symptom and t=7

predictor predictor

Odds ratios based on t = 4 (left) and t = 6 (right)

Delusions Delusions
Depressed mood® 4-95: 3-97i 422" pepressed mood® 394
Guilt® 813" 562" 458  yilt® 5.63"
Activities® 3.84 336 3.14 Activities® 1.83
Retardation® 3320 25 22 Retardation® 1.87

Psychic anxiety® 1.8 169 19 Psychic anxiety® ~ 2.52

Somatic general¥  1.35 135 137 Somatic general®  1.19

Hallucinations Hallucinations

Depressed mood® 1.2 12097 )

Depressed mood® 171

Guilt® 107 091 096  Guilt® 135
Activities® 082 09 067 Activities® 125
Retardation' 1.04 13 127  Retardation® 141
Psychic anxiety® 38 3 2.97 Psychic anxiety®  1.29

Somatic general® 485 3.6° 336 somatic general® 747
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On the other hand, updating the depressive symptoms at t = 4,
as shown on Table 10b (left), increased the association of the three
symptoms mentioned before to predict delusions until the end.
The same insight applies to predict delusions at t = 6. Concerning
the prediction of hallucinations, somatic general emerged with
strong associations when measured both at t = 4 and t = 6, while
psychic anxiety showed reasonable associations only when mea-
sured at the middle point, though.

8. Conclusions

In this work, we proposed a heuristic algorithm to learn non-
homogeneous time dynamic Bayesian networks for relatively small
temporal datasets with a small number of variables as typically
encountered in clinical settings. Extensive simulations and a case
study in psychiatry (psychotic depression) demonstrated its capa-
bility to find adequate models under different assumptions, which
included data generated from non-homogeneous and homoge-
neous models. In particular, simulating experiments played an
important role to show that, in more general scenarios, models
based on non-homogeneous time have substantial benefits over
DBNs on several dimensions (e.g. model fit and problem insight)
when the underlying process switches between different regimes
over time. In the case of small datasets, which are commonly found
in many clinical studies, the results indicate that the heuristic algo-
rithm behaves in a more conservative fashion, i.e. it tends to pro-
duce slightly simpler non-homogeneous models compared to the
reference models, and yet providing a decent fit.

Aiming at learning non-homogeneous models in the usually
unfavorable scenario of data scarcity, an evaluation criterion was
employed by the heuristic to explicitly avoid over-specialized
models, taking into account the need for robustness. Moreover,
the empirical results suggest that the search strategy of the heuris-
tic, which is based on an incremental construction of non-
homogeneous models, is able to properly cope with the trade-off
between model complexity and data scarcity.

A first step towards a systematic application of probabilistic
graphical models in psychiatry taking into account the temporal
dimension was taken. It allowed to obtain insight about the dynam-
ics of this medical condition over the duration of a controlled treat-
ment. In particular, a research question aiming to answer the
temporal relationship between psychotic and depressive symp-
toms was investigated, supported by models learned with the
heuristic procedure. The experimental assessment of the predictive
capability of psychotic symptoms observed at different moments
(near baseline, middle and near-end points) showed that the delu-
sions symptom was more predictive than the hallucinations symp-
tom on most cases. On the other hand, the depressive symptoms
were less predictive for the psychotic symptoms. Nevertheless, a
point to be observed it that in general the predictions were bidirec-
tional, i.e. the symptoms from one category that stood as statisti-
cally significant predictors for the other can be interchanged.

Among future research, we intend to evaluate the developed
algorithm on other real-world problems, as well as investigate fur-
ther variations of the incremental search. For example, during the
execution of the algorithm, different new solutions with equal or
approximately equal score yet higher than the current best solu-
tion can be found; this is currently worked out choosing one of
these new solutions randomly and then continuing the search.
The problem of handling multiple solutions is in fact recurring in
the literature of Bayesian networks, where extensive research has
been developed [34-36,20]. In this direction, the approach of this
paper could benefit from such research, for example by extending
the greedy search, as well as taking into account Bayesian
approaches [15]. These further investigations could provide more
insight about the distribution and the variance of the cut sets.
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