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Abstract

Requirements about the quality of clinical guidelines can be represented by schemata borrowed

from the theory of abductive diagnosis, using temporal logic to model the time-oriented

aspects expressed in a guideline. Previously, we have shown that these requirements can be

verified using interactive theorem proving techniques. In this paper, we investigate how this

approach can be mapped to the facilities of a resolution-based theorem prover, otter and a

complementary program that searches for finite models of first-order statements, mace-2. It is

shown that the reasoning required for checking the quality of a guideline can be mapped to

such a fully automated theorem-proving facilities. The medical quality of an actual guideline

concerning diabetes mellitus 2 is investigated in this way.
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1 Introduction

Health-care is becoming more and more complicated at an astonishing rate. On the

one hand, the number of different patient management options has risen considerably

during the last couple of decades, whereas, on the other hand, medical doctors are

expected to take decisions balancing benefits for the patient against the financial

costs. There is a growing trend within the medical profession to believe that clinical

decision-making should be based as much as possible on sound scientific evidence;

this has become known as evidence-based medicine (Woolf 2000). Evidence-based

medicine has given a major impetus to the development of clinical guidelines,

documents offering a description of steps that must be taken and considerations

that must be taken into account by health-care professionals in managing a disease

in a patient, to avoid substandard practices or outcomes. Their general aim is to

promote standards of medical care. Clinical protocols have a similar aim as clinical

guidelines, except that they offer more detail, and are often local, more detailed

version of a related clinical guideline.

Researchers in artificial intelligence (AI) have picked up on these developments

by designing guideline modelling languages, for instance PROforma (Fox and Das
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2000) and GLIF3 (Peleg et al. 2000) that may be useful in developing computer-

based representations of guidelines. Some of them, for example the Asgaard project

(Shahar et al. 1998), the CREDO project (Fox et al. 2006) and the GLARE project

(Terenziani et al. 2001, 2003), are also involved in the design of tools that support

the development of clinical guidelines. These languages and tools have been evolving

since 1990s, a process that is gaining momentum due to the increased interest in

guidelines within the medical community. Researchers in artificial intelligence see

guidelines as good real-world examples of highly structured, systematic documents

that are amenable to formalisation.

Compared to the amount of work that has been put into the formalisation of

clinical guidelines, verification of guidelines has received relatively little attention.

In Shiffman and Greenes (1994), logic was used to check whether a set of rec-

ommendations is complete, to find out whether or not the recommendations are

logically consistent and to recognise ambiguous rules if they are present. Checking

the consistency of temporal scheduling constraints has also been investigated

(Duftschmid et al. 2002). Most of the work done in the area of formal verification

of clinical guidelines, i.e. proving correctness properties using formal methods, is of

more recent years, e.g. as done in the Protocure project1 with the use of interactive

theorem proving (Ten Teije et al. 2006; Hommersom et al. 2007) and model checking

(Bäumler et al. 2006; Groot et al. 2007).

This paper explores the use of automated deduction for the verification of clinical

guidelines. For the rapid development of good quality guidelines it is required

that guidelines can be at least partially verified automatically; unfortunately, as

of yet, there are no verification methods that can be readily used by guideline

developers. Previously, it was shown that for reasoning about models of medical

knowledge, for example in the context of medical expert systems (Lucas 1993),

classical automated reasoning techniques (e.g. Robinson 1965; Wos et al. 1984) are a

practical option. Important for the reasoning about knowledge in clinical guidelines

is its temporal nature; time plays a part in the physiological mechanisms as well as in

the exploration of treatment plans. As far as we know, the application of automated

reasoning techniques to guideline knowledge has as yet not been investigated. The

guideline we studied to this purpose has a structure similar to other guidelines and

the verification principles used have sufficient generality. Thus, the results of the

study go beyond the actual guideline studied.

There are two approaches to check the quality of clinical guidelines using formal

methods: (1) the object-level approach amounts to translating a guideline to a formal

language, such as Asbru (Shahar et al. 1998), and subsequently applying program

verification or logical methods to analyse the resulting representation for establishing

whether certain domain-specific properties hold; (2) the meta-level approach, which

consists of formalising general requirements to which a guideline should comply and

then investigating whether this is the case. Here we are concerned with the meta-level

approach to guideline-quality checking. For example, a good-quality clinical guideline

regarding treatment of a disorder should preclude the prescription of redundant

1 http://www.protocure.org [Accessed: 21 May 2008].
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drugs or advise against the prescription of treatment that is less effective than

some alternative. An additional goal of this paper is to establish how feasible it is to

implement such meta-reasoning techniques in existing tools for automated deduction

for the purpose of quality checking of a clinical guideline.

Previously, we have shown that the theory of abductive diagnosis can be taken

as a foundation for the formalisation of quality criteria of a clinical guideline

(Lucas 2003) and that these can be verified using (interactive) program verification

techniques (Hommersom et al. 2007). In this paper, we provide an alternative to

this approach by translating this formalism, a restricted part of temporal logic, to

standard first-order logic. Furthermore, the quality criteria are interpreted in such

a way that they can be stated in terms of a monotonic entailment relation. We

show that, because of the restricted language needed for the formalisation of the

guideline knowledge, the translation is a relatively simple fragment of first-order

logic which is amended to automated verification. Thus, we show that it is indeed

possible, while not easy, to cover the route from informal medical knowledge to a

logical formalisation and automated verification.

The meta-level approach that is used here is particularly important for the

design of clinical guidelines, because it corresponds to a type of reasoning that

occurs during the guideline development process. Clearly, quality checks are useful

during this process; however, the design of a guideline can be seen as a very

complex process where formulation of knowledge and construction of conclusions

and corresponding recommendations are intermingled. This makes it cumbersome

to do interactive verification of hypotheses concerning the optimal recommendation

during the construction of such a guideline, because guideline developers do not

generally have the necessary background in formal methods to construct such

proofs interactively. Automated theorem proving could therefore be potentially

more beneficial for supporting the guideline development process.

The paper is organised as follows. In the next section, we start by explaining

what clinical guidelines are, and a method for formalising guidelines by temporal

logic is briefly reviewed. In Section 3 the formalisation of guideline quality using a

meta-level scheme that comes from the theory of abductive diagnosis is described.

The guideline on the management of diabetes mellitus type 2 that has been used in

the case study is given attention in Section 4 and a formalisation of this is given

as well. An approach to check the quality of this guideline using the reasoning

machinery offered by automated reasoning tools is presented in Section 5. Finally,

Section 6 discusses what has been achieved, and the advantages and limitations of

this approach are brought into perspective. In particular, we will discuss the role

of automated reasoning in quality checking guidelines in comparison to alternative

techniques such as model checking and interactive verification.

2 Framework

In this section, we review the basics about clinical guidelines and the temporal logic

used in the remainder of the paper.
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Table 1. Tiny fragment of a clinical guideline on the management of diabetes mellitus type 2.

• Step 1: diet

• Step 2: if Quetelet Index (QI) � 27, prescribe a sulfonylurea drug; otherwise, prescribe

a biguanide drug

• Step 3: combine a sulfonylurea drug and biguanide (replace one of these by a α-

glucosidase inhibitor if side-effects occur)

• Step 4: one of the following:

– oral anti-diabetics and insulin

– only insulin

If one of the steps s, where s = 1, 2, 3 is ineffective, the management moves to step s+ 1.

2.1 Clinical guidelines

A clinical guideline is a structured document, containing detailed advice on the

management of a particular disorder or group of disorders, aimed at health-care

professionals. As modern guidelines are based on scientific evidence, they contain

information about the quality of the evidence on which particular statements are

based; e.g. statements at the highest recommendation level are usually obtained from

randomised clinical trials (Woolf 2000).

The design of a clinical guideline is far from easy. Firstly, the gathering and

classification of the scientific evidence underlying and justifying the recommendations

mentioned in a guideline are time consuming and require considerable expertise of

the medical field concerned. Secondly, clinical guidelines are very detailed, and

making sure that all the information contained in the guideline is complete for the

guideline’s purpose and based on sound medical principles is a hard work.

An example of a part of a guideline is the following (translated) text:

(1) Refer to a dietist; check blood glucose after three months

(2) If case (1) fails and Quetelet Index (QI) � 27, then administer a sulfonylureum

derivate (e.g. tolbutamide, 500 mg once a day, max. 1000 mg two per day)

and in case of Quetelet Index (QI) > 27 biguanide (500 mg once a day, max.

1000 mg thrice a day); start with lowest dosage, increase each 2–4 weeks if

necessary

It is part of a real-world guideline for general practitioners about the treatment of

diabetes mellitus type 2. Part of this description includes details about dosage of

drugs at specific time periods. As we want to reason about the general structure of

the guideline, rather than about dosages or specific time periods, we have made an

abstraction as shown in Table 1. This guideline fragment is used in this paper as a

running example.

Guidelines can be as large as 100 pages; however, the number of recommendations

they include are typically few. In complicated diseases, each type of disease is typically

described in different sections of a guideline, which provides ways to modularise

the formalisation in a natural fashion. For example, in the Protocure project, we

have formalised an extensive guideline about breast cancer treatment, which includes
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recommendations very similar in nature and structure to the abstraction shown in

Table 1. In this sense, the fragment in Table 1 can be looked upon as one of the

recommendations in any guideline whatever its size. Clinical protocols are normally

more detailed, and the abstraction used here will not be appropriate if one wishes

to consider such details in the verification process. For example, in the Protocure

project we also carried out work on the verification of a clinical protocol about the

management of neonatal jaundice, where we focussed on the levels of a substance

in the blood (bilirubin) (Ten Teije et al. 2006). Clearly, in this case abstracting away

from substance levels would be inappropriate.

The conclusions that can be reached by the rest of the paper are relative to the

abstraction that was chosen. The logical methods that we employ are related to this

level of abstraction, even though other logical methods are available to deal with

issues such as more detailed temporal reasoning (Moszkowski 1985) or probabilities

(Kersting and De Raedt 2000; Richardson and Domingos 2006), which might be

necessary for some guidelines or protocols. Nonetheless, where development of an

abstraction of a medical document will be necessary for any verification task, the way

it is done is dependent on what is being verified and the nature of the document. The

level of abstraction that we employ allow us to reason about the structure and effects

of treatments, which, in our view, is the most important aspect of many guidelines.

One way to use formal methods in the context of guidelines is to automatically

verify whether or not a clinical guideline fulfils particular properties, such as whether

it complies with quality indicators as proposed by health-care professionals (Marcos

et al. 2002). For example, using particular patient assumptions such as that after

treatment, the levels of a substance are dangerously high or low, it is possible to

check whether this situation does or does not violate the guideline. However, verifying

the effects of treatment as well as examining whether a developed clinical guideline

complies with the global criteria, such as that it avoids the prescription of redundant

drugs or the request of tests that are superfluous, is difficult to impossible if only

the guideline text is available. Thus, the capability to check whether a guideline

fulfils particular medical objectives may require the availability of more medical

knowledge than is actually specified in a clinical guideline. How much additional

knowledge is required may vary from guideline to guideline. In the development of

the theory below it is assumed that at least some medical background knowledge is

required; the extent and the purpose of that background knowledge is subsequently

established using the diabetes mellitus type 2 guideline. The development, logical

implementation and evaluation of a formal method that supports this process is the

topic of the remainder of the paper.

2.2 Using temporal logic in clinical guidelines

Many representation languages for formalising and reasoning about medical knowl-

edge have been proposed, e.g. predicate logic (Lucas 1993), (heuristic) rule-based

systems (Shortliffe 1974) and causal representations (Patil 1981). It is not uncommon

to abstract from time these representations; however, as medical management is

very much a time-oriented process, guidelines should be looked upon in a temporal
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Table 2. Used temporal operators; t stands for a time instance.

Notation Informal meaning Formal meaning

Hϕ ϕ has always been true in the past t � Hϕ iff ∀t′ < t : t′ � ϕ
ϕUψ ϕ is true until ψ holds � ϕUψ iff ∃t′ � t : t′ � ψ

and ∀t′′ : t � t′′ < t′ → t′′ � ϕ

setting. It has been shown previously that the step-wise, possibly iterative, execution

of a guideline, such as the example in Table 1, can be described precisely by means

of temporal logic (Ten Teije et al. 2006). In a more practical setting it is useful to

support the modelling process by means of tools. There is promising research for

maintaining a logical knowledge base in the context of the semantic web (e.g. the

Protégé-OWL editor2), and the logical formalisation described in this paper could

profit from the availability of such tools.

The temporal logic that we use here is a modal logic, where relationships between

worlds in the usual possible-world semantics of modal logic is understood as time

order, i.e. formulae are interpreted in a temporal frame F = (�, <, I), where � is

the set of intervals or time points, < a time ordering and I an interpretation of the

language elements with respect to � and <. The language of first-order logic, with

equality and unique names assumption, is augmented with the operators U, H, G, P

and F, where the temporal semantics of the first two operators is defined in Table 2.

The last four operators are simply defined in terms of the first two operators:

� Pϕ↔ ¬H¬ϕ (somewhere in the past)

� Fϕ↔ �Uϕ (now or somewhere in the future)

� Gϕ↔ ¬F¬ϕ (now and always in the future)

This logic offers the right abstraction level to cope with the nature of the temporal

knowledge in clinical guidelines required for our purposes.

Other modal operators added to the language of first-order logic include X, where

Xϕ has the operational meaning of an execution step, followed by the execution of

program part ϕ. Even though this operator is not explicitly used in our formalisation

of medical knowledge, a principle similar to the semantics of this operator is used

in Section 5.5 for reasoning about the step-wise execution of the guideline.

In addition, axioms can be added that indicate that progression in time is linear

(there are other possible axiomatisations, such as branching time; see Turner 1985).

The most important of these are:

(1) Transitivity: � FFϕ→ Fϕ

(2) Backward linearity: � (Pϕ ∧ Pψ)→ (P(ϕ ∧ ψ) ∨ P(ϕ ∧ Pψ) ∨ P(Pϕ ∧ ψ))

(3) Forward linearity: � (Fϕ ∧ Fψ)→ (F(ϕ ∧ ψ) ∨ F(ϕ ∧ Fψ) ∨ F(Fϕ ∧ ψ))

Transitivity ensures that we can move along the time axis from the past into the

future; backward and forward linearity ensure that the time axis does not branch.

2 http://protege.stanford.edu/overview/protege-owl.html [Accessed: 21 May 2008].
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Consider, for example, axiom (3), which says that if there exists a time t when ϕ is

true, and a time t′ when ψ holds, then there are three possibilities: ϕ and ψ hold

at the same time or at some time in the future ϕ and further away in the future ψ

hold; the meaning of the last disjunct is similar. Other useful axioms concern the

boundedness of time; assuming that time has no beginning and no end, gives rise

to the following axioms: � Hϕ→ Pϕ and � Gϕ→ Fϕ.

Alternative formal languages for modelling medical knowledge are possible. For

example, differential equations describing compartmental models that are used to

predict changes in physiological variables in individual patients have been shown to

be useful (e.g. Lehmann 1998; Magni et al. 2000). In the context of clinical reasoning

they are less useful, as they essentially concern levels of substances as a function of

time and, thus, do not offer the right level of abstraction that we are after.

3 Application of medical knowledge

It is well-known that knowledge elicitation is difficult (see e.g. Evans 1988) and due

to complexity and uncertainty this is particularly true for medical knowledge (see e.g.

van Bemmel and Musen 2002). The effort to acquire this knowledge is dependent

on the availability of the knowledge in the guideline and the complexity of the

mechanisms that are involved in the development of the disease. For evidence-based

guidelines, a large part of the relevant knowledge required for checking the quality

of the recommendations is included in the guideline, which makes the problem more

contained than the problem of arbitrary medical knowledge elicitation.

The purpose of a clinical guideline is to have a certain positive effect on the health

status of a patient to which the guideline applies. To establish that this is indeed

the case, knowledge concerning the normal physiology and abnormal disease-related

pathophysiology of a patient is required. Some of this physiological knowledge may

be missing from the clinical guidelines; however, much of this knowledge can be

acquired from textbooks on medical physiology, which reduces the amount of effort

required to construct such knowledge models. The latter approach was taken in this

research.

It is assumed that two types of knowledge are involved in detecting the violation

of good medical practice:

• Knowledge concerning the (patho)physiological mechanisms underlying the

disease and the way the treatment influences these mechanisms. The knowledge

involved could be causal in nature, and is an example of object-knowledge.

• Knowledge concerning good practice in treatment selection; this is meta-

knowledge.

Below we present some ideas on how such knowledge may be formalised using

temporal logic (cf. Lucas 1995 for earlier work in the area of formal modelling of

medical knowledge).

We are interested in the prescription of drugs, taking into account their mode

of action. Abstracting from the dynamics of their pharmacokinetics, this can be
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formalised in logic as follows:

(G d ∧ r)→ G(m1 ∧ · · · ∧ mn) (1)

where d is the name of a drug, r is a (possibly negative or empty) requirement for the

drug to take effect and mk is a mode of action, such as decrease in release of glucose

from the liver, which holds at all future times. Note that we assume that the drugs

are applied for a long period of time, here formalised as ‘always’. This is reasonable

if we think of the models as finite structures that describe a somewhat longer period

of time, allowing the drugs to take effect. Synergistic effects and interactions amongst

drugs can also be formalised along those lines, as required by the guideline under

consideration. This can be done either by combining their joint mode of action, by

replacing d in the formula above by a conjunction of drugs, by defining harmful

joint effects of drugs in terms of inconsistency or by reasoning about modes of

actions. As we do not require this feature for the clinical guideline considered in

this paper, we will not go into details. In addition, it is possible to reason about

such effects using special purpose temporal logics with abstraction and constraints,

such as that developed by Allen (Allen 1983) and Terenziani (Terenziani 2000)

without a connection to a specific field and by Shahar (Shahar 1997) for the field

of medicine. Thus, temporal logics are expressive enough to cope with extensions to

the formalisation as used in this paper.

The modes of action mk can be combined, together with an intention n (achieving

normoglycaemia, i.e. normal blood glucose levels, for example), a particular patient

condition c and requirements rj for the modes of action to be effective:

(Gmi1 ∧ · · · ∧ Gmim ∧ r1 ∧ · · · ∧ rp ∧ Hc)→ Gn (2)

For example, if the mode describes that there is a stimulus to secrete more insulin

and [the requirement to provide that sufficient capacity of this insulin is fulfilled],

then the amount of glucose in the blood will decrease.

Good practice medicine can then be formalised as follows. Let B be background

knowledge, T ⊆ {d1, . . . , dp} be a set of drugs, C be a collection of patient conditions,

R be a collection of requirements and N be a collection of intentions which the

physician has to achieve. As an abbreviation, the union of C and R, i.e. the variables

describing the patient, will be referred to as P , i.e. P = C ∪R. Finding an acceptable

treatment given such knowledge amounts to finding an explanation, in terms of a

treatment, that the intention will be achieved. Finding the best possible explanation

given a number of findings is called abductive reasoning (Poole 1990; Console and

Torasso 1991). We say that a set of drugs T is a treatment according to the theory

of abductive reasoning if (Lucas 2003)

(M1) B∪ GT ∪ P � ⊥ (the drugs do not have contradictory effects), and

(M2) B∪GT ∪P � N (the drugs handle all the patient problems which are intended

to be managed).

One could think of the formula B ∪ GT ∪ P as simulating a particular patient P

given a particular treatment T . For each relevant patient groups, these properties

can be investigated. If in addition to (M1) and (M2) condition
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(M3) Oϕ(T ) holds, where Oϕ is a meta-predicate standing for an optimality criterion

or combination of optimality criteria ϕ, then the treatment is said to be in

accordance with good-practice medicine.

A typical example of this is subset minimality O⊂:

O⊂(T ) ≡ ∀T ′ ⊂ T : T ′ is not a treatment according to (M1) and (M2) (3)

i.e. the minimum number of effective drugs are being prescribed. For example, if

{d1, d2, d3} is a treatment that satisfies condition (M3) in addition to (M1) and (M2),

then the subsets {d1, d2}, {d2, d3}, {d1} and so on, do not satisfy conditions (M1)

and (M2). In the context of abductive reasoning, subset minimality is often used in

order to distinguish between various solutions; it is also referred to in literature as

Occam’s razor. Another definition of the meta-predicate Oϕ is in terms of minimal

cost Oc:

Oc(T ) ≡ ∀T ′,with T ′ a treatment: c(T ′) � c(T ) (4)

where c(T ) =
∑

d∈T cost(d); combining the two definitions also makes sense. For

example, one could come up with a definition of O⊂,c that among two subset-minimal

treatments selects the one that is the cheapest in financial or ethical sense.

The quality criteria that we have presented in this section could also be taken

as the starting points for critiquing, i.e. criticising clinical actions performed and

recorded by a physician (cf. Miller 1984 for an early critiquing system), especially

if we consider the formalisation of the background knowledge of a model for

simulating a patient receiving a specific treatment. However, here we look for means

to criticise the recommendations given by the guidelines.

In order to verify the quality of guidelines, we do not make use of data from

medical records. The use of such data is especially important if one wishes to

empirically evaluate the guideline. As data may be missing from the database –

a very common situation in clinical datasets – tests ordered for a patient and

treatments given to the patient may not be according to the guideline. Therefore,

such datasets cannot be used to identify problems with the clinical guideline. Results

would tell as much about the dataset as about the guidelines. Once the guideline

has been shown to be without flaws, it becomes interesting to carry out subsequent

evaluation of the guideline using patient data. These were the main reasons why

we explored guideline quality by using well-understood and well-described data

from hypothetical patients; this simulates the way medical doctors would normally

– critically – look at a guideline. Notice the similarity with use-cases in software

engineering. This method is practical and possible and could be used in the process

of designing a guideline.

4 Management of Diabetes Mellitus Type 2

To determine the global quality of the guideline, the background knowledge itself

was only formalised so far as required for investigating the usefulness of the theory

of quality checking introduced above. The knowledge that is presented here was
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Fig. 1. Summary of drugs and mechanisms controlling the blood level of glucose;

− − →: inhibition, · · · · · ·→: stimulation.

acquired with the help of a physician, though this knowledge can be found in many

standard textbooks on physiology (e.g. Guyton and Hall 2000; Ganong 2005).

4.1 Initial analysis

It is well known that diabetes type 2 is a very complicated disease: various metabolic

control mechanisms are deranged and many different organ systems, such as the

cardiovascular and renal system, may be affected by the disorder. Here we focus

on the derangement of glucose metabolism in diabetic patients and even that is

non-trivial. To support non-expert medical doctors in the management of this

complicated disease in patients, access to a guideline is really essential.

One would expect that as this disorder is so complicated, the diabetes mellitus

type 2 guideline would also be complicated. This, however, is not the case, as may

already be apparent from the guideline fragment shown in Table 1. This indicates

that much of the knowledge concerning diabetes mellitus type 2 is missing from the

guideline, and that without this background knowledge it will be impossible to spot

the sort of flaws we are after. Hence, the conclusion is that a deeper analysis is

required; the results of such an analysis are discussed next.

4.2 Diabetes Type 2 background knowledge

Figure 1 summarises the most important mechanisms and drugs involved in the

control of the blood level of glucose. The protein hormone insulin, which is produced

by the B cells in the Langerhans islets of the pancreas, has the following major effects:
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• it increases the uptake of glucose by the liver, where it is stored as glycogen,

and inhibits the release of glucose from the liver;

• it increases the uptake of glucose by insulin-dependent tissues, such as muscle

and adipose tissue.

At some stage in the natural history of diabetes mellitus type 2, the level of glucose

in the blood is too high (hyperglycaemia) due to decreased production of insulin

by the B cells. A popular hypothesis explaining this phenomenon is that the target

cells have become insulin resistant, which with a delay causes the production of

insulin by the B cells to raise. After some time, the B cells become exhausted, and

they are no longer capable of meeting the demands for insulin. As a consequence,

hyperglycaemia develops.

Treatment of diabetes type 2 consists of:

• Use of sulfonylurea (SU) drugs, such as tolbutamid. These drugs stimulate the

B cells to produce more insulin, and if the cells are not completely exhausted,

hyperglycaemia can thus be reverted to normoglycaemia (normal blood glucose

levels).

• Use of biguanides (BG), such as metformin. These drugs inhibit the release of

glucose from the liver.

• Use of α-glucosidase inhibitors. These drugs inhibit (or delay) the absorption

of glucose from the intestines.

• Injection of insulin. This is the ultimate, causal treatment.

As insulin is typically administered by injection, in contrast to the other drugs which

are normally taken orally, doctors prefer to delay prescribing insulin as long as

possible. Thus, the treatment part of the diabetes type 2 guideline mentions that

one should start with prescribing oral antidiabetics (SU or BG, cf. Table 1). Two of

these can also be combined if taking only one has insufficient glucose-level lowering

effect. If the treatment is still unsatisfactory, the guideline suggests to: (1) either add

insulin or (2) stop with the oral antidiabetics entirely and to start with insulin.

From a medical point of view, advice (1) above is somewhat curious. If the

oral antidiabetics are no longer effective enough, the B cells could be completely

exhausted. Under these circumstances, it does not make a lot of sense to prescribe

an SU drug. The guideline here assumes that the B cells are always somewhat

active, which may limit the amount of insulin that has to be prescribed. Similarly,

prescription of a BG (or a α-glucosidase inhibitor) is justified, as by adding such

an oral antidiabetic to insulin, the number of necessary injections can be reduced

from twice a day to once a day. It should be noted that, when on insulin treatment,

patients run the risk of getting hypoglycaemia, which is a side effect of insulin

treatment not mentioned explicitly in the guideline.

The background knowledge concerning the (patho-)physiology of the glucose

metabolism as described above is formalised using temporal logic and kept as

simple as possible. The specification is denoted by BDM2:

(1) GDrug(insulin)→ G(uptake(liver, glucose) = up ∧
uptake(peripheral-tissues, glucose) = up)
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(2) G(uptake(liver, glucose) = up→ release(liver, glucose) = down)

(3) (GDrug(SU) ∧ ¬capacity(b-cells, insulin) = exhausted)

→ Gsecretion(b-cells, insulin) = up

(4) GDrug(BG)→ Grelease(liver, glucose) = down

(5) (Gsecretion(b-cells, insulin) = up ∧ capacity(b-cells, insulin) = subnormal ∧
QI � 27 ∧ H Condition(hyperglycaemia)) → GCondition(normoglycaemia)

(6) (Grelease(liver, glucose) = down ∧ capacity(b-cells, insulin) = subnormal ∧
QI > 27 ∧ H Condition(hyperglycaemia)) → GCondition(normoglycaemia)

(7) ((Grelease(liver, glucose) = down ∨ Guptake(peripheral-tissues, glucose) = up) ∧
capacity(b-cells, insulin) = nearly-exhausted ∧ Gsecretion(b-cells, insulin) = up ∧
HCondition(hyperglycaemia)) → G Condition(normoglycaemia)

(8) (Guptake(liver, glucose) = up ∧ Guptake(peripheral-tissues, glucose) = up) ∧
capacity(b-cells, insulin) = exhausted ∧ H Condition(hyperglycaemia))

→ G(Condition(normoglycaemia) ∨ Condition(hypoglycaemia))

(9) (Condition(normoglycaemia) ⊕ Condition(hypoglycaemia) ⊕
Condition(hyperglycaemia)) ∧ ¬(Condition(normoglycaemia) ∧
Condition(hypoglycaemia) ∧ Condition(hyperglycaemia))

where ⊕ stands for the exclusive OR. Note that when the B cells are exhausted,

increased uptake of glucose by the tissues may result not only in normoglycaemia

but also in hypoglycaemia. Note that this background knowledge was originally

developed for reasoning about the application of a single treatment. It requires

some modification in order to reason about the whole guideline fragment (see

Section 5.5).

4.3 Quality check

The consequences of various treatment options can be examined using the method

introduced in Section 3. Hypothetical patients for whom it is the intention to reach

a normal level of glucose in the blood (normoglycaemia) and one of the steps in the

guideline is applicable in the guideline fragment given in Table 1, are considered,

for example:

• Consider a patient with hyperglycaemia due to nearly exhausted B cells. For

these patients, the third step of Table 1 is applicable, so we check that

BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = nearly-exhausted} ∪
{H Condition(hyperglycaemia)} � GCondition(normoglycaemia)

holds for T = {Drug(SU),Drug(BG)}, which also satisfies the minimality condition

O⊂(T ).

• Prescription of treatment T = {Drug(SU),Drug(BG),Drug(insulin)} for a

patient with exhausted B cells, for which the intended treatment regime is
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described in the fourth step of Table 1, yields:

BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = exhausted} ∪
{H Condition(hyperglycaemia)} �

G(Condition(normoglycaemia) ∨ Condition(hypoglycaemia))

In the last case, it appears that it is possible that a patient develops hypoglycaemia

due to treatment; if this possibility is excluded from axiom (8) in the background

knowledge, then the minimality condition O⊂(T ), and also Oc(T ), does not hold

since insulin by itself is enough to reach normoglycaemia. In either case, good

practice medicine is violated, which is to prescribe as few drugs as possible, taking

into account costs and side-effects of the drugs. Here, three drugs are prescribed

whereas only two should have been prescribed (BG and insulin, assuming that

insulin alone is too costly), and the possible occurrence of hypoglycaemia should

have been prevented.

5 Automated quality checking

As mentioned in the introduction, we have explored the feasibility of using automated

reasoning tools to check the quality of guidelines, in the sense described above.

5.1 Motivation for using automated reasoning

Several techniques are available for reasoning with temporal logic. Firstly, an

automated theorem prover aims at proving theorems without any interaction from

the user. This is a problem with high complexity; e.g. for the first-order logic, this

problem is recursively enumerable. For this reason, interactive theorem proving has

been used as an alternative, where it is possible and sometimes necessary to give

hints to the system. As a consequence, more complicated problems can be handled;

however, in the worst case every step of the proof has to be performed manually.

For our work, it is of interest to obtain insight as to how much of the proof effort

can be automated as this would clearly improve the practical usefulness of employing

formal methods in the process of guideline development. In our previous work we

have considered using interactive theorem proving (Hommersom et al. 2007). This

was a successful experiment; however, the number of interactions that were needed

were still high and a lot of expertise in the area of theorem proving is required for

carrying out this task. Furthermore, there has been considerable progress in terms

of speed and the size of problems that theorem provers can handle (Pelletier et al.

2002). In our opinion, these developments provide enough justification to explore

the use of automated reasoning techniques in combination with specific strategies.

One of the most important application areas of model finders and theorem provers

is program verification. In programs there is a clear beginning of the execution, which

makes it intuitive to think about properties that occur after the start of the program.

Therefore, it is not surprising that much work that has been done in the context

of model finding and theorem proving only deals with the future time modality.
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However, it is more natural to model medical knowledge with past time operators,

i.e. what happened to the patient in the past. It is well-known that formulas with

a past-time modality can be mapped to a logical formula with only future time

modalities such that both formulas are equivalent for some initial state (Gabbay

1989). The main drawback of this approach is that formulas will get much larger

in size (Markey 2003) and as a consequence become much harder to verify in a

theorem prover designed for modal logics.

For this reason, we have chosen to use an alternative approach which uses a

relational translation to map the temporal logic formulas to first-order logic. As

primary tools we used the resolution-based theorem prover otter (McCune 2003)

and the finite model searcher mace-2 (McCune 2001), which take first-order logic

with equality as their input. These systems have been optimised for reasoning

with first-order logical formulas and offer various reasoning strategies to do this

efficiently. For example, otter offers the set-of-support strategy and hyper-resolution

as efficient reasoning methods. There are alternative systems that could have been

used; however, it is not the aim of this paper to compare these systems. otter

has been proven to be robust and efficient, and has been successfully applied to

solve problems of high complexity, for example in the area of algebra (Phillips and

Vojtěchovskiý 2005) and logic (Jech 1995).

There has been work done to improve the speed of resolution-based theorem

provers on modal formulas (Areces et al. 2000), but again, converse modalities such

as the past-time operators are not considered. We found that the general heuristics

applicable to full first-order logic are sufficient for our task.

5.2 Translation

In order to prove meta-level properties, it is necessary to reason at the object-level.

Object-level properties typically do not contain background knowledge concerning

the validity what it being verified. For example, the (M2) property of Section 3 has

a clear meaning in terms of clinical guidelines, which would be lost if stated as an

object-level property. Moreover, it is not (directly) possible to state that something

does not follow at the object level. Figure 2 summarises the general approach. We

will first give a definition for translating the object knowledge to standard logic and

then the translation of the meta-level knowledge will follow.

5.2.1 Translation of Object Knowledge

The background knowledge, as defined in Subsection 4.2, is translated into first

order logic. For every function f with two elements in the co-domain, call these

{c1, c2}, we introduce a fresh variable p for every element a in the domain such that

f(a) = c1 holds iff p holds and f(a) = c2 holds iff ¬p holds. For example, axiom

(2) of BDM2 in Section 4.2 is represented by defining ‘uptake(liver, glucose) = up’ and

‘release(liver, glucose) = up)’ as propositions and rewriting this axiom as

G(‘uptake(liver, glucose) = up’→ ¬(‘release(liver, glucose) = up’))
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Fig. 2. Translation of medical knowledge.

For the capacity function, a function with three elements in its co-domain, we add a

proposition px for each expression capacity(b-cells, insulin) = x and an axiom saying

that each pair of these propositions are mutually exclusive. Finally, the term QI > 27

is interpreted as a proposition as well, i.e. we do not reason about the numerical

value of QI.

Technically, this translation is not required, since we could extend the translation

below to full first-order temporal logic. In practice however, we would like to avoid

additional complexity from first-order formulas during the automated reasoning.

The relational translation (e.g. Moore 1979; Areces et al. 2000; Schmidt and

Hustadt 2003) STt(ϕ), also referred to as the standard translation, translates a

propositional temporal logical formula ϕ into a formula in a first-order logic with

(time-indexed) unary predicate symbols P for every propositional variable p and

one binary predicate >. It is defined as follows, where t is an individual variable

standing for time:

STt(p) iff P (t)

STt(¬ϕ) iff ¬STt(ϕ)

STt(ϕ ∧ ψ) iff STt(ϕ) ∧ STt(ψ)

STt(Gϕ) iff ∀t′ (t �> t′ → STt′ (ϕ))

STt(Hϕ) iff ∀t′ (t > t′ → STt′ (ϕ))

Note that the last two elements of the definition give the meaning of the G modality

and its converse, the H modality. For example, the formula G(p → Pp) translates

to ∀t2 (t �> t2 → (P (t2) → ∃t3 (t2 > t3 ∧ P (t3))). It is straightforward to show that

a formula in temporal logic is satisfiable if and only if its relational translation is

satisfiable. Also, recall that we use set union to denote conjunction, thus STt(Γ ∪ Δ)

is defined as STt(Γ) ∧ STt(Δ).

In the literature a functional approach to translating modal logic has appeared as

well (Ohlbach 1988), which relies on a non-standard interpretation of modal logic

and could be taken as an alternative to this translation.
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5.2.2 Translation of Meta-level Knowledge

Again, we consider the criteria for good practice medicine and make them suitable

for use with the automated reasoning tools. In order to stress that we deal with

provability in these tools, we use the ‘�’ symbol instead of the ‘|=’ (validity) symbol.

We say that a treatment T is a treatment complying with the requirements of good

practice medicine iff

(M1′) STt(B∪ GT ∪ C ∪ R) � ⊥
(M2′) STt(B∪ GT ∪ C ∪ R ∪ ¬N) � ⊥
(M3′) ∀T ′ ⊂ T : T ′ is not a treatment according to (M1′) and (M2′)

Criterion (M3′) is a specific instance of (M3), i.e. subset minimality as explained in

Section 3 (Equation (3)). As the relational translation preserves satisfiability, these

quality requirements are equivalent to their unprimed counterparts in Section 3.

To automate this reasoning process we use mace-2 to verify (M1′), otter to verify

(M2′) and (M3′) can be seen as a combination of both for all subsets of the given

treatment.

5.3 Results

In this subsection we will discuss the actual implementation in otter and some

results obtained by using particular heuristics.

5.3.1 Resolution strategies

An advantage that one gains from using a standard theorem prover is that a whole

range of different resolution rules and search strategies is available and can be

varied depending on the problem. otter uses the set-of-support strategy (Wos et al.

1965) as a standard strategy. In this strategy the original set of clauses is divided

into a set-of-support and a usable set such that in every resolution step at least one

of the parent clauses has to be a member of the set-of-support and each resulting

resolvent is added to the set-of-support.

Looking at the structure of the formulas in Section 4, one can see that formulas

are of the form p0 ∧ · · · ∧ pn → q, where p0 ∧ · · · ∧ pn and q are almost all positive

literals. Hence, we expect the occurrence of mainly negative literals in our clauses,

which can be exploited by using negative hyper-resolution (neg hyper for short)

(Robinson 1965) in otter. With this strategy a clause with at least one positive

literal is resolved with one or more clauses only containing negative literals (i.e.

negative clauses), provided that the resolvent is a negative clause. The parent clause

with at least one positive literal is called the nucleus, and the other, negative clauses

are referred to as the satellites.

5.3.2 Verification of treatments

The ordering predicate > that was introduced in Section 5.2.1 was defined by adding

axioms of irreflexivity, anti-symmetry and transitivity. We did not find any cases



Checking the quality of clinical guidelines using automated reasoning tools 627

where the axiom of transitivity was required to construct the proof, which can be

explained by the low modal depth of our formulas. As a consequence, the axiom

was omitted with the aim to improve the speed of theorem proving. Furthermore,

because we lack the next step modality, we did not need to axiomatise a subsequent

time point. Experiments showed that this greatly reduces the amount of effort for

the theorem prover.

We used otter to perform the two proofs which are instantiations of (M2′). First,

we again, consider a patient with hyperglycaemia due to nearly exhausted B cells

and prove:

ST0(BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = nearly-exhausted}
∪ {H Condition(hyperglycaemia)}
∪ {¬G Condition(normoglycaemia)}) � ⊥

where T = {Drug(SU),Drug(BG)}, i.e. step 3 of the guideline (see Table 1). Note

that we use ‘0’ here to represent the current time point. This property was proven

using otter in 62 resolution steps with the use of the negative hyper-resolution

strategy. A summary of this proof can be found in 6.

Similarly, given T = {Drug(SU),Drug(BG),Drug(insulin)} to a patient with

exhausted B cells, as suggested by the guideline in step 4, it follows that

ST0(BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = exhausted} ∪
{HCondition(hyperglycaemia)} ∪
{¬(G(Condition(normoglycaemia) ∨ Condition(hypoglycaemia)))}) � ⊥

However, if we take T = {Drug(insulin}, the same holds, which shows that, as

already mentioned in Section 4.3, even if we ignore the fact that the patient may

develop hypoglycaemia, the treatment is not minimal. Compared to the previous

property, a similar magnitude of complexity in the proof was observed, i.e. 52

resolution steps.

5.3.3 Using weighting

One possibility to improve the performance is by using term ordering strategies.

This will be explained below, but first we give a motivating example why this is

particularly useful for this class of problems. Consider the following example taken

from (Areces et al. 2000). Suppose we have the formula G(p → Fp). Proving this

satisfiable amounts to proving that the following two clauses are satisfiable:

1. 0 > t1 ∨ ¬P (t1) ∨ t1 �> f(t1)

2. 0 > t2 ∨ ¬P (t2) ∨ P (f(t2))

It can be observed, that although we have two possibilities to resolve these two

clauses, for example on the P literal, this is useless because the negative P literal is

only bound by the G-operator while the positive P literal comes from a formula at

a deeper modal depth under the F-operator. Suppose we resolve these ¬P (t1) and
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Table 3. Generated clauses to prove an instance of property M2′ depending on weights (x, y)

for the ordering relation on time.

Weights Clauses (binary res) Clauses (negative hyper res)

(0, 1) 17729 6994

(1, 0) 13255 6805

(1, 1) 39444 7001

(1,−1) 13907 6836

(2,−2) 40548 7001

(2,−3) 16606 6805

(3,−4) 40356 7095

(3,−5) 27478 7001

P (f(t2)) and rename t2 to t, which generates the clause:

0 > f(t) ∨ f(t) �> f(f(t)) ∨ 0 > t ∨ ¬P (t)

and with (2) again we have

0 > f(f(t)) ∨ f(f(t)) �> f(f(f(t))) ∨ 0 > f(t) ∨ c > t ∨ ¬P (t)

etc. In this way, we can generate many new increasingly lengthy clauses. Clearly,

these nestings of the Skolem functions will not help to find a contradiction more

quickly if the depth of the modalities in the formulas that we have is small, as the

new clauses are similar to the previous clauses, except that they describe a more

complex temporal structure.

In otter the weight of the clauses determines which clauses are chosen from the

set-of-support and usable list to become parents in a resolution step. In case the

weight of the two clauses is the same, there is a syntactical ordering to determine

which clause has precedence. This is called the Knuth-Bendix Ordering (KBO)

(Knuth and Bendix 1970). As the goal of resolution is to find an empty clause,

lighter clauses are preferred. By default, the weight of a clause is the sum of all

occurring symbols (i.e. all symbols have weight 1) in the literals. As we have argued,

since the temporal structure of our background knowledge is relatively simple,

nesting Skolem functions will not help to find such an empty clause. Therefore it

can be of use to manually change the weight of the ordering symbol, which is done

in otter by a tuple (x, y) for each predicate, where x is multiplied by the sum of

the weight of its arguments and is added to y to calculate the new weight of this

predicate. For example, if x = 2 and y = −3, then v > w has a total weight of

2 + 2− 3 = 1, and f(f(c)) > f(d) has a weight of 2 ∗ 3 + 2 ∗ 2− 3 = 7.

See Table 3 where we show results when we applied this for some small values of

x and y for both binary and negative hyper-resolution. What these numbers show

(similar results were obtained for the other property) is that the total weight of

the ordering predicate should be smaller than the weight of other unary predicates.

Possibly somewhat surprisingly, the factor x should not be increased too much.

Furthermore, in the case of a negative hyper-resolution strategy the effect is minimal.
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5.4 Disproofs

mace-2 (Models And CounterExamples) is a program that searches for small finite

models of first-order statements using a Davis-Putman-Loveland-Logemann decision

procedure (Davis and Putman 1969; Davis et al. 1962) as its core. Because of

the relative simplicity of our temporal formulas, it is to be expected that counter-

examples can be found rapidly, exploring only few states. Hence, it could be expected

that models are of the same magnitude of complexity as in the propositional case

and this was indeed the case. In fact, the counter-models that mace-2 found consist

of only 2 elements in the domain of the model.

The first property we checked corresponded to checking whether the background

knowledge augmented with patient data and a therapy was consistent, i.e. criterion

(M1′). Consider a patient with hyperglycaemia due to nearly exhausted B cells. We

used mace-2 to verify:

ST0(BDM2 ∪ G T ∪ {capacity(b-cells, insulin) = exhausted} ∪
{HCondition(hyperglycaemia)}) � ⊥

for T = {Drug(SU),Drug(BG),Drug(insulin)}. From this it follows that there is a

model if T = {Drug(SU),Drug(BG)} and consequently we have verified (M1′).

Similarly, we found that for all T ⊂ {Drug(SU),Drug(BG)}, it holds that

ST0(BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = nearly-exhausted}
∪ {H Condition(hyperglycaemia)}
∪ {¬G Condition(normoglycaemia)}) � ⊥

i.e. it is consistent to believe that the patient will not have normoglycaemia if less

drugs are applied, which violates (M2) for these subsets. So indeed the conclusion

was that the treatment complies with (M3′) and thus complies with the criteria of

good practice medicine. See for example Figure 3, which contains a small sample of

the output that mace-2 generated. The output consists of a first-order model with

two elements in the domain, named ‘0’ and ‘1’, and an interpretation of all predicates

and functions in this domain. It shows that it is consistent with the background

knowledge to believe that the patient will continue to suffer from hyperglycaemia

if one of the drugs is not applied. Note that the model specifies that biguanide is

applied at the first time instance, as this is not prohibited by the assumptions.

Finally, consider the treatment T = {Drug(SU),Drug(BG),Drug(insulin)} for a

patient with exhausted B cells, we can show that

ST0(BDM2 ∪ GT ∪ {capacity(b-cells, insulin) = exhausted} ∪
{HCondition(hyperglycaemia)} ∪
{G(Condition(normoglycaemia)))}) � ⊥

so that the patient may be cured with insulin treatment, even though this is

not guaranteed as Condition(normoglycaemia) and does not deductively follow

from the premises. However, it is possible to prove the same property when

T = {Drug(insulin)} and thus (M3′) does not hold in this case and as a consequence
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Fig. 3. Snippet from a mace-2 generated model. It lists the truth value of all the unary

predicates given each element of the domain (i.e. the time points ‘0’ and ‘1’) and every

combination of domain elements for the binary predicate <. Truth values are denoted by T

(true) and F (false).

the guideline does not comply with the quality requirements as discussed in

Section 4.3.

5.5 Plan structure

So far, we have not considered the order in which treatments are being considered

and executed. In this subsection, we look at the problem of reasoning about the

order of treatments described in the treatment plan listed in Table 1.

5.5.1 Formalisation

In order to reason about a sequence of treatments, additional formalisation is

required. The background knowledge was developed for reasoning about an individ-

ual treatment, and therefore, is parameterised for the treatment that is being applied.

We postulate BDM2, parameterised by s, where s is a certain step in the protocol, i.e.

s = 1, 2, 3, 4 (cf. Table 1; for example s = 1 corresponds to diet). The first axiom is

then described by

∀s (GDrug(insulin, s)→ G(uptake(liver, glucose, s) = up)).

The complete description of this background knowledge is denoted by B′DM2.

The reason for this is that the ‘G’ modality ranges over the time period of an

individual treatment, rather than the complete time frame. Similarly, the patient can

be described, assuming the description of the patient description does not change,

by ∀s P (s), where P is a parameterised description of the patient. For example, in

diabetes, it may be assumed that the Quetelet index does not change; however, the

condition generally does change due to the application of a treatment.
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The guideline as shown in Table 1 is modelled in two parts. First, we need to

specify which treatment is administered in each step of the protocol. Second, the

transition from one step to the next has to be specified. The former is modelled

as a conjunction of treatments for each step of the guideline. For example, in

the initial treatment step (i.e. step 1) only ‘diet’ is applied, hence, the following is

specified:

G diet(1).

In general, for treatment T (s) in step s, we write GT (s). Here s is a meta-variable

standing for the step in the protocol, i.e. it is a ground atom in the concrete

specification of the protocol. Object-level variables can be recognised by the fact

that they are bounded by quantification. For example, T (s) is a ground term in

the actual specification, while ∀s T (s) is not. In this notation, we will refer to

the set of treatment prescriptions for each step and all patient groups P (s) as

D =
⋃
s P (s)→ GT (s).

The second part of the formalisation concern the change of treatments, which is

formalised by a predicate control(s) that describes which step of the guideline will be

reached. Recall from Table 1, that treatments are stopped in case they fail, i.e. when

they do not result in the desired effect. This change of control can be described in

the meta-language as

B∪ GT (s) ∪ P (s) �|= N(s)⇒ control(s+ 1) (5)

for all steps s, i.e. if the intention cannot be deduced, then we move to a subsequent

step. We will refer to this axiom as the control axiom C. It is not required that

the control is mutually exclusive: if control(s + 1) holds, then control(s) also holds,

although the converse is not necessarily true. Note that ¬N(s) cannot be deduced

from the background knowledge, due to its causal nature; however, clearly, in the

context of automatic reasoning, it is useful to reason about the theory deductively.

To be able to do this, one can use the so-called completed theory, denoted as

COMP(Γ), where Γ is some first-order theory. The COMP function is formally

defined in (Clark 1978) for general first-order theories. For propositional theories

one can think of this function as replacing implication with bi-implications, for

example, COMP(p → q) = p ↔ q and COMP({p → q, p → r}) = p ↔ (q ∨ r). By

the fact that the temporal formulas can be interpreted as first-order sentences, we

have for example:

COMP(GDrug(insulin)→ G uptake(liver, glucose) = up)

= GDrug(insulin)↔ G uptake(liver, glucose) = up.

This can be extended for the whole set of axioms of diabetes. The relevance of this

operator for this chapter, is that the abductive reasoning can be seen as deductive

reasoning in this completed theory (Console et al. 1991). In the following section, we

introduce an extension to this idea for the restricted part of temporal logic described

in Section 3. These results are based on a direct application of work done by Stärk

(Stärk 1994). Then, we will apply those results to the above formalisation.
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5.5.2 Completion

An important resolution strategy is Selective Linear resolution with Definite clauses

(SLD) which is linear resolution with a selection function for Horn clauses, i.e.

clauses with at most one positive literal (for a definition see for example Lucas and

van der Gaag 1991). SLD resolution is sound and refutation complete for Horn

clause logic. It is refutation complete in the sense that if one would use a breadth-

first strategy through the tree of all SLD derivations, a finite SLD refutation will

be found if the set of Horn clauses is unsatisfiable. Below, as a convenience, we will

write that we derive ψ from ϕ using SLD resolution iff there is an SLD refutation

from ϕ ∧ ¬ψ.

SLDNF resolution augments SLD resolution with a so-called ‘negation as failure’

(NAF) rule (Clark 1978). The idea is in order to prove ¬A, try proving A; if the proof

succeeds, then the evaluation of ¬A fails; otherwise, if A fails on every evaluation

path, then ¬A succeeds. The latter part of this strategy is not a standard logical

rule and could be described formally as, given some theory Γ, if Γ �� A then Γ � ¬A
is concluded. It must be noted that the query A must be grounded. This type of

inference is featured in logic programming languages such as prolog, although most

implementations also infer the negation as failure for non-ground goal clauses.

This type of resolution is used here to show that a completed theory can be

used in a deductive setting to reason about the meta-theory. In particular, in Stärk

(1994), this is used to show that a certain class of programs have the property that

if a proposition deductively follows from that program, then there is a successful

SLDNF derivation. This is shown by the so-called input/output specifications, which

are given by a set of mode specifications for every predicate. A mode specification

for a predicate says which arguments are input arguments and which arguments

are output arguments; other arguments are called normal arguments. Given an

input/output specification a program must be written in such a way that in a

computed answer the free variables of the output terms are contained in the free

variables in the input terms. Furthermore, the free variables of a negative literal must

be instantiated to ground terms during a computation. For example, the following

well-known logic program

append([], L, L)

append(L1, L2, L3)→ append([X|L1], L2, [X|L3])

has two mode specifications. Either the first two arguments are input arguments

resulting in a concatenation of the two lists in the output argument or, the first two

arguments can act as output arguments resulting in the decomposition of the third

argument into two lists.

In the following, we will write all ground atoms without arguments, e.g. we denote

A when we mean A(c), where c is some constant, unless the constant is relevant. We

then prove the following lemma.

Lemma 1

If COMP(Γ) |= ¬Ag , where Γ is a formula of the form:

∀s∀t (A0(s) ∧ · · · ∧ An(s) ∧ An+1(t, s) ∧ · · · ∧ Am(t, s)→ Ak(t, s))
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where Ai are all positive atoms and .Ag is any ground atom, then there exists an

SLDNF derivation of ¬Ag for theory Γ.

A proof can be found in 6. Note here that Γ only contains Horn clauses. Further

note that the relation between the completed theory and SLDNF derivation holds

for a much more elaborate class of formulas (Stärk 1994). Hence, this result could

be generalised to a more elaborate temporal descriptions. However, the fact that we

are dealing with Horn clauses yields the following property, which is the main result

of this section.

Theorem 1

If Γ is in the form as assumed in Lemma 1, A is again any ground atom, and it

holds that COMP(Γ) |= ¬A, then Γ �|= A.

Proof

Suppose COMP(Γ) |= ¬A. Then by Lemma 1 it holds that ¬A is derived by

SLDNF resolution from Γ. From the definition of SLDNF derivation either ¬A
holds by SLD resolution or a derivation for A fails. In either way, it follows from

the soundness of SLD resolution that deriving A from Γ using SLD resolution will

fail. Since each of the clauses is Horn and SLD resolution is complete for these

Horn clauses, it follows that Γ �|= A. �

5.5.3 Implementation

The result of Theorem 1 is used to investigate the completion of a restricted subset

of temporal logic. To simplify matters, we introduce the following assumptions. First,

the H operator is omitted. In this case, this is justified as this operator only plays

a role to denote the fact that the patient suffers from hyperglycaemia and plays

no role in the temporal reasoning. Hence, we have a (propositional) variable that

expresses exactly the fact that in the past the condition was hyperglycaemic. Second,

as there is no reasoning about the past, we may translate Gϕ to ∀t ϕ(t). Finally, we

only make a distinction between whether the glucose level is decreasing or not, i.e.

we abstract from the difference between normo- and hypoglycaemia. Furthermore,

we assume that the mutual exclusion of values for capacity is omitted and part

of the description of the patient, i.e. a patient with QI > 27 is now described by

{QI > 27,¬(QI � 27)}. We will refer to these translation assumptions in addition

to the translation to first-order logic described in Section 5.2.1 as ST′t. Furthermore,

let COMP(Γ) be understood as the formula which is equivalent according to ST to

COMP(ST′t(Γ)) whenever Γ is a theory in temporal logic. Note that this abstraction

is sound, in the sense that anything that is proven with respect to the condition of

the patient by the abstracted formulas can be proven from the original specification.

Let pi be a patient characteristic, d a drug and li either a patient characteristic

or drug. The temporal formulas that are allowed are listed in Table 4. We claim

that each temporal formula is an instance of a temporal formula mentioned in

Table 4, universally quantified by a step s, except for the last goal clause which

is grounded. The background knowledge can be written in terms of the first and

second clause, taken into account that axiom (7) can be rephrased to two clauses
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Table 4. The type of temporal formulas and their translation, where the Skolem constants

describing time instances are omitted.

Temporal Logic First-order Logic

A1 ∧ · · · ∧ An ∧ GAn+1∧ ∀t (A1 ∧ · · · ∧ An ∧ An+1∧
· · · ∧ GAm → GAi · · · ∧ Am → Ai(t))

G(A1 ∧ · · · ∧ An → Ai) ∀t (A1(t) ∧ · · · ∧ An(t)→ Ai(t))

GAi, Ai Ai(t), Ai
¬GAi ¬Ai

of the first type and we need to make sure that each literal is coded as a positive

atom. This is a standard translation procedure that can be done for many theories

and is described in e.g. (Shepherdson 1987, p. 23). Axiom (3) needs to be rewritten

for each of the cases of capacity implied by the negated sub-formula. For each drug

and patient characteristic in the hypothesis, the third clause of Table 4 applies. A

goal is an instance of the fourth clause of Table 4. As the first three clauses are

Horn, Theorem 1 can be instantiated for the background knowledge, which yields:

Theorem 2

COMP(B′DM2 ∪ GT (s) ∪ P (s)) |= ¬N(s) implies B′DM2 ∪ P (s) ∪ GT (s) �|= N(s).

This states that, if the completed theory implies that the patient will not have

normoglycaemia, then this is consistent conclusion with respect to the original

specification, for any specific step described by s. Therefore, there is no reason to

assume that T is the correct treatment in step s. This result is applied to the control

axiom C as described in Section 5.5.1, i.e. formula 5. If we were to deduce that

COMP(B∪ GT (s) ∪ P (s)) |= ¬N(s)

then, assuming the literals are in a proper form required by Theorem 2, this implies

that

B∪ GT (s) ∪ P (s) �|= N(s)

Thus, we postulate the following axiom describing the change of control, denoted

by C′

COMP(B∧ GT (s) ∧ P (s)) ∧ ¬N(s)→ control(s+ 1)

The axioms D (cf. Section 5.5.1) and C′ are added to the guideline formalisation in

order to reason about the structure of the guideline.

To investigate the quality of the treatment sequence, a choice of quality criteria

has to be chosen. Similarly to individual treatments, notions of optimality could be

studied. Here, we investigate the property that for each patient group, the intention

should be reached at some point in the guideline. For the diabetes guideline, this is

formalised as follows:

B′DM2 ∪D ∪ ∀s P (s) |= ∃s N(s)

As we restrict ourselves to a particular treatment described in step s, this property is

similar to the property proven in Section 5.3. However, it is possible that the control
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never reaches s for a certain patient group, hence, using the knowledge described in

C, it is also important to verify that this step is indeed reachable, i.e.

B′DM2 ∪D ∪ ∀s P (s)) ∪ C′ |= ∃s (N(s) ∧ control(s))

The above was used to verify a number of properties for different patient groups.

For example, assume

P (s) = {capacity(liver, glucose, s) = exhausted,QI(s) � 27

HCondition(normoglycaemia)}

(note the H operator is abstracted from the specification) then

B′DM2 ∪D ∪ ∀s P (s) ∪ C′ |= GCondition(normoglycaemia, 3) ∧ control(3)

i.e. the third step will be reached and in this step the patient will be cured. This was

implemented in otter using the translation as discussed in the previous subsection.

As the temporal reasoning is easier due to the abstraction that was made, the proofs

are reasonably short. For example, in the example above, the proof has length 25

and was found immediately.

6 Conclusions

The quality of guideline design is for the largest part based on its compliance with

specific treatment aims and global requirements. We have made use of a logical meta-

level characterisation of such requirements, and with respect to the requirements

use was made of the theory of abductive, diagnostic reasoning, i.e. to diagnose

potential problems with a guideline (Poole 1990; Lucas 1997, 2003). In particular,

what was diagnosed were problems in the relationship between medical knowledge,

and suggested treatment actions in the guideline text and treatment effects; this is

different from traditional abductive diagnosis, where observed findings are explained

in terms of diagnostic hypotheses. This method allowed us to examine fragments

of a guideline and to prove properties of those fragments. Furthermore, we have

succeeded in proving a property using the structure of the guideline, namely that

the blood glucose will go down eventually for all patients if the guideline is followed

(however, patients run the risk of developing hypoglycaemia).

In earlier work (Hommersom et al. 2007), we used a tool for interactive program

verification, named KIV (Reif 1995), for the purpose of quality checking of the

diabetes type 2 guideline. Here, the main advantage of the use of interactive theorem

proving was that the resulting proofs were relatively elegant as compared to the

solutions obtained by automated resolution-based theorem proving. This may be

important if one wishes to convince the medical community that a guideline complies

with their medical quality requirements and to promote the implementation of such

a guideline. However, to support the design of guidelines, this argument is of less

importance. A push-button technique would there be more appropriate. The work

that needs to be done to construct a proof in an interactive theorem prover would

severely slow down the development process as people with specialised knowledge

are required.
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Another method for verification that is potentially useful is model checking. One

advantage is that it allows the end user, in some cases, to inspect counter example if

it turns out that a certain quality requirement does not hold. The main disadvantage

is that the domain knowledge as we have used here is not obviously represented

into an automaton, as knowledge stated in linear temporal logic usually cannot

succinctly be translated to such a model.

One of the main challenges remains bridging the gap between guideline developers

and formal knowledge needed for verification. The practical use of the work that

is presented here depends on such developments, although there are several signs

that these developments will occur in the near future. Advances in this area have

been made in for example visualisation (Kosara and Miksch 2001) and interactive

execution of guideline representation languages. Furthermore, the representation

that we have used in this paper is conceptually relatively simple compared to repre-

sentation of guidelines and complex temporal knowledge discussed in for example

(Shahar and Cheng 2000), however, in principle all these mechanisms could be

formalised in first-order logic and could be incorporated in this approach. Similarly,

probabilities have been ignored in this paper, for which several probabilistic logics

that have been proposed in the last couple of years seem applicable in this area

(Kersting and De Raedt 2000; Richardson and Domingos 2006). Exploring other

types of analysis, including quantitative and statistical, could have considerable

impact, as we are currently moving into an era where guidelines are evolving into

highly structured documents and are constructed more and more using information

technology. It is not unlikely that the knowledge itself will be stored using a more

formal language. Methods for assisting guideline developers looking into the quality

of clinical guidelines, for example, using automated verification will then be useful.
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Appendix A: Proof of meta-level property (M2)

In the formulas below, each literal is augmented with a time-index. These implicitly

universally quantified variables are denoted as t and t′. Recall that g(x, y) = down

is implemented as ¬(g(x, y) = up) and functions f and f′ are Skolem functions

introduced by otter. Both Skolem functions map a time point to a later time point.

Consider the following clauses in the usable and set-of-support list:

2 capacity(b-cells, insulin, t) �= nearly-exhausted ∨
capacity(b-cells, insulin, t) �= exhausted

14 t �> f(t) ∨ capacity(b-cells, insulin, t) = exhausted ∨ t > t′ ∨
secretion(b-cells, insulin, t′) = up

15 ¬Drug(SU, f(t)) ∨ capacity(b-cells, insulin, t) = exhausted ∨ t > t′ ∨
secretion(b-cells, insulin, t′) = up
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51 0 > t ∨Drug(SU, t)

53 capacity(b-cells, insulin, 0) = nearly-exhausted

For example, assumption (53) models the capacity of the B cells, i.e. nearly exhausted

at time 0 where the property as shown above should be refuted. Note that some

of the clauses are introduced in the translation to propositional logic, for example

assumption (2) is due to the fact that values of the capacity are mutually exclusive.

This is consistent with the original formalisation, as functions map to unique elements

for element of the domain.

Early in the proof, otter deduced that if the capacity of insulin in B cells is

nearly-exhausted, then it is not completely exhausted:

56 [neg hyper,53,2] capacity(b-cells, insulin, 0) �= exhausted

Now we skip a part of the proof, which results in information about the relation

between the capacity of insulin and the secretion of insulin in B cells at a certain

time point:

517 [neg hyper,516,53] 0 �> f′(0)

765 [neg hyper,761,50,675]

capacity(b-cells, insulin, f′(0)) �= nearly-exhausted ∨
secretion(b-cells, insulin, f′(0)) = down.

This information allows otter to quickly complete the proof, by combining it

with the information about the effects of a sulfonylurea drug:

766 [neg hyper,765,15,56,517]

capacity(b-cells, insulin, f(0)) �= nearly-exhausted ∨
¬Drug(SU, f′(0))

767 [neg hyper,765,14,56,517]

capacity(b-cells, insulin, f(0)) �= nearly-exhausted ∨
0 �> f(0)

after which (53) can be used as a nucleus to yield:

768 [neg hyper,767,53] 0 �> f1(0)

and consequently by taking (51) as a nucleus, we find that at time point 0 the

capacity of insulin is not nearly exhausted:

769 [neg hyper,768,51,766]

capacity(b-cells, insulin, 0) �= nearly-exhausted.

This directly contradicts one of the assumptions and this results in an empty clause:

770 [binary,769.1,53.1] ⊥

Appendix B: Proof of Lemma 1

Let Γ and Π denote lists of literals. An n-tuple (x1, . . . , xn) ∈ {in, out, normal}n is

called a mode specification for an n-place relation symbol R ∈ Rel, denoted by α, β, γ.
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The set of input variables of the atom R(t1, . . . , tn) (where ti is a term) given a mode

specification is defined by

in(R(t1, . . . , tn), (x1, . . . , xn)) =
⋃
{vars(ti) | 1 � i � n, xi = in}.

Analogously, the set of output variables is given by

out(R(t1, . . . , tn), (x1, . . . , xn)) =
⋃
{vars(ti) | 1 � i � n, xi = out}.

An input/output specification is a function S which assigns to every n-place relation

symbol R a set S+(R/n) ⊆ {in, out, normal}n of positive mode specification and a

set S−(R/n) ⊆ {in, normal}n of negative mode specifications for R.

Definition 1 (Definition 2.1 (Stärk 1994))
A clause Π→ A is called correct with respect to an input/output specification S or

S-correct iff

(C1) for all positive modes α ∈ S+(A) there exists a permutation of the literals of

the body Π of the form B1, . . . , Bm,¬C1, . . . ,¬Cn and for all 1 � i � m a positive

mode βi ∈ S+(Bi) such that

• for all 1 � i � m, in(Bi, βi) ⊆ in(A, α) ∪
⋃

1�j�i out(Bj, βj),

• out(A, α) ⊆ in(A, α) ∪
⋃

1�j�m out(Bj, βj),

• for all 1 � i � n,

S−(Ci) �= � and vars(Ci) ⊆ in(A, α) ∪
⋃

1�j�m out(Bj, βj),

(C2) for all negative modes α ∈ S−(A) for all positive literals B of Π there exists a

negative mode β ∈ S−(B) with in(B, β) ⊆ in(A, α) and for all negative literals ¬C
of Π there exists a positive mode γ ∈ S+(C) with in(C, γ) ⊆ in(A, α).

A program P is called correct with respect to an input/output specification S iff all

clauses of P are S-correct.

Definition 2 (Definition 2.2 (Stärk 1994))
A goal Γ is called correct with respect to an input/output specification S or S-correct

iff there exists a permutation B1, . . . , Bm,¬C1, . . . ,¬Cn of the literals of Γ and for all

1 � i � m a positive mode βi ∈ S+(Bi) such that

(G1) for all 1 � i � m, in(Bi, βi) ⊆
⋃

1�j�i out(Bj, βj),
(G2) for all 1 � i � m, S−(Ci) �= � and vars(Ci) ⊆

⋃
1�j�m out(Bj, βj).

Theorem 3 (reformulation of Theorem 5.4 (Stärk 1994))
Let P be a normal program which is correct with respect to the input/output

specification S and let L1, . . . , Lr be a goal.

(a) If COMP(P ) |= L1 ∧ · · · ∧ lr and L1, . . . , Lr is correct with respect to S then

there exists a substitution θ such that there is a successful SLDNF derivation for

L1, . . . , Lr with answer θ. (...)

Define S+ = S− = {(normal} for every unary predicate and {(normal, normal)}
for every binary predicate. Observe that Γ contains only definite clauses, so each

condition in Definition 1 is trivially satisfied, thus Γ is S-correct. Similarly, as the

goal ψ is definite, all clauses of Definition 2 are trivially satisfied, thus also S-correct.

Hence, by Theorem 3, we find that there is a successful SLDNF derivation of ψ

given Γ.



Checking the quality of clinical guidelines using automated reasoning tools 639

References

Allen, J. 1983. Maintaining knowledge about temporal intervals. Communications of the

ACM 26, 11, 832–843.

Areces, C., Gennari, R., Heguiabehere, J. and De Rijke, M. 2000. Tree-based heuristics in

modal theorem proving. In Proc. of the ECAI’2000. Berlin, Germany.
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