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Motivation

Intelligent
System

Machine Knowledge
Learning Acquisition

no data

small datasets

missing data

large search space
= knowledge-based approach
(i.e., via knowledge acquisition)

Terminology

Expert system
Knowledge-based system
Knowledge system
Intelligent system

e Intelligent agent

Sometimes used as synonyms, sometimes used to stress
differences w.r.t.:

e Acquisition of knowledge (data or human expertise)
e Amount of expertise (expert or not)
e Content of system versus behaviour

e Architecture of system

Approaches & Ingredients

Approach: knowledge modelling at different levels (get a
grip on the knowledge):

e Problem-solving method (PSM):
— diagnostic PSM
planning and scheduling PSM
design and configuration PSM
decision-making PSM

= implemented in a reasoning method

Knowledge base

= specified in a knowledge-representation formalism




Logical Approach

e Knowledge base (KB) Horn clauses:
Vrq- Ve ((A1 A+ ANAp) — B)
e PSMs with findings F' and solution S:
— Deductive solution (S follows from KB and F):
KBUFES
and KBUF ¥ L.
— Abductive/inductive solution (S explains F):
KBUSUKEF
where K stands for contextual knowledge.

— Consistency-based solution (S and F are consis-
tent): KBUSUFFE L

Example: Model-based Diagnosis
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e Model: representation of normal or abnormal behaviour,
possibly also of the internal structure

e Formalisation:
— consistency-based diagnosis, and

— abductive diagnosis
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Consistency-based Diagnosis
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Discrepancy between predicted behaviour and observed be-
haviour = fault (defect)!

e R. Reiter, "A Theory of diagnosis from first principles”,
Artificial Intelligence, vol. 32, 57—95, 1987.

e J. de Kleer, A.K. Macworth, and R. Reiter, “Character-
ising diagnoses and systems”, Artificial Intelligence, vol.
52, 197-222, 1992.
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Normal Behaviour

SYStem specification
SYS = (SD,COMPS):

e SD (System Description):

MUL (M;), MUL(Ms), MUL (Ms),
ADD(A;), ADD(A5)

in1 (A1) = out(My),inz(A1) = out(M>)

in1(A2) = out(Maz),in2(A2) = out(M3)

Vz(MUL(x) — in1(z) x ina(x) = out(x))

Vz(ADD(z) — in1(x) 4+ ino(x) = out(x))

e COMPS = {My, My, M3, Ay, Ao}




AB Predicate

e AB(c): component c is abnormal

e ~AB(c): component ¢ is normal
Example (Inverter I):

1 I | 0
[1]
SD = {Vz((INV(z) A =AB(z)) — —(out(z) = in(x))), INV(I)}
e Input: in(l) =1
e Observed output: out(l) =1}
SDuU{in(I) =1,out(l) =1}U{-AB)}E L
(assumption that I is normal is inconsistent)
SDU{in(I) = 1,out(l) = 1} U{AB()} ¥ L
(assumption that I is abnormal is consistent)
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Abnormality Assumptions
W

M,

v

SYStem specification SYS = (SD, COMPS):

e SD (System Description):

Vz((MUL(z) A =Ab(z)) — in1(x) x ino(z) = out(x))
Vz((ADD(z) A =Ab(z)) — in1(x) 4+ ina(x) = out(x))

e (Ab)normality assumptions D = {=Ab(c) | c € COMPS —
A}U{ADb(c) | ce A}, A C {My, Mz, M3, Ay, Ao}
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Which Components are Faulty?

12
[10] observed

Possible diagnoses (faulty componenten) A:
o A ={A1},{M1},{ Mo, M3}, {As, Mo}, since
SDUDUOBS¥ L
where D = {-Ab(c) | c € COMPS — A} U{Ab(c) | c€ D}

e A is always a smallest set, since A = COMPS would also
be a diagnosis otherwise
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Abductive Diagnosis
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Correspondence between predicted abnormal behaviour and
observed behaviour = defect!

Originator:

e L. Console, D. Theseider Dupré and P. Torasso, “A the-
ory of diagnosis for incomplete causal models”, In: IJ-
CAI'89, 1311-1317, 1989
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Causal Models

@ chills

thirst

myalgia

e Causality:
combination of Causes have particular Effects

e Logical representation:
Causeq A --- A Cause,, — Effect

e Example: fever — chills

Weak and Strong Causality

a1 chills Example:
fever A ay — chills

fever — thirst
thirst | sport — myalgia

myalgia

e Strong causality: ¢ — FE
“If C is present, then E must be present as well”

¢ Weak causality: CAa — FE
“If C is present, then E may be present as well” (a:
incompleteness assumption)

Prediction

@ N chills

thirst

myalgia

e Causal specification: >~ = (A, ®,R), with:

— A: possible causes and incompleteness assumptions
— &: observable facts

— R: causal model

e Prediction V C A: RUV EFE|

with E C & (F is observable)
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Diagnostic Problem

S LT

thirst

myalgia

Diagnostic problem P = (X, F), with:
e Causal specification: ~ = (A, P, R)

e (Actually) observed facts: F, for example F
{myalgia, thirst}

e Diagnosis D7

(1) Prediction which explains F: |RUDE F

(2) --- but should not explain too much




Diagnostic Problem

@ 1 chills

thirst

@ myalgia

Diagnostic problem P = (X, F), with:

e Causal specification: ~ = (A, P, R)

e (Actually) observed facts: F, for example F
{myalgia, thirst}
Examples of diagnoses:
D = {flu,as}, D' = {sport, flu},
and is D" = {flu,a1} a diagnosis?

Don’t Explain too Much

O LT

thirst

@ myalgia

Causal specification: ~ = (A, P, R)

Observed facts: F = {myalgia, thirst}

Facts which should not be explained: C = {—chills}
Formally: D C A is a diagnosis, iff:

(1) RUDE F (covering condition)

(2) RuDUC ¥ L (consistency condition)
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Consistency Condition

S LT

thirst

@ myalgia

e Causal specification: ~ = (A, P, R)

e Observed facts: F = {myalgia, thirst}
e Facts which should not be explained:
C = {~chills}
R U {flu, a1, s} U {~chills} £ L

= D = {flu,a1,as} is no diagnosis

Abduction = Anticausal Reasoning
Abduction:

Effect, Cause — Effect
Cause

Idea: Reversal of causal relationship

Example:
fever — thirst
results in:
thirst — fever
Now:
{thirst — fever, thirst} & fever

Conclusion:
\Abduction = deduction with implication reversal




Cost-based Abduction

Express likelihood by means of a cost function:
c:p(A) =R
often:

(D)= > c({d})

deD

D C A is a diagnosis with cost c¢(D), iff:
(1) RUDE F (covering condition)

(2) RUuDUC ¥ L (consistency condition)

Eugene Charniak: cost function ¢ equal to —log, then 1-1
mapping cost-based abduction to Bayesian networks
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Manual Construction of Bayesian Networks

Qualitative modelling:

Colonisation by Colonisation by Colonisation by
bacterium A bacterium B bacterium C

People become colonised by bacteria when entering a hos-
pital, which may give rise to infection
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Bayesian-network Modelling

Qualitative Quantitative

causal modelling interaction modelling

Cause — Effect
Pr(Inf | BR4,BRpg,BR¢)
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Problem Solving

As logic, Bayesian networks are declarative, i.e.:
e mathematical basis

e problem to be solved determined by (1) entered findings
F (may include decisions); (2) given hypothesis H:

Pr(H | F) (cf. KBAFEH)
Examples:

e Classification and diagnosis: D = argmaxg Pr(H | F)
e Temporal reasoning, prediction, what-if scenarios

e Decision-making based on decision theory

MEU(D | F) =max > u(z)Pr(z|d,F)
D
ZL‘GXW(U)




Conclusions

Knowledge-based approach: need for handles for knowl-
edge modelling

Model-based approaches support using detailed qualita-
tive models

Logic can be replaced by set-theoretical or algebraic
methods

Interesting relationships between probabilistic reasoning
and qualitative reasoning in model-based systems (e.g.,
cost-based abduction)




