Expert Systems
A knowledge-based approach to intelligent systems

Peter Lucas
Department of Information and Knowledge Systems
Institute for Computing and Information Sciences
University of Nijmegen, The Netherlands

Motivation

Intelligent System

Machine Learning

- no data
- small datasets
- missing data
- large search space
⇒ knowledge-based approach (i.e., via knowledge acquisition)

Knowledge Acquisition

Terminology

- Expert system
- Knowledge-based system
- Knowledge system
- Intelligent system
- Intelligent agent

Sometimes used as synonyms, sometimes used to stress differences w.r.t.:
- Acquisition of knowledge (data or human expertise)
- Amount of expertise (expert or not)
- Content of system versus behaviour
- Architecture of system

Approaches & Ingredients

Approach: knowledge modelling at different levels (get a grip on the knowledge):

- Problem-solving method (PSM):
 - diagnostic PSM
 - planning and scheduling PSM
 - design and configuration PSM
 - decision-making PSM
⇒ implemented in a reasoning method

- Knowledge base
⇒ specified in a knowledge-representation formalism
Logical Approach

- Knowledge base (KB) **Horn clauses**:
 \[\forall x_1 \cdots \forall x_m ((A_1 \land \cdots \land A_n) \rightarrow B) \]
- PSMs with findings \(F \) and solution \(S \):
 - **Deductive solution** (\(S \) follows from KB and \(F \)):
 \[KB \cup F \models S \]
 and \(KB \cup F \not\models \bot \).
 - **Abductive/inductive solution** (\(S \) explains \(F \)):
 \[KB \cup S \cup K \models F \]
 where \(K \) stands for contextual knowledge.
 - **Consistency-based solution** (\(S \) and \(F \) are consistent):
 \[KB \cup S \cup F \not\models \bot \]

Example: Model-based Diagnosis

- Model: representation of normal or abnormal behaviour, possibly also of the internal structure
- Formalisation:
 - consistency-based diagnosis, and
 - abductive diagnosis

Consistency-based Diagnosis

Discrepancy between predicted behaviour and observed behaviour \(\Rightarrow \) fault (defect)!

Normal Behaviour

- **SD (System Description)**:
 \[MUL(M_1), MUL(M_2), MUL(M_3), \]
 \[ADD(A_1), ADD(A_2) \]
 \[in_1(A_1) = out(M_1), in_2(A_1) = out(M_2) \]
 \[in_1(A_2) = out(M_2), in_2(A_2) = out(M_3) \]
 \[\forall x (MUL(x) \rightarrow in_1(x) \times in_2(x) = out(x)) \]
 \[\forall x (ADD(x) \rightarrow in_1(x) + in_2(x) = out(x)) \]
- **COMPS** = \{\(M_1, M_2, M_3, A_1, A_2 \)\}
AB Predicate

- $AB(c)$: component c is abnormal
- $\neg AB(c)$: component c is normal

Example (Inverter I):

\[
\begin{array}{c}
1 \\
\end{array}
\xrightarrow{\text{I}}
\begin{array}{c}
0 \\
\end{array}
\]

\[SD = \{\forall x((\text{INV}(x) \land \neg AB(x)) \rightarrow \neg (\text{out}(x) = \text{in}(x))), \text{INV}(I)\}\]

- Input: in(I) = 1
- Observed output: out(I) = 1

SD $\cup \{\text{in}(I) = 1, \text{out}(I) = 1\} \cup \{\neg \text{AB}(I)\} \models \bot$

(assumption that I is normal is inconsistent)

SD $\cup \{\text{in}(I) = 1, \text{out}(I) = 1\} \cup \{\text{AB}(I)\} \not\models \bot$

(assumption that I is abnormal is consistent)

Abnormality Assumptions

\[\text{SYS} = (\text{SD}, \text{COMPS}):\]

- SD (System Description):
 \[
 \forall x((\text{MUL}(x) \land \neg \text{AB}(x)) \rightarrow \text{in}_1(x) \times \text{in}_2(x) = \text{out}(x))
 \]
 \[
 \forall x((\text{ADD}(x) \land \neg \text{AB}(x)) \rightarrow \text{in}_1(x) + \text{in}_2(x) = \text{out}(x))
 \]

- (Ab)normality assumptions $D = \{\neg \text{Ab}(c) | c \in \text{COMPS} - \Delta\} \cup \{\text{Ab}(c) | c \in \Delta\}$, $\Delta \subseteq \{M_1, M_2, M_3, A_1, A_2\}$

Which Components are Faulty?

Possible diagnoses (faulty componenten) Δ:

- $\Delta = \{A_1\}, \{M_1\}, \{M_2, M_3\}, \{A_2, M_2\}$, since
 \[
 \text{SD} \cup D \cup \text{OBS} \not\models \bot
 \]
 where $D = \{\neg \text{Ab}(c) | c \in \text{COMPS} - \Delta\} \cup \{\text{Ab}(c) | c \in D\}$

- Δ is always a smallest set, since $\Delta = \text{COMPS}$ would also be a diagnosis otherwise

Abductive Diagnosis

Correspondence between predicted abnormal behaviour and observed behaviour \Rightarrow defect!

Originator:

Causal Models

- **Causality**: combination of Causes have particular Effects
- **Logical representation**:
 \[\text{Cause}_1 \land \cdots \land \text{Cause}_n \rightarrow \text{Effect} \]
- **Example**: \(\text{fever} \rightarrow \text{chills} \)

Weak and Strong Causality

- **Strong causality**: \(C \rightarrow E \)
 “If \(C \) is present, then \(E \) must be present as well”
- **Weak causality**: \(C \land \alpha \rightarrow E \)
 “If \(C \) is present, then \(E \) may be present as well” (\(\alpha \): incompleteness assumption)

Prediction

- **Causal specification**: \(\Sigma = (\Delta, \Phi, \mathcal{R}) \), with:
 - \(\Delta \): possible causes and incompleteness assumptions
 - \(\Phi \): observable facts
 - \(\mathcal{R} \): causal model
- **Prediction \(V \subseteq \Delta \)**:
 \[\mathcal{R} \cup V \vdash E \]
 with \(E \subseteq \Phi \) (\(E \) is observable)

Diagnostic Problem

- **Causal specification**: \(\Sigma = (\Delta, \Phi, \mathcal{R}) \)
- **(Actually) observed facts**: \(F \), for example \(F = \{ \text{myalgia, thirst} \} \)
- **Diagnosis \(D \)**:
 1. Prediction which explains \(F \): \[\mathcal{R} \cup D \vdash F \]
 2. ... but should not explain too much
Diagnostic Problem

- Causal specification: $\Sigma = (\Delta, \Phi, R)$
- (Actually) observed facts: F, for example $F = \{\text{myalgia, thirst}\}$
- Examples of diagnoses:
 $D = \{\text{flu, } \alpha_2\}$, $D' = \{\text{sport, flu}\}$,
 and is $D'' = \{\text{flu, } \alpha_1\}$ a diagnosis?

Consistency Condition

- Causal specification: $\Sigma = (\Delta, \Phi, R)$
- Observed facts: $F = \{\text{myalgia, thirst}\}$
- Facts which should not be explained: $C = \{\neg \text{chills}\}$
- Formally: $D \subseteq \Delta$ is a diagnosis, iff:
 1. $R \cup D \models F$ (covering condition)
 2. $R \cup D \cup C \not\models \bot$ (consistency condition)

Abduction = Anticausal Reasoning

Abduction:

- **Effect, Cause \rightarrow Effect**
- **Cause**

Idea: Reversal of causal relationship

Example:

- $\text{fever} \rightarrow \text{thirst}$

results in:

- $\text{thirst} \rightarrow \text{fever}$

Now:

- $\{\text{thirst} \rightarrow \text{fever}, \text{thirst}\} \models \text{fever}$

Conclusion:

Abduction = deduction with implication reversal
Cost-based Abduction

Express likelihood by means of a cost function:
\[c : \mathcal{P}(\Delta) \to \mathbb{R} \]

\[c(D) = \sum_{d \in D} c(d) \]

\(D \subseteq \Delta \) is a *diagnosis* with cost \(c(D) \), iff:

1. \(\mathcal{R} \cup D \models F \) (covering condition)
2. \(\mathcal{R} \cup D \cup C \not\models \perp \) (consistency condition)

Eugene Charniak: cost function \(c \) equal to \(-\log\), then 1–1 mapping cost-based abduction to Bayesian networks

Manual Construction of Bayesian Networks

Qualitative modelling:

- Colonisation by bacterium \(A \)
- Colonisation by bacterium \(B \)
- Colonisation by bacterium \(C \)

Body response to \(A \)
Body response to \(B \)
Body response to \(C \)

Infection

Fever
WBC
ESR

People become colonised by bacteria when entering a hospital, which may give rise to infection

Bayesian-network Modelling

<table>
<thead>
<tr>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>causal modelling</td>
<td>interaction modelling</td>
</tr>
</tbody>
</table>

Cause \(\rightarrow \) Effect

<table>
<thead>
<tr>
<th>(\text{Inf})</th>
<th>(\text{BR}_A)</th>
<th>(\text{BR}_B)</th>
<th>(\text{BR}_C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(f)</td>
<td>(f)</td>
</tr>
</tbody>
</table>

\[\text{Pr}(\text{Inf} \mid \text{BR}_A, \text{BR}_B, \text{BR}_C) \]

<table>
<thead>
<tr>
<th>Inf</th>
<th>(\text{BR}_C)</th>
<th>(\text{BR}_C)</th>
<th>(\text{BR}_C)</th>
<th>(\text{BR}_C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>(f)</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Problem Solving

As logic, Bayesian networks are declarative, i.e.:

- mathematical basis
- problem to be solved determined by (1) entered findings \(F \) (may include decisions); (2) given hypothesis \(H \):

\[\text{Pr}(H \mid F) \]

(cf. KB \& F \models H)

Examples:

- Classification and diagnosis: \(D = \arg \max_H \text{Pr}(H \mid F) \)
- Temporal reasoning, prediction, what-if scenarios
- Decision-making based on decision theory

\[\text{MEU}(D \mid F) = \max_{d \in D} \sum_{x \in X_{\pi(v)}} u(x) \text{Pr}(x \mid d, F) \]
Conclusions

- Knowledge-based approach: need for handles for knowledge modelling
- Model-based approaches support using detailed qualitative models
- Logic can be replaced by set-theoretical or algebraic methods
- Interesting relationships between probabilistic reasoning and qualitative reasoning in model-based systems (e.g., cost-based abduction)