
'

&

$

%

Expert Systems

A knowledge-based approach to
intelligent systems

Peter Lucas

Department of Information and Knowledge Systems

Institute for Computing and Information Sciences

University of Nijmegen, The Netherlands

'

&

$

%

Motivation
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Intelligent
System

Acquisition
KnowledgeMachine

Learning

• no data

• small datasets

• missing data

• large search space

⇒ knowledge-based approach

(i.e., via knowledge acquisition)
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Terminology

• Expert system

• Knowledge-based system

• Knowledge system

• Intelligent system

• Intelligent agent

Sometimes used as synonyms, sometimes used to stress

differences w.r.t.:

• Acquisition of knowledge (data or human expertise)

• Amount of expertise (expert or not)

• Content of system versus behaviour

• Architecture of system
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Approaches & Ingredients

Approach: knowledge modelling at different levels (get a

grip on the knowledge):

• Problem-solving method (PSM):

– diagnostic PSM

– planning and scheduling PSM

– design and configuration PSM

– decision-making PSM

⇒ implemented in a reasoning method

• Knowledge base

⇒ specified in a knowledge-representation formalism
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Logical Approach

• Knowledge base (KB) Horn clauses:

∀x1 · · · ∀xm((A1 ∧ · · · ∧ An) → B)

• PSMs with findings F and solution S:

– Deductive solution (S follows from KB and F ):

KB ∪ F � S

and KB ∪ F 2 ⊥.

– Abductive/inductive solution (S explains F ):

KB ∪ S ∪ K � F

where K stands for contextual knowledge.

– Consistency-based solution (S and F are consis-

tent): KB ∪ S ∪ F 2 ⊥
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Example: Model-based Diagnosis

comparison

real observed

predicted
behaviour

system behaviour

model of
structure/
behaviour diction

pre−

vation
obser−

• Model: representation of normal or abnormal behaviour,

possibly also of the internal structure

• Formalisation:

– consistency-based diagnosis, and

– abductive diagnosis
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Consistency-based Diagnosis

real observed

predicted

system

diction
pre−

vation
obser−

behaviour

behaviour

model of
structure/
behaviour

discrepancy

normal

Discrepancy between predicted behaviour and observed be-

haviour ⇒ fault (defect)!

• R. Reiter, “A Theory of diagnosis from first principles”,

Artificial Intelligence, vol. 32, 57–95, 1987.

• J. de Kleer, A.K. Macworth, and R. Reiter, “Character-

ising diagnoses and systems”, Artificial Intelligence, vol.

52, 197–222, 1992.
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Normal Behaviour

M1

M2

M3

A1

A 2 SYStem specification

SYS = (SD,COMPS):

• SD (System Description):

MUL(M1),MUL(M2),MUL(M3),

ADD(A1),ADD(A2)

in1(A1) = out(M1), in2(A1) = out(M2)

in1(A2) = out(M2), in2(A2) = out(M3)

∀x(MUL(x) → in1(x) × in2(x) = out(x))

∀x(ADD(x) → in1(x) + in2(x) = out(x))

• COMPS = {M1, M2, M3, A1, A2}
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AB Predicate

• AB(c): component c is abnormal

• ¬AB(c): component c is normal

Example (Inverter I):

I1 0
[1]

SD = {∀x((INV(x) ∧ ¬AB(x)) → ¬(out(x) = in(x))), INV(I)}

• Input: in(I) = 1

• Observed output: out(I) = 1}
SD ∪ {in(I) = 1,out(I) = 1} ∪ {¬AB(I)} � ⊥

(assumption that I is normal is inconsistent)

SD ∪ {in(I) = 1,out(I) = 1} ∪ {AB(I)} 2 ⊥

(assumption that I is abnormal is consistent)
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Abnormality Assumptions

M1

M2

M3

A1

A 2

SYStem specification SYS = (SD,COMPS):

• SD (System Description):

∀x((MUL(x) ∧ ¬Ab(x)) → in1(x) × in2(x) = out(x))

∀x((ADD(x) ∧ ¬Ab(x)) → in1(x) + in2(x) = out(x))

· · ·

• (Ab)normality assumptions D = {¬Ab(c) | c ∈ COMPS −

∆} ∪ {Ab(c) | c ∈ ∆}, ∆ ⊆ {M1, M2, M3, A1, A2}
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Which Components are Faulty?

M1

M2

M3

A1

A 2

3

3

2

2

3

12

12
[10] observed

Possible diagnoses (faulty componenten) ∆:

• ∆ = {A1}, {M1}, {M2, M3}, {A2, M2}, since

SD ∪ D ∪ OBS 2 ⊥

where D = {¬Ab(c) | c ∈ COMPS − ∆} ∪ {Ab(c) | c ∈ D}

• ∆ is always a smallest set, since ∆ = COMPS would also

be a diagnosis otherwise
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Abductive Diagnosis

match

real observed

predicted
behaviour

system behaviour

diction
pre−

vation
obser−

abnormalmodel of

behaviour
structure/

Correspondence between predicted abnormal behaviour and

observed behaviour ⇒ defect!

Originator:

• L. Console, D. Theseider Dupré and P. Torasso, “A the-

ory of diagnosis for incomplete causal models”, In: IJ-

CAI’89, 1311–1317, 1989
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Causal Models

feverflu chills

thirst

myalgia
sport

• Causality:

combination of Causes have particular Effects

• Logical representation:

Cause1 ∧ · · · ∧ Causen → Effect

• Example: fever → chills
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Weak and Strong Causality

feverflu chills

thirst

myalgia
sport

α1

α2

Example:

fever ∧ α1 → chills

fever → thirst

sport → myalgia

• Strong causality: C → E

“If C is present, then E must be present as well”

• Weak causality: C ∧ α → E

“If C is present, then E may be present as well” (α:

incompleteness assumption)
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Prediction

feverflu chills

thirst

myalgia
sport

α1

α2

• Causal specification: Σ = (∆,Φ,R), with:

– ∆: possible causes and incompleteness assumptions

– Φ: observable facts

– R: causal model

• Prediction V ⊆ ∆: R∪ V � E ,

with E ⊆ Φ (E is observable)
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Diagnostic Problem

feverflu chills

thirst

myalgia
sport

α1

α2

Diagnostic problem P = (Σ, F ), with:

• Causal specification: Σ = (∆,Φ,R)

• (Actually) observed facts: F , for example F =

{myalgia, thirst}

• Diagnosis D?

(1) Prediction which explains F : R∪ D � F

(2) · · · but should not explain too much
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Diagnostic Problem

feverflu chills

thirst

myalgia
sport

α1

α2

Diagnostic problem P = (Σ, F ), with:

• Causal specification: Σ = (∆,Φ,R)

• (Actually) observed facts: F , for example F =

{myalgia, thirst}

Examples of diagnoses:

D = {flu, α2}, D′ = {sport,flu},

and is D′′ = {flu, α1} a diagnosis?
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Don’t Explain too Much

feverflu chills

thirst

myalgia
sport

α1

α2

• Causal specification: Σ = (∆,Φ,R)

• Observed facts: F = {myalgia, thirst}

• Facts which should not be explained: C = {¬chills}

• Formally: D ⊆ ∆ is a diagnosis, iff:

(1) R∪ D � F (covering condition)

(2) R∪ D ∪ C 2 ⊥ (consistency condition)
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Consistency Condition

feverflu chills

thirst

myalgia
sport

α1

α2

• Causal specification: Σ = (∆,Φ,R)

• Observed facts: F = {myalgia, thirst}

• Facts which should not be explained:

C = {¬chills}

R ∪ {flu, α1, α2} ∪ {¬chills} � ⊥

⇒ D = {flu, α1, α2} is no diagnosis
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Abduction = Anticausal Reasoning

Abduction:

Effect,Cause → Effect

Cause

Idea: Reversal of causal relationship

Example:

fever → thirst

results in:

thirst → fever

Now:

{thirst → fever, thirst} � fever

Conclusion:

Abduction = deduction with implication reversal
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Cost-based Abduction

Express likelihood by means of a cost function:

c : ℘(∆) → R

often:

c(D) =
∑

d∈D

c({d})

D ⊆ ∆ is a diagnosis with cost c(D), iff:

(1) R∪ D � F (covering condition)

(2) R∪ D ∪ C 2 ⊥ (consistency condition)

Eugene Charniak: cost function c equal to − log, then 1–1

mapping cost-based abduction to Bayesian networks
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Manual Construction of Bayesian Networks

Qualitative modelling:

Infection

Body response

to A

Body response

to B

Body response

to C

Colonisation by

bacterium A

Colonisation by

bacterium B

Colonisation by

bacterium C

Fever WBC ESR

People become colonised by bacteria when entering a hos-

pital, which may give rise to infection
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Bayesian-network Modelling

Qualitative

causal modelling

Cause → Effect

Inf

BRA BRB BRC

Quantitative

interaction modelling

Pr(Inf | BRA,BRB,BRC)

BRA

t f

BRB BRB

t f t f

BRC BRC BRC BRC

Inf t f t f t f t f

t 0.8 0.6 0.5 0.3 0.4 0.2 0.3 0.1

f 0.2 0.4 0.5 0.7 0.6 0.8 0.7 0.9
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Problem Solving

As logic, Bayesian networks are declarative, i.e.:

• mathematical basis

• problem to be solved determined by (1) entered findings

F (may include decisions); (2) given hypothesis H:

Pr(H | F ) (cf. KB ∧ F � H)

Examples:

• Classification and diagnosis: D = argmaxH Pr(H | F )

• Temporal reasoning, prediction, what-if scenarios

• Decision-making based on decision theory

MEU(D | F ) = max
d∈D

∑

x∈Xπ(U)

u(x)Pr(x | d, F )
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Conclusions

• Knowledge-based approach: need for handles for knowl-

edge modelling

• Model-based approaches support using detailed qualita-

tive models

• Logic can be replaced by set-theoretical or algebraic

methods

• Interesting relationships between probabilistic reasoning

and qualitative reasoning in model-based systems (e.g.,

cost-based abduction)


