Probabilistic Reasoning
 Independence Representation

\author{
Peter Lucas
 ```
peterl@cs.ru.nl

```
}

Institute for Computing and Information Sciences
Radboud University Nijmegen

\section*{Have you got Entero Hemorrhagic E. coli?}

\(P(e, g, d)=0.009215\)
\(P(e, \bar{g}, d)=0.000485\)
\(P(e, g, \bar{d})=0.000285\)
\(P(e, \bar{g}, \bar{d})=1.5 \cdot 10^{-5}\)
\(P(\bar{e}, g, d)=9.9 \cdot 10^{-6}\)
\(P(\bar{e}, \bar{g}, d)=0.0098901\)
\(P(\bar{e}, g, \bar{d})=0.0009801\)

\[
P(\bar{e}, \bar{g}, \bar{d})=0.97912
\]
- \(E\) : EHEC; \(G\) : visited Northern Germany; \(D\) : diarrhea
- Enterohemorrhagic E. coli and visited Northern Germany?
- Probability of EHEC given visit to Northern Germany?

\section*{Have you got Entero Hemorrhagic E. coli?}

\(P(e, g, d)=0.009215\)
\(P(e, \bar{g}, d)=0.000485\)
\(P(e, g, \bar{d})=0.000285\)
\(P(e, \bar{g}, \bar{d})=1.5 \cdot 10^{-5}\)
\(P(\bar{e}, g, d)=9.9 \cdot 10^{-6}\)
\(P(\bar{e}, \bar{g}, d)=0.0098901\)
\(P(\bar{e}, g, \bar{d})=0.0009801\)

\[
P(\bar{e}, \bar{g}, \bar{d})=0.97912
\]
- \(E\) : EHEC; \(G\) : visited Northern Germany; \(D\) : diarrhea
- Enterohemorrhagic E. coli and visited Northern Germany? 0.0095
- Probability of EHEC given visit to Northern Germany? 0.906

\section*{Probabilistic reasoning}

Joint probability distribution \(P(X)=P\left(X_{1}, X_{2}, \ldots, X_{n}\right)\)
- marginalisation:
\[
P(Y)=\sum_{Z} P(Y, Z), \text { with } X=Y \cup Z
\]
- conditional probabilities:
\[
P(Y \mid Z)=\frac{P(Y, Z)}{P(Z)}
\]
- Bayes' theorem:
\[
P(Y \mid Z)=\frac{P(Z \mid Y) P(Y)}{P(Z)}
\]

\section*{Probabilistic reasoning (cont)}

\section*{Examples:}
\[
\begin{aligned}
& P(e, g)=P(e, g, d)+P(e, g, \bar{d})=0.009215+0.000285=0.0095 \\
& P(e \mid g)=P(e, g) / P(g)=0.0095 / 0.01049 \approx 0.906
\end{aligned}
\]

\section*{Note that:}
- Mainly interested in conditional probability distributions:
\[
P(Z \mid \mathcal{E})=P^{\mathcal{E}}(Z)
\]
for (possibly empty) evidence \(\mathcal{E}\) (instantiated variables)
- Tendency to focus on conditional probability distributions of single variables
- Many efficient reasoning algorithms exist

\section*{Bayesian networks}

\section*{\(P(\mathrm{CH}, \mathrm{FL}, \mathrm{RS}, \mathrm{DY}, \mathrm{FE}, \mathrm{TEMP})\)}
\[
P(\mathrm{FL}=y)=0.1
\]
\[
\begin{aligned}
& P(\mathrm{FE}=y \mid \mathrm{FL}=y, \mathrm{RS}=y)=0.95 \\
& P(\mathrm{FE}=y \mid \mathrm{FL}=n, \mathrm{RS}=y)=0.80 \\
& P(\mathrm{FE}=y \mid \mathrm{FL}=y, \mathrm{RS}=n)=0.88 \\
& P(\mathrm{FE}=y \mid \mathrm{FL}=n, \mathrm{RS}=n)=0.001
\end{aligned}
\]


\section*{Reasoning: evidence propagation}
- Nothing known:

- Temperature \(>37.5^{\circ} \mathrm{C}\) :


\section*{Reasoning: evidence propagation}
- Temperature \(>37.5^{\circ} \mathrm{C}\) :

- I just returned from China:


\section*{Definition Bayesian network}

A Bayesian network \(\mathcal{B}\) is a pair \(\mathcal{B}=(G, P)\), where:
- (Qualitative part) \(G=(V(G), A(G))\) is an acyclic directed graph, with
- \(V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\), a set of vertices (nodes)
- \(A(G) \subseteq V(G) \times V(G)\) a set of arcs
- (Quantitative part) \(P\left(X_{V(G)}\right)\) is a joint probability distribution, such that
\[
P\left(X_{V(G)}\right)=\prod_{v \in V(G)} P\left(X_{v} \mid X_{\pi(v)}\right)
\]
where \(\pi(v)\) denotes the set of parents of vertex \(v\) in \(G\)

\section*{Markov independence}


\section*{A Bayesian network}


Thus: \(P(\mathrm{FL}, \mathrm{MY}, \mathrm{FE})=P(\mathrm{MY} \mid \mathrm{FL}, \mathrm{FE}) P(\mathrm{FE} \mid \mathrm{FL}) P(\mathrm{FL})\)
Example: \(P(\neg f l, m y, f e)=0.20 \cdot 0.1 \cdot 0.9=0.018\)

\section*{Independence and reasoning}


\section*{Independence and reasoning}

Conclusion: the arc from FEVER to MYALGIA can be removed, and hence only
\[
P(\mathrm{MY} \mid \mathrm{FL})(=P(\mathrm{MY} \mid \mathrm{FL}, \mathrm{FE}))
\]
need be specified


\section*{Independence relation}

Let \(X, Y, Z \subseteq V\) be sets of (random) variables, and let \(P\) be a probability distribution of \(V\) then \(X\) is called conditionally independent of \(Y\) given \(Z\), denoted as
\[
X \Perp_{P} Y \mid Z, \quad \text { iff } \quad P(X \mid Y, Z)=P(X \mid Z)
\]

Note: This relation is completely defined in terms of the probability distribution \(P\), but there is a relationship to graphs, for example:
\[
\left\{X_{2}\right\} \Perp_{P}\left\{X_{3}\right\} \mid\left\{X_{1}\right\}
\]


\section*{How to define an independence relation?}
- List all the instances of \(\Perp\)
- List some of the instances of \(\Perp\) and add axioms from which other instances can be derived
- Define a joint probability distribution \(P\) and look into the numbers to see which instances of the independence relation \(\Perp\) hold (this yields \(\Perp_{P}\) )
- Use a graph to encode \(\Perp\), which yields \(\Perp_{G}\) (so, what type of graph - directed, undirected, chain?)

\section*{Explicit enumeration}

Consider \(V=\{1,2,3,4\}\) and \(\Perp\) :
\begin{tabular}{lll}
\(\{1\} \Perp\{4\} \mid \varnothing\) & \(\{4\} \Perp\{2\} \mid\{1\}\) & \(\{2\} \Perp\{4\} \mid \varnothing\) \\
\(\{4\} \Perp\{3\} \mid\{1\}\) & \(\{3\} \Perp\{4\} \mid \varnothing\) & \(\{4\} \Perp\{2,3\} \mid\{1\}\) \\
\(\{4\} \Perp\{1\} \mid \varnothing\) & \(\{1\} \Perp\{4\} \mid\{2\}\) & \(\{4\} \Perp\{2\} \mid \varnothing\) \\
\(\{3\} \Perp\{4\} \mid\{2\}\) & \(\{4\} \Perp\{3\} \mid \varnothing\) & \(\{1,3\} \Perp\{4\} \mid\{2\}\) \\
\(\{1,2\} \Perp\{4\} \mid \varnothing\) & \(\{4\} \Perp\{1\} \mid\{2\}\) & \(\{1,3\} \Perp\{4\} \mid \varnothing\) \\
\(\{4\} \Perp\{3\} \mid\{2\}\) & \(\{2,3\} \Perp\{4\} \mid \varnothing\) & \(\{4\} \Perp\{1,3\} \mid\{2\}\) \\
\(\{4\} \Perp\{1,2\} \mid \varnothing\) & \(\{1\} \Perp\{4\} \mid\{3\}\) & \(\{4\} \Perp\{1,3\} \mid \varnothing\) \\
\(\{2\} \Perp\{4\} \mid\{3\}\) & \(\{4\} \Perp\{2,3\} \mid \varnothing\) & \(\{1,2\} \Perp\{4\} \mid\{3\}\) \\
\(\{1,2,3\} \Perp\{4\} \mid \varnothing\) & \(\{1\} \Perp\{2\} \mid\{4\}\) & \(\{4\} \Perp\{1,2,3\} \mid \varnothing\) \\
\(\{2\} \Perp\{1\} \mid\{4\}\) & \(\{1\} \Perp\{2\} \mid \varnothing\) & \(\{3\} \Perp\{4\} \mid\{1,2\}\) \\
\(\{2\} \Perp\{1\} \mid \varnothing\) & \(\{4\} \Perp\{3\} \mid\{1,2\}\) & \(\{1,4\} \Perp\{2\} \mid \varnothing\) \\
\(\{2\} \Perp\{4\} \mid\{1,3\}\) & \(\{2,4\} \Perp\{1\} \mid \varnothing\) & \(\{4\} \Perp\{2\} \mid\{1,3\}\) \\
\(\{2\} \Perp\{1,4\} \mid \varnothing\) & \(\{1\} \Perp\{4\} \mid\{2,3\}\) & \(\{1\} \Perp\{2,4\} \mid \varnothing\) \\
\(\{4\} \Perp\{1\} \mid\{2,3\}\) & \(\{2\} \Perp\{4\} \mid\{1\}\) & \(\{4\} \Perp\{1,2\} \mid\{3\}\) \\
\(\{3\} \Perp\{4\} \mid\{1\}\) & \(\{4\} \Perp\{1\} \mid\{3\}\) & \(\{2,3\} \Perp\{4\} \mid\{1\}\) \\
\(\{4\} \Perp\{2\} \mid\{3\}\) & &
\end{tabular}

\section*{As an undirected graph}


\section*{Basic idea:}
- Each variable \(V\) is represented as a vertex in an undirected graph \(G=(V(G), E(G))\), with set of vertices \(V(G)\) and set of edges \(E(G)\)
- the independence relation \(\Perp_{G}\) is encoded as the absence of edges; a missing edge between vertices \(u\) and \(v\) indicates that random variables \(X_{u}\) and \(X_{v}\) are (conditionally) independent \(=(u-)\) separation

\section*{Example}

\section*{Consider the following undirected graph \(G\) :}

- \(\{1\} \Perp_{G}\{3,6\} \mid\{2\}\)
- \(\{4\} \Perp_{G}\{6\} \mid\{2,5\}\)
- \(\{4\} \Perp_{G}\{6\} \mid\{1,2,3,5\}\)
- \(\{1\} \not \Perp_{G}\{5\} \mid\{4\}\), as the path \(1-2-5\) does not contain 4
- \(\{1,5,6\} \Perp_{G}\{7\} \mid \varnothing\)

\section*{D-map and I-map for \(\Perp_{P}\)}

Let \(P\) be probability distribution of \(X\). Let \(G=(V(G), E(G))\) be an undirected graph, then for each \(U, W, Z \subseteq V(G)\) :
- \(G\) is called an undirected dependence map, D-map for short, if
\[
X_{U} \Perp_{P} X_{W}\left|X_{Z} \Rightarrow U \Perp_{G} W\right| Z
\]
- \(G\) is called an undirected independence map, I-map for short, if
\[
U \Perp_{G} W\left|Z \Rightarrow X_{U} \Perp X_{W}\right| X_{Z}
\]
- \(G\) is called an undirected perfect map, or P-map for short, if \(G\) is both a D-map and an I-map, or, equivalently
\[
X_{U} \Perp_{P} X_{W}\left|X_{Z} \Longleftrightarrow U \Perp_{G} W\right| Z
\]

\section*{Examples D-maps}

Let \(V=\{1,2,3,4\}\) be a set and \(X_{V}\) the corresponding set of random variables, and consider the independence relation \(\Perp_{P}\), defined by
\[
\begin{aligned}
& \left\{X_{1}\right\} \Perp_{P}\left\{X_{4}\right\} \mid\left\{X_{2}, X_{3}\right\} \\
& \left\{X_{2}\right\} \Perp_{P}\left\{X_{3}\right\} \mid\left\{X_{1}, X_{4}\right\}
\end{aligned}
\]

The following undirected graphs are examples of D-maps:


(4)


\section*{Examples of I-maps}

Let \(V=\{1,2,3,4\}\) be a set with random variables \(X_{V}\), and consider the independence relation \(\Perp_{P}\) :
\[
\begin{aligned}
& \left\{X_{1}\right\} \Perp_{P}\left\{X_{4}\right\} \mid\left\{X_{2}, X_{3}\right\} \\
& \left\{X_{2}\right\} \Perp_{P}\left\{X_{3}\right\} \mid\left\{X_{1}, X_{4}\right\}
\end{aligned}
\]

The following undirected graphs are examples of I-maps:


(So, what is the P-map?)

\section*{Markov network}

A pair \(\mathcal{M}=(G, P)\), where
- \(G=(V(G), E(G))\) is an undirected graph with set of vertices \(V(G)\) and set of edges \(E(G)\),
- \(P\) is a joint probability distribution of \(X_{V(G)}\), and
- \(G\) is an I-map of \(P\)
is said to be a Markov network or Markov random field
Example \(\mathcal{M}=(G, \phi)=(G, P)\) :


Potential:
\(\phi\left(X_{1}, X_{2}, X_{3}\right)=\psi\left(X_{1}, X_{2}\right) \tau\left(X_{2}, X_{3}\right)\),
or joint probability distribution:
\(P\left(X_{1}, X_{2}, X_{3}\right)=\frac{P\left(X_{1}, X_{2}\right) P\left(X_{2}, X_{3}\right)}{P\left(X_{2}\right)}\)

\section*{Expressiveness: directed vs undirected}

Directed graphs are more subtle when it comes to expressing independence information than undirected graphs


VS


\section*{d-Separation: 3 situations}

A chain \(k\) (= path in undirected underlying graph) in an acyclic directed graph \(G=(V(G), A(G))\) can be blocked:

Diverging


2 blocks (d-separates) 1 and \(3:\{1\} \Perp\{3\} \mid\{2\}\)


2 blocks (d-separates) 1 and 3: \(\{1\} \Perp\{3\} \mid\{2\}\)
Converging


2 d-connects 1 and 3: \(\{1\} \not \Perp\{3\} \mid\{2\}\)
(same holds for successors of 2); note \(\{1\} \Perp\{3\} \mid \varnothing\)

\section*{Example blockage}

- The chain \(4,2,5\) from 4 to 5 is blocked by \(\{2\}\)
- The chain \(1,2,5,6\) from 1 to 6 is blocked by \(\{5\}\), and also by \(\{2\}\) and \(\{2,5\}\)
- The chain \(3,4,6,5\) from 3 to 5 is blocked by \(\{4\}\) and \(\{4,6\}\), but not by \(\{6\}\)

\section*{Examples directed I-maps}

Consider the following independence relation \(\Perp_{P}\) :
\[
\begin{array}{rll}
\left\{X_{1}\right\} & \Perp_{P} & \left\{X_{2}\right\} \mid \varnothing \\
\left\{X_{1}, X_{2}\right\} & \Perp_{P} & \left\{X_{4}\right\} \mid\left\{X_{3}\right\}
\end{array}
\]
and the following directed I-maps of \(P\) :


\section*{Find the independences}


\section*{Examples:}

\section*{- FLU \(\Perp\) VisitToChina \(\mid \varnothing\)}
- FLU \(\Perp\) SARS \(\mid \varnothing\)

\section*{Relationship directed and undirected graphs}
- Directed graphs contain independences that become dependences after conditioning (instantiating variables)
- Undirected graphs do not have this property
- However, undirected subgraphs can be generated, by making potentially dependent parents of a child dependent

Example:


\section*{Moralisation}

Let \(G\) be an acyclic directed graph; its associated undirected moral graph \(G^{m}\) can be constructed by moralisation:
1. add lines to all non-connected vertices, which have a common child, or descendant of a common child, and
2. replace each arc with a line in the resulting graph


\section*{Moralisation}

Let \(G\) be an acyclic directed graph; its associated undirected moral graph \(G^{m}\) can be constructed by moralisation:
1. add lines to all non-connected vertices, which have a common child, or descendant of a common child, and
2. replace each arc with a line in the resulting graph


\section*{Comments}
- Resulting undirected (moral) graph is an I-map of the associated probability distribution
- However, it contains too many dependences!

Example: \(\{1\} \Perp_{G}^{d}\{3\} \mid \varnothing\), whereas \(\{1\} \not \Perp_{G^{m}}\{3\} \mid \varnothing\)

- Conclusion: make moralisation 'dynamic' (i.e. a function of the set on which we condition)
- For this the notion of 'ancestral set' is required

\section*{Ancestral set}

Let \(G=(V(G), A(G))\) be an acyclic directed graph, then if for \(W \subseteq V(G)\) it holds that \(\pi(v) \subseteq W\) for all \(v \in W\), then \(W\) is called an ancestral set of \(W\). An \((W)\) denotes the smallest ancestral set containing \(W\)


\section*{'Dynamic' moralisation}

Let \(P\) be a joint probability distribution of a Bayesian network \(\mathcal{B}=(G, P)\), then
\[
X_{U} \Perp_{P} X_{V} \mid X_{W}
\]
holds iff \(U\) and \(V\) are (u-)separated by \(W\) in the moral induced subgraph \(G^{m}\) of \(G\) with vertices \(\operatorname{An}(U \cup V \cup W)\)

Example:
\[
X_{1} \not \Perp_{P} X_{3} \mid X_{2} ; \quad \operatorname{An}(\{1,2,3\})=\{1,2,3\}
\]


Original


\section*{'Dynamic' moralisation}

Let \(P\) be a joint probability distribution of a Bayesian network \(\mathcal{B}=(G, P)\), then
\[
X_{U} \Perp_{P} X_{V} \mid X_{W}
\]
holds iff \(U\) and \(V\) are (u-)separated by \(W\) in the moral induced subgraph \(G^{m}\) of \(G\) with vertices \(\operatorname{An}(U \cup V \cup W)\)

Example:
\[
X_{1} \Perp_{P} X_{3} \mid \varnothing ; \quad \operatorname{An}(\{1,3\})=\{1,3\}
\]


Original


\section*{Example (1)}
\(\{10\} \not \perp{\underset{G}{d}}_{d}^{d}\{13\} \mid\{7,8\}\)


\section*{Example (1)}
\[
\{10\} \not \operatorname{ly}_{G_{\mathrm{An}(\{10,7,8,13\})}^{m}}\{13\} \mid\{7,8\}
\]


\section*{Example (2)}

\section*{\(\{10\} \Perp_{G}^{d}\{13\} \mid \varnothing\)}


\section*{Example (2)}
\[
\{10\} \wedge_{G_{\operatorname{Anf(10,33)}}^{m}}\{13\} \mid \varnothing
\]



\section*{Conclusions}
- Conditional independence is defined as a logic that supports:
- symbolic reasoning about dependence and independence information
- makes it possible to abstract away from the numerical detail of probability distributions
- the process of assessing probability distributions
- Looking at graphs makes it easier to find probability distributions that are equivalent (important in learning)
- Conditional independence is currently being extended towards causal independence (a logic of causality) = maximal ancestral graphs```

