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Have you got Entero Hemorrhagic E. coli?

P (e, g, d) = 0.009215

P (e, ḡ, d) = 0.000485

P (e, g, d̄) = 0.000285

P (e, ḡ, d̄) = 1.5 · 10−5

P (ē, g, d) = 9.9 · 10−6

P (ē, ḡ, d) = 0.0098901

P (ē, g, d̄) = 0.0009801

P (ē, ḡ, d̄) = 0.97912

E: EHEC; G: visited Northern
Germany; D: diarrhea

Enterohemorrhagic E. coli and
visited Northern Germany?

Probability of EHEC given visit
to Northern Germany?
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Have you got Entero Hemorrhagic E. coli?

P (e, g, d) = 0.009215

P (e, ḡ, d) = 0.000485

P (e, g, d̄) = 0.000285

P (e, ḡ, d̄) = 1.5 · 10−5

P (ē, g, d) = 9.9 · 10−6

P (ē, ḡ, d) = 0.0098901

P (ē, g, d̄) = 0.0009801

P (ē, ḡ, d̄) = 0.97912

E: EHEC; G: visited Northern
Germany; D: diarrhea

Enterohemorrhagic E. coli and
visited Northern Germany?
0.0095

Probability of EHEC given visit
to Northern Germany? 0.906
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Probabilistic reasoning

Joint probability distribution P (X) = P (X1, X2, . . . , Xn)

marginalisation:

P (Y ) =
∑

Z

P (Y, Z), with X = Y ∪ Z

conditional probabilities:

P (Y | Z) =
P (Y, Z)

P (Z)

Bayes’ theorem:

P (Y | Z) =
P (Z | Y )P (Y )

P (Z)
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Probabilistic reasoning (cont)

Examples:
P (e, g) = P (e, g, d) + P (e, g, d̄) = 0.009215 + 0.000285 = 0.0095
P (e | g) = P (e, g)/P (g) = 0.0095/0.01049 ≈ 0.906

Note that:

Mainly interested in conditional probability distributions:

P (Z | E) = P E(Z)

for (possibly empty) evidence E (instantiated variables)

Tendency to focus on conditional probability
distributions of single variables

Many efficient reasoning algorithms exist
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Bayesian networks

flu (FL)
(yes/no)

SARS (RS)
(yes/no)

fever (FE)
(yes/no)

dyspnoea (DY)
(yes/no)

TEMP
(≤ 37.5/> 37.5)

VisitToChina (CH)
(yes/no)

P (CH, FL, RS, DY, FE, TEMP)

P (FL = y) = 0.1

P (CH = y) = 0.1

P (RS = y | CH = y) = 0.3

P (RS = y | CH = n) = 0.01

P (FE = y | FL = y, RS = y) = 0.95

P (FE = y | FL = n, RS = y) = 0.80

P (FE = y | FL = y, RS = n) = 0.88

P (FE = y | FL = n, RS = n) = 0.001

P (DY = y | RS = y) = 0.9

P (DY = y | RS = n) = 0.05

P (TEMP ≤ 37.5 | FE = y) = 0.1

P (TEMP ≤ 37.5 | FE = n) = 0.99
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Reasoning: evidence propagation

Nothing known:
NO

YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

Temperature >37.5 ◦C:
NO

YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP
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Reasoning: evidence propagation

Temperature >37.5 ◦C:
NO

YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

I just returned from China:
NO

YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP
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Definition Bayesian network

A Bayesian network B is a pair B = (G,P ), where:

(Qualitative part) G = (V (G), A(G)) is an acyclic
directed graph, with

V (G) = {v1, v2, . . . , vn}, a set of vertices (nodes)
A(G) ⊆ V (G) × V (G) a set of arcs

(Quantitative part) P (XV (G)) is a joint probability
distribution, such that

P (XV (G)) =
∏

v∈V (G)

P (Xv | Xπ(v))

where π(v) denotes the set of parents of vertex v in G
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Markov independence

SIKS Basic Course: Learning and Reasoning – p. 9/34



A Bayesian network

Flu (FL)
(yes/no)

Fever (FE)
(yes/no)

Myalgia (MY)
(yes/no)

P (FL, MY, FE)

P (FL = y) = 0.1

P (FE = y|FL = y) = 0.95

P (FE = y|FL = n) = 0.1

P (MY = y|FL = y, FE = y) = 0.96

P (MY = y|FL = y, FE = n) = 0.96

P (MY = y|FL = n, FE = y) = 0.20

P (MY = y|FL = n, FE = n) = 0.20

Thus: P (FL,MY, FE) = P (MY|FL, FE)P (FE|FL)P (FL)

Example: P (¬fl,my, fe) = 0.20 · 0.1 · 0.9 = 0.018
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Independence and reasoning

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA
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Independence and reasoning

Conclusion: the arc from FEVER to MYALGIA can be
removed, and hence only

P (MY | FL) (= P (MY | FL, FE))

need be specified

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA

NO
YES

FEVER

NO
YES

FLU
NO

YES

MYALGIA
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Independence relation

Let X,Y, Z ⊆ V be sets of (random) variables, and let P be
a probability distribution of V then X is called conditionally
independent of Y given Z, denoted as

X ⊥⊥P Y | Z, iff P (X | Y, Z) = P (X | Z)

Note: This relation is completely defined in terms of the
probability distribution P , but there is a relationship to
graphs, for example:

{X2} ⊥⊥P {X3} | {X1}
X1

y/n
X2

y/n

X3

y/n
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How to define an independence relation?

List all the instances of ⊥⊥

List some of the instances of ⊥⊥ and add axioms from
which other instances can be derived

Define a joint probability distribution P and look into the
numbers to see which instances of the independence
relation ⊥⊥ hold (this yields ⊥⊥P )

Use a graph to encode ⊥⊥, which yields ⊥⊥G (so, what
type of graph — directed, undirected, chain?)
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Explicit enumeration

Consider V = {1, 2, 3, 4} and ⊥⊥:
{1} ⊥⊥ {4} | ∅ {4} ⊥⊥ {2} | {1} {2} ⊥⊥ {4} | ∅

{4} ⊥⊥ {3} | {1} {3} ⊥⊥ {4} | ∅ {4} ⊥⊥ {2, 3} | {1}

{4} ⊥⊥ {1} | ∅ {1} ⊥⊥ {4} | {2} {4} ⊥⊥ {2} | ∅

{3} ⊥⊥ {4} | {2} {4} ⊥⊥ {3} | ∅ {1, 3} ⊥⊥ {4} | {2}

{1, 2} ⊥⊥ {4} | ∅ {4} ⊥⊥ {1} | {2} {1, 3} ⊥⊥ {4} | ∅

{4} ⊥⊥ {3} | {2} {2, 3} ⊥⊥ {4} | ∅ {4} ⊥⊥ {1, 3} | {2}

{4} ⊥⊥ {1, 2} | ∅ {1} ⊥⊥ {4} | {3} {4} ⊥⊥ {1, 3} | ∅

{2} ⊥⊥ {4} | {3} {4} ⊥⊥ {2, 3} | ∅ {1, 2} ⊥⊥ {4} | {3}

{1, 2, 3} ⊥⊥ {4} | ∅ {1} ⊥⊥ {2} | {4} {4} ⊥⊥ {1, 2, 3} | ∅

{2} ⊥⊥ {1} | {4} {1} ⊥⊥ {2} | ∅ {3} ⊥⊥ {4} | {1, 2}

{2} ⊥⊥ {1} | ∅ {4} ⊥⊥ {3} | {1, 2} {1, 4} ⊥⊥ {2} | ∅

{2} ⊥⊥ {4} | {1, 3} {2, 4} ⊥⊥ {1} | ∅ {4} ⊥⊥ {2} | {1, 3}

{2} ⊥⊥ {1, 4} | ∅ {1} ⊥⊥ {4} | {2, 3} {1} ⊥⊥ {2, 4} | ∅

{4} ⊥⊥ {1} | {2, 3} {2} ⊥⊥ {4} | {1} {4} ⊥⊥ {1, 2} | {3}

{3} ⊥⊥ {4} | {1} {4} ⊥⊥ {1} | {3} {2, 3} ⊥⊥ {4} | {1}

{4} ⊥⊥ {2} | {3}
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As an undirected graph

Basic idea:

Each variable V is represented as a vertex in an
undirected graph G = (V (G), E(G)), with set of vertices
V (G) and set of edges E(G)

the independence relation ⊥⊥G is encoded as the
absence of edges; a missing edge between vertices u
and v indicates that random variables Xu and Xv are
(conditionally) independent = (u-)separation
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Example

Consider the following undirected graph G:

2 5

6

4

3

1 7

{1} ⊥⊥G {3, 6} | {2}

{4} ⊥⊥G {6} | {2, 5}

{4} ⊥⊥G {6} | {1, 2, 3, 5}

{1} 6⊥⊥G {5} | {4}, as the path 1 − 2 − 5 does not contain
4

{1, 5, 6} ⊥⊥G {7} | ∅
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D-map and I-map for ⊥⊥P

Let P be probability distribution of X. Let G = (V (G), E(G))
be an undirected graph, then for each U,W,Z ⊆ V (G):

G is called an undirected dependence map, D-map for
short, if

XU ⊥⊥P XW | XZ ⇒ U ⊥⊥G W | Z

G is called an undirected independence map, I-map for
short, if

U ⊥⊥G W | Z ⇒ XU ⊥⊥ XW | XZ

G is called an undirected perfect map, or P-map for
short, if G is both a D-map and an I-map, or,
equivalently

XU ⊥⊥P XW | XZ ⇐⇒ U ⊥⊥G W | Z
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Examples D-maps

Let V = {1, 2, 3, 4} be a set and XV the corresponding set of
random variables, and consider the independence relation
⊥⊥P , defined by

{X1} ⊥⊥P {X4} | {X2, X3}

{X2} ⊥⊥P {X3} | {X1, X4}

The following undirected graphs are examples of D-maps:

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1
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Examples of I-maps

Let V = {1, 2, 3, 4} be a set with random variables XV , and
consider the independence relation ⊥⊥P :

{X1} ⊥⊥P {X4} | {X2, X3}

{X2} ⊥⊥P {X3} | {X1, X4}

The following undirected graphs are examples of I-maps:

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

(So, what is the P-map?)
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Markov network

A pair M = (G,P ), where

G = (V (G), E(G)) is an undirected graph with set of
vertices V (G) and set of edges E(G),

P is a joint probability distribution of XV (G), and

G is an I-map of P

is said to be a Markov network or Markov random field

Example M = (G,φ) = (G,P ):

1 2

3

Potential:
φ(X1, X2, X3) = ψ(X1, X2)τ(X2, X3),

or joint probability distribution:
P (X1, X2, X3) = P (X1,X2)P (X2,X3)

P (X2)
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Expressiveness: directed vs undirected

Directed graphs are more subtle when it comes to
expressing independence information than undirected
graphs

2 3

1

2 3

1

2 3

1

2 3

1

vs
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d-Separation: 3 situations

A chain k (= path in undirected underlying graph) in an
acyclic directed graph G = (V (G), A(G)) can be blocked:

1 2 3

Diverging

2 blocks (d-separates) 1 and 3: {1} ⊥⊥ {3} | {2}

1 2 3

Serial

2 blocks (d-separates) 1 and 3: {1} ⊥⊥ {3} | {2}

1 2 3

Converging

2 d-connects 1 and 3: {1} 6⊥⊥ {3} | {2}

(same holds for successors of 2); note {1} ⊥⊥ {3} | ∅
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Example blockage

4 5

6

2

1

7

3

The chain 4, 2, 5 from 4 to 5 is blocked by {2}

The chain 1, 2, 5, 6 from 1 to 6 is blocked by {5}, and also
by {2} and {2, 5}

The chain 3, 4, 6, 5 from 3 to 5 is blocked by {4} and
{4, 6}, but not by {6}
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Examples directed I-maps

Consider the following independence relation ⊥⊥P :

{X1} ⊥⊥P {X2} | ∅

{X1, X2} ⊥⊥P {X4} | {X3}

and the following directed I-maps of P :

1 2

3

4

1 2

3

4
1 2

3

4

1 2

3

4

SIKS Basic Course: Learning and Reasoning – p. 25/34



Find the independences

NO
YES

FLU

no
yes

FEVER

no
yes

SARS

no
yes

VisitToChina

no
yes

DYSPNOEA

<=37.5
>37.5

TEMP

Examples:

FLU ⊥⊥ VisitToChina | ∅

FLU ⊥⊥ SARS | ∅
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Relationship directed and undirected graphs

Directed graphs contain independences that become
dependences after conditioning (instantiating variables)

Undirected graphs do not have this property

However, undirected subgraphs can be generated, by
making potentially dependent parents of a child
dependent

Example:

1 3

2
Original

1 3

2
Moral Graph
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Moralisation

Let G be an acyclic directed graph; its associated
undirected moral graph Gm can be constructed by
moralisation:

1. add lines to all non-connected vertices, which have a
common child, or descendant of a common child, and

2. replace each arc with a line in the resulting graph

3 4 5

6 7 8

9

10

11

12

13
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Moralisation

Let G be an acyclic directed graph; its associated
undirected moral graph Gm can be constructed by
moralisation:

1. add lines to all non-connected vertices, which have a
common child, or descendant of a common child, and

2. replace each arc with a line in the resulting graph

3 4 5

6 7 8

9

10

11

12

13
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Comments

Resulting undirected (moral) graph is an I-map of the
associated probability distribution

However, it contains too many dependences!

Example: {1} ⊥⊥d
G {3} | ∅, whereas {1} 6⊥⊥Gm {3} | ∅

1 3

2
Original

1 3

2
Moral Graph

Conclusion: make moralisation ‘dynamic’ (i.e. a function
of the set on which we condition)

For this the notion of ‘ancestral set’ is required
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Ancestral set

Let G = (V (G), A(G)) be an acyclic directed graph, then if
for W ⊆ V (G) it holds that π(v) ⊆ W for all v ∈W , then W is
called an ancestral set of W . An(W ) denotes the smallest
ancestral set containing W

3 4 5

6 7 8

9

10

11

12

13

An({6}) = {3, 4, 6, 9}
An({10, 7}) = {7, 6, 3, 4, 9, 10}
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‘Dynamic’ moralisation

Let P be a joint probability distribution of a Bayesian
network B = (G,P ), then

XU ⊥⊥P XV | XW

holds iff U and V are (u-)separated by W in the moral
induced subgraph Gm of G with vertices An(U ∪ V ∪W )

Example:

1 3

2
Original

1 3

2
Moral Graph

X1 6⊥⊥P X3 | X2; An({1, 2, 3}) = {1, 2, 3}
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‘Dynamic’ moralisation

Let P be a joint probability distribution of a Bayesian
network B = (G,P ), then

XU ⊥⊥P XV | XW

holds iff U and V are (u-)separated by W in the moral
induced subgraph Gm of G with vertices An(U ∪ V ∪W )

Example:

1 3

2
Original

1 3
Moral Graph

X1 ⊥⊥P X3 | ∅; An({1, 3}) = {1, 3}
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Example (1)

{10} 6⊥⊥d
G {13} | {7, 8}

3 4 5

6 7 8

9

10

11

12

13
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Example (1)

{10} 6⊥⊥Gm

An({10,7,8,13})
{13} | {7, 8}

3 4 5

6 7 8

9

10

11

12

13
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Example (2)

{10} ⊥⊥d
G {13} | ∅

3 4 5

6 7 8

9

10

11

12

13
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Example (2)

{10} 6⊥⊥Gm

An({10,13})
{13} | ∅

9

10

11

12

13
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Conclusions

Conditional independence is defined as a logic that
supports:

symbolic reasoning about dependence and
independence information
makes it possible to abstract away from the
numerical detail of probability distributions
the process of assessing probability distributions

Looking at graphs makes it easier to find probability
distributions that are equivalent (important in learning)

Conditional independence is currently being extended
towards causal independence (a logic of causality) =
maximal ancestral graphs
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