Learning Classifiers

• Instances x_i in dataset D mapped to feature space:

decision boundary

Classes associated with instances: X, ○

Classification:

$$f(\mathbf{x}_i) = c \in \{\mathbf{X}, \mathbf{O}\}$$

- with $x_{i,j} \in \{\top, \bot\}$, and f classifier
- dataset D is a multiset
- Objective: learn f (supervised)

Performance

Performance measures:

• Success rate σ :

$$\sigma = \frac{\text{TP} + \text{TN}}{N}$$

- Error rate ϵ : $\epsilon = 1 \sigma$
- TPR (= recall ρ) True Positive Rate

$$TPR = TP/(TP + FN)$$

- FNR False Negative Rate: FNR = 1 TPR
- FPR False Positive Rate:

$$FPR = FP/(FP + TN)$$

- TNR True Negative Rate: TNR = 1 FPR
- Precision π :

$$\pi = TP/(TP + FP)$$

• *F*-measure:

$$F = \frac{2 \cdot \rho \cdot \pi}{\rho + \pi} = \frac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}$$

Performance

Performance measures:

• TP: True Positive

• TN: True Negative

• FP: False Positive

• FN: False Negative

Note: if N = |D|, then N = TP + TN + FP + FN

Confusion matrix:

		Predicted class		
		yes	no	
Actual			false negative	
class	no	false positive	true negative	

Example: choosing contact lenses

	Spectacle		Tear production	
Age	prescription	Ast	rate	Lens
young	myope	no	reduced	none
young	myope	no	normal	soft
young	myope	yes	reduced	none
young	myope	yes	normal	hard
young	hypermetrope	no	reduced	none
young	hypermetrope	no	normal	soft
young	hypermetrope	yes	reduced	none
young	hypermetrope	yes	normal	hard
pre-presbyopic	myope	no	reduced	none
pre-presbyopic	myope	no	normal	soft
pre-presbyopic	myope	yes	reduced	none
pre-presbyopic	myope	yes	normal	hard
pre-presbyopic	hypermetrope	no	reduced	none
pre-presbyopic	hypermetrope	no	normal	soft
pre-presbyopic	hypermetrope	yes	reduced	none
pre-presbyopic	hypermetrope	yes	normal	none
presbyopic	myope	no	reduced	none
presbyopic	myope	no	normal	none
presbyopic	myope	yes	reduced	none
presbyopic	myope	yes	normal	hard
presbyopic	hypermetrope	no	reduced	none
presbyopic	hypermetrope	no	normal	soft
presbyopic	hypermetrope	yes	reduced	none
presbyopic	hypermetrope	yes	normal	none

Rule representation and reasoning

Rule representation:

• Logical implication (= rules)

(LHS = left-hand side = antecedent; RHS = right-hand side = consequent)

• Literals in LHS and RHS are of the form:

```
Variable • value (or Attribute • value)
```

```
where 0 \in \{<, \le, =, >, \ge\}
```

Rule-based reasoning:

```
\mathcal{R} \cup F \models C
```

where

- \mathcal{R} is a set of rules $r \in \mathcal{R}$ (rule-base)
- ullet F is a set of facts of the form

```
Variable = value
```

 C is a set of conclusions of the same form as facts

OneR

- Construct a single-condition rule for each variable-value pair
- Select the rules defined for a single variable (in the condition) which perform best

```
 \begin{cases} & \mathcal{R} \leftarrow \varnothing \\ & \textbf{for each } \text{var} \in \text{Vars do} \\ & \textbf{for each } \text{value} \in \text{Domain(var) do} \\ & \text{classvar.most-freq-value} \leftarrow \\ & \text{MostFreq(var.value, classvar)} \\ & \text{rule} \leftarrow \text{MakeRule(var.value,} \\ & \text{classvar.most-freq-value)} \\ & \mathcal{R} \leftarrow \mathcal{R} \cup \{\text{rule}\} \\ & \textbf{for each } r \in \mathcal{R} \ \textbf{do} \\ & \text{CalculateErrorRate}(r) \\ & \mathcal{R} \leftarrow \text{SelectBestRulesForSingleVar}(\mathcal{R}) \\ \} \\ \end{cases}
```

ZeroR

Basic ideas:

- Construct rule that predicts the majority class
- Used as **baseline** performance

Example

Contact lenses recommendation rule:

```
\rightarrow Lens = none
```

- Total number of instances: 24
- Correctly classified instances: 15 (62.5%)
- Incorrectly classified instances: 9 (37.5%)

```
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure
                              0
           0
                     0
                                        0
                                                soft
  0
           0
                     0
                              0
                                        0
                                                hard
                     0.625
                                        0.769
           1
                              1
                                                none
```

```
=== Confusion Matrix ===
a b c <-- classified as
0 0 5 | a = soft
0 0 4 | b = hard
0 0 15 | c = none
```

OneR: Example

Rules for contact-lenses recommendation:

```
Tears = reduced \rightarrow Lens = none
Tears = normal \rightarrow Lens = soft
```

- 17/24 instances correct
- Correctly classified instances: 17 (70.83%)
- Incorrectly classified instances: 7 (29.16%)

```
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure
                                               Class
         0.368
                     0.417
                                        0.588
                              1
                                                soft
 1
 0
          0
                     0
                              0
                                        0
                                                hard
 0.8
                                        0.889
         0
                              0.8
                                                none
```

```
=== Confusion Matrix ===
a b c <-- classified as
5 0 0 | a = soft
4 0 0 | b = hard
3 0 12 | c = none
```

Generalisation: separate-and-cover

Covering of classes:

- Rule-set generation for each class value separately
- Peeling: box compression instances are peeled off (fall outside the box) one face at the time
- PRISM algorithm

Example: choosing contact lenses

Recommended contact lenses: none, soft, hard General principles:

- 1. Choose class value, e.g. hard
- 2. Construct rule Condition \rightarrow Lens = hard
- 3. Determine accuracy $\alpha = p/t$ for all possible conditions, where
 - t: total number of instances covered by the rule
 - p: covered instances with the right (positive) class value

Condition	$\alpha = p/t$
Age = youg	2/8
Age = pre-presbyopic	1/8
Age = presbyopic	1/8
Spectacles = myope	3/12
Spectacles = hypermetrope	3/12
Astigmatism = no	0/12
Astigmatism = yes	4/12
Tears = reduced	0/12
Tears = normal	4/12

4. Select best condition (4/12)

Separate-and-cover algorithm

```
SC(classvar, D)
    \mathcal{R} \leftarrow \emptyset
   for each val ∈ Domain(classvar) do
    E \leftarrow D
    while {\it E} contains instances with val do
       rule \leftarrow MakeRule(rhs(classvar.val), lhs(\varnothing))
       IR \leftarrow \emptyset
       until rule is perfect do
         for each var ∈ Vars, ∀rule ∈ IR : var ∉ rule do
          for each value ∈ Domain(var) do
             inter-rule ← Add(rule, lhs(var.value))
             IR \leftarrow IR \cup \{inter-rule\}
         rule ← SelectRule(IR)
       \mathcal{R} \leftarrow \mathcal{R} \cup \{\text{rule}\}
       RC \leftarrow InstancesCoveredBy(rule, E)
       E \leftarrow E \backslash \mathsf{RC}
SelectRule: based on accuracy \alpha = p/t; if \alpha =
\alpha', for two rules, select the one with highest p
```

SelectRule example

Rule:

• RHS: Lens = hard

• LHS: Astigmatism = yes, with $\alpha = 4/12$

Not very accurate; **expanded rule:** (Astigmatism = $yes \land New$ -condition)

 \rightarrow Lens = hard

Age	Spectacle prescription	Ast	Tear product rate	Lens
young	myope	yes	reduced	none
young	myope	yes	normal	hard
young	hypermetrope	yes	reduced	none
young	hypermetrope	yes	normal	hard
pre-presbyopic	myope	yes	reduced	none
pre-presbyopic	myope	yes	normal	hard
pre-presbyopic	hypermetrope	yes	reduced	none
pre-presbyopic	hypermetrope	yes	normal	none
presbyopic	myope	yes	reduced	none
presbyopic	myope	yes	normal	hard
presbyopic	hypermetrope	yes	reduced	none
presbyopic	hypermetrope	yes	normal	none

- Age = young (2/4); Age = pre-presbyopic (1/4); Age = presbyopic (1/4)
- Spectacles = myope (3/6); Spectacles = hypermetrope (1/6)
- Tears = reduced (0/6); Tears = normal (4/6)

SelectRule example (continued)

Rule:

```
(Astigmatism = yes \land Tears = normal)

\rightarrow Lens = hard
```

Expanded rule:

 $(Astigmatism = yes \land Tears = normal \land New-condition) \rightarrow Lens = hard$

Age	Spectacle prescription	Ast	Tear product rate	Lens
young	myope	yes	normal	hard
young	hypermetrope	yes	normal	hard
pre-presbyopic	myope	yes	normal	hard
pre-presbyopic	hypermetrope	yes	normal	none
presbyopic	myope	yes	normal	hard
presbyopic	hypermetrope	yes	normal	none

- Age = young (2/2); Age = pre-presbyopic (1/2);
 Age = presbyopic (1/2)
- Spectacles = myope (3/3); Spectacles = hypermetrope (1/3)
 - \Rightarrow (Astigmatism = $yes \land Tears = normal \land Spectacles = <math>myope$) $\rightarrow Lens = hard$

SC example (continued)

Delete 3 instances from E; **new rule:** New-condition \rightarrow Lens = hard

	Spectagle		Tear	
Age	Spectacle prescription	Ast	production rate	Lens
young	myope	no	reduced	none
young	myope	no	normal	soft
young	myope	yes	reduced	none
young	hypermetrope	no	reduced	none
young	hypermetrope	no	normal	soft
young	hypermetrope	yes	reduced	none
young	hypermetrope	yes	normal	hard
pre-presbyopic	myope	no	reduced	none
pre-presbyopic	myope	no	normal	soft
pre-presbyopic	myope	yes	reduced	none
pre-presbyopic	hypermetrope	no	reduced	none
pre-presbyopic	hypermetrope	no	normal	soft
pre-presbyopic	hypermetrope	yes	reduced	none
pre-presbyopic	hypermetrope	yes	normal	none
presbyopic	myope	no	reduced	none
presbyopic	myope	no	normal	none
presbyopic	myope	yes	reduced	none
presbyopic	hypermetrope	no	reduced	none
presbyopic	hypermetrope	no	normal	soft
presbyopic	hypermetrope	yes	reduced	none
presbyopic	hypermetrope	yes	normal	none

WEKA Results

Rules:

```
If Astigmatism = no and Tears = normal
   and Spectacles = hypermetrope then Lens = soft
If Astigmatism = no and Tears = normal
   and age = young then Lens = soft
If age = pre-presbyopic and Astigmatism = no
   and Tears = normal then Lens = soft
If Astigmatism = yes and Tears = normal
  and Spectacles = myope then Lens = hard
If age = young and Astigmatism = yes
   and Tears = normal then Lens = hard
If Tears = reduced then none
If age = presbyopic and Tears = normal
  and Spectacles = myope
   and Astigmatism = no then Lens = none
If Spectacles = hypermetrope
   and Astigmatism = yes
   and age = pre-presbyopic then Lens = none
If age = presbyopicand Spectacles = hypermetrope
   and Astigmatism = yes then Lens = none
=== Confusion Matrix ===
 a b c \leftarrow classified as
 5 0 0 | a = soft
 0 \quad 4 \quad 0 \quad b = hard
 0 \ 0 \ 15 \ | \ c = none
```

Correctly classified instances: 24 (100%)

Limitations

- Adding one condition at the time is greedy search ('optimal' state may be missed)
- Accuracy $\alpha=p/t$: promotes overfitting: the more 'correct' (higher p compared to t) is, the higher α
- Resulting rules cover all instances perfectly

Example

Consider rule r_1 with accuracy $\alpha_1=1/1$ and rule r_2 with accuracy $\alpha_2=19/20$, then r_1 is considered superior to r_2

Alternative 1: information gain

Alternative 2: probabilistic measure

Information gain

$$I_D(r) = p' \left[\log \frac{p'}{t'} - \log \frac{p}{t} \right]$$

where

- $\alpha = p/t$ is the accuracy *before* adding a condition to r
- $\alpha' = p'/t'$ is the accuracy *after* a condition has been added to r

Example

Consider rule r' with $\alpha'=1/1$ and rule r'' with accuracy $\alpha''=19/20$, both modifications of r with $\alpha=20/200$. Then is r' considered superior to r'' according to accuracy, but

$$I_D(r') = 1[\log(1/1) - \log(20/200)] = 1$$

 $I_D(r'') = 19[\log(19/20) - \log(20/200)] \approx 18.6$

hence r^\prime is inferior to $r^{\prime\prime}$ according to information gain

Information gain *I*:

Emphasis is on large number of positive instances

Comparison accuracy versus information gain

- High coverage cases first, special cases later
- Resulting rules cover all instances perfectly

Accuracy α :

- Takes number of positive instances only into account if ties break
- Special cases first, high coverage cases later
- Resulting rules cover all instances perfectly

Probabilistic measure

p instances concern the class

- N = |D|: # instances in dataset D
- M: # instances in D concerning a class
- t: # instances in D on which rule r succeeds
- p: # positive instances

Hypergeometric distribution:

$$f(k) = \frac{\binom{M}{k} \binom{N-M}{t-k}}{\binom{N}{t}}$$

sampling without replacement: probability that k instances out of t belong to the class

Probabilistic measure

Hypergeometric distribution:

$$f(k) = \frac{\binom{M}{k} \binom{N-M}{t-k}}{\binom{N}{t}}$$

- ullet Rule r selects t instances, of which p are positive
- Probability that a randomly chosen rule r' does as well or better than r:

$$P(r') = \sum_{k=p}^{\min\{t,M\}} f(k) = \sum_{k=p}^{\min\{t,M\}} \frac{\binom{M}{k} \binom{N-M}{t-k}}{\binom{N}{t}}$$

Approximation

$$\begin{split} P(r') &= \sum_{k=p}^{\min\{t,M\}} \frac{\binom{M}{k} \binom{N-M}{t-k}}{\binom{N}{t}} \\ &\approx \sum_{k=p}^{\min\{t,M\}} \binom{t}{k} \left(\frac{M}{N}\right)^k \left(1 - \frac{M}{N}\right)^{t-k} \end{split}$$

i.e. hypergeometric distribution approximated by a binomial distribution

$$= I_{M/N}(p, t - p + 1)$$

where $I_x(\alpha, \beta)$ is the incomplete beta function:

$$I_x(\alpha,\beta) = \frac{1}{\mathsf{B}(\alpha,\beta)} \int_0^x z^{\alpha-1} (1-z)^{\beta-1} \mathsf{d}z$$

where $B(\alpha, \beta)$ is the beta function, defined as

$$\mathsf{B}(\alpha,\beta) = \int_0^1 z^{\alpha-1} (1-z)^{\beta-1} \mathsf{d}z$$

Reduced-error pruning Danger of overfitting to training set can be

reduced by splitting this into:

- a growing set (GS) (2/3 of training set)
- a pruning set (PS) (1/3 of training set)

```
REP(classvar, D)
    \mathcal{R} \leftarrow \varnothing \colon E \leftarrow D
     (\mathsf{GS},\mathsf{PS}) \leftarrow \mathsf{Split}(E)
    while E \neq \emptyset do
       IR \leftarrow \emptyset
        for each val ∈ Domain(classvar) do
           if GS and PS contain a val-instance then
               rule ← BSC(classvar.val, GS)
               while P(\text{rule} \mid PS) > P(\text{rule}^{-} \mid PS) do
                    rule ← rule<sup>-</sup>
               IR \leftarrow IR \cup \{rule\}
        rule \leftarrow SelectRule(IR); \mathcal{R} \leftarrow \mathcal{R} \cup \{\text{rule}\}\
        RC \leftarrow InstancesCoveredBy(rule, E)
        E \leftarrow E \backslash \mathsf{RC}
        (GS, PS) \leftarrow Split(E)
```

BSC is basic separate-and-cover algorithm, and rule is a rule with last condition removed

Divide-and-conquer: decision trees

Learning decision trees:

- R. Quinlan: ID3, C4.5 and C5.0
- L. Breiman: CART (Classification and Regression Trees)

Which variable/attribute is best?

Dataset *D*:

$$D = D_{X=\text{ves}} \cup D_{X=\text{no}}$$

Entropy:

$$H_C(X=x) = -\sum_c P(C=c|X=x) \ln P(C=c|X=x)$$

Expected entropy:

$$E_{H_C}(X) = \sum_{x} P(X = x) H_C(X = x)$$

Information gain (again)

Dataset *D*:

$$D = D_{X=\text{yes}} \cup D_{X=\text{no}}$$

Entropy:

$$H_C(X=x) = -\sum_c P(C=c|X=x) \ln P(C=c|X=x)$$

Expected entropy:

$$E_{H_C}(X) = \sum_{x} P(X = x) H_C(X = x)$$

Without the split of the dataset D on variable X, the entropy is:

$$H_C(\top) = -\sum_c P(C=c) \ln P(C=c)$$

Information gain G_C from X:

$$G_C(X) = H_C(\top) - E_{H_C}(X)$$

Class variable is Lens:

$$P(\text{Lens}) = \begin{cases} 5/24 & \text{if Lens} = soft \\ 4/24 & \text{if Lens} = hard \\ 15/24 & \text{if Lens} = none \end{cases}$$

Example: contact lenses recommendation

$$H(\top) = -\frac{5}{24} \ln \frac{5}{24} - \frac{4}{24} \ln \frac{4}{24} - \frac{15}{24} \ln \frac{15}{24}$$

$$\approx 0.92$$

For variable Ast (Astigmatism):

$$P(\text{Lens}|\text{Ast} = \text{no}) = \begin{cases} 5/12 & \text{if Lens} = soft \\ 0/12 & \text{if Lens} = hard \\ 7/12 & \text{if Lens} = none \end{cases}$$

Therefore:

$$H(Ast = no) = -\frac{5}{12} \ln \frac{5}{12} - \frac{0}{12} \ln \frac{0}{12} - \frac{7}{12} \ln \frac{7}{12}$$

$$\approx 0.68$$

Example (continued)

For variable Ast (Astigmatism):

$$P(\text{Lens}|\text{Ast} = \text{yes}) = \begin{cases} 0/12 & \text{if Lens} = \textit{soft} \\ 4/12 & \text{if Lens} = \textit{hard} \\ 8/12 & \text{if Lens} = \textit{none} \end{cases}$$

Therefore:

$$H(Ast = yes) = -\frac{0}{12} \ln \frac{0}{12} - \frac{4}{12} \ln \frac{4}{12} - \frac{8}{12} \ln \frac{8}{12}$$

 ≈ 0.64

$$\Rightarrow E_H(\text{Ast}) = \frac{1}{2}H(\text{Ast} = no) + \frac{1}{2}H(\text{Ast} = yes)$$

= 1/2(0.68 + 0.64) = 0.66

Information gain:

$$\Rightarrow G(\mathsf{Ast}) = H(\top) - E_H(\mathsf{Ast})$$
$$= 0.92 - 0.66 = 0.26$$

Example (continued)

For variable Tears:

$$E_H(\text{Tears}) = \frac{1}{2}H(\text{Tears} = red) + \frac{1}{2}H(\text{Tears} = norm)$$

$$\approx 1/2(0.0 + 1.1) = 0.55$$

Information gain:

$$\Rightarrow G(\text{Tears}) = H(\top) - E_H(\text{Tears})$$
$$= 0.92 - 0.55 = 0.37$$

Comparison:

Select Tears as first splitting variable

Final remarks I

A node with too many branches causes the information gain measure to break down

Example

Suppose that with each branch of a node a dataset with exactly one instance is associated:

$$E_{H_C}(X) = n \cdot 1/n \cdot (1 \log 1 + 0 \log 0) = 0$$

if X has n values. Hence, $G_C(X) = H_C(\top) - 0 = H_C(\top)$ attains a maximum

Solution: Gain ratio R_C :

• Split information

$$H_X(\top) = -\sum_x P(X = x) \ln P(X = x)$$

• Gain ratio:

$$R_C(X) = G_C(X)/H_X(\top)$$

Final remarks II

- Variable selection is myopic: it does not look beyond the effects of its own values; a resulting decision tree is therefore likely to be suboptimal
- Decision trees may grow unwieldy, and may need to be pruned (ID3 ⇒ C4.5)
 - subtree replacement
 - subtree raising
- Decision trees can also be used for numerical variables: regression trees