
Learning Classifiers

• Instances xi in dataset D mapped to feature

space:

decision boundary

Classes associated with instances: X, ◦
• Classification:

f(xi) = c ∈ {X,◦}
– with xi,j ∈ {>,⊥}, and f classifier

– dataset D is a multiset

• Objective: learn f (supervised)

Performance
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Training
Process Process

Testing

Initial Model (Assumptions)

Trained Model

Performance Performance

Tested

Model

Training Data Test Data

Performance measures:

• TP: True Positive

• TN: True Negative

• FP: False Positive

• FN: False Negative

Note: if N = |D|, then N = TP+TN+FP+FN

Confusion matrix:

Predicted class
yes no

Actual yes true positive false negative
class no false positive true negative

Performance

Performance measures:

• Success rate σ:

σ =
TP + TN

N
• Error rate ε: ε = 1− σ

• TPR (= recall ρ) True Positive Rate

TPR = TP/(TP + FN)

• FNR False Negative Rate: FNR = 1−TPR

• FPR False Positive Rate:

FPR = FP/(FP + TN)

• TNR True Negative Rate: TNR = 1− FPR

• Precision π:

π = TP/(TP + FP)

• F -measure:

F =
2 · ρ · π

ρ + π
=

2TP

2TP + FP + FN

Example: choosing contact lenses

Tear
Spectacle production

Age prescription Ast rate Lens

young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none

Ast = Astigmatism



Rule representation and reasoning

Rule representation:

• Logical implication (= rules)

LHS→ RHS

(LHS = left-hand side = antecedent; RHS

= right-hand side = consequent)

• Literals in LHS and RHS are of the form:

Variable ◦ value (or Attribute ◦ value)

where ◦ ∈ {<,≤,=, >,≥}

Rule-based reasoning:

R∪ F � C

where

• R is a set of rules r ∈ R (rule-base)

• F is a set of facts of the form

Variable = value

• C is a set of conclusions of the same form

as facts

ZeroR

Basic ideas:

• Construct rule that predicts the majority class

• Used as baseline performance

Example

Contact lenses recommendation rule:

→ Lens = none

• Total number of instances: 24

• Correctly classified instances: 15 (62.5%)

• Incorrectly classified instances: 9 (37.5%)

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure Class
0 0 0 0 0 soft
0 0 0 0 0 hard
1 1 0.625 1 0.769 none

=== Confusion Matrix ===
a b c <-- classified as
0 0 5 | a = soft
0 0 4 | b = hard
0 0 15 | c = none

OneR

• Construct a single-condition rule for each

variable-value pair

• Select the rules defined for a single variable

(in the condition) which perform best

OneR(classvar)

{

R ← ∅

for each var ∈ Vars do

for each value ∈ Domain(var) do

classvar.most-freq-value ←

MostFreq(var.value, classvar)

rule ← MakeRule(var.value,

classvar.most-freq-value)

R ← R∪ {rule}

for each r ∈ R do

CalculateErrorRate(r)

R← SelectBestRulesForSingleVar(R)

}

OneR: Example

Rules for contact-lenses recommendation:

Tears = reduced → Lens = none

Tears = normal → Lens = soft

• 17/24 instances correct

• Correctly classified instances: 17 (70.83%)

• Incorrectly classified instances: 7 (29.16%)

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure Class
1 0.368 0.417 1 0.588 soft
0 0 0 0 0 hard
0.8 0 1 0.8 0.889 none

=== Confusion Matrix ===
a b c <-- classified as
5 0 0 | a = soft
4 0 0 | b = hard
3 0 12 | c = none



Generalisation: separate-and-cover

Covering of classes:

• Rule-set generation for each class value sep-

arately

• Peeling: box compression – instances are

peeled off (fall outside the box) one face at

the time

• PRISM algorithm

Example: choosing contact lenses

Recommended contact lenses: none, soft, hard

General principles:

1. Choose class value, e.g. hard

2. Construct rule Condition→ Lens = hard

3. Determine accuracy α = p/t for all possible
conditions, where

– t: total number of instances covered by
the rule

– p: covered instances with the right (pos-

itive) class value

Condition α = p/t

Age = youg 2/8
Age = pre-presbyopic 1/8
Age = presbyopic 1/8
Spectacles = myope 3/12
Spectacles = hypermetrope 3/12
Astigmatism = no 0/12
Astigmatism = yes 4/12
Tears = reduced 0/12
Tears = normal 4/12

4. Select best condition (4/12)

Separate-and-cover algorithm

SC(classvar, D)

{
R ← ∅

for each val ∈ Domain(classvar) do

E ← D

while E contains instances with val do

rule ← MakeRule(rhs(classvar.val), lhs(∅))

IR← ∅

until rule is perfect do

for each var ∈ Vars,∀rule ∈ IR : var /∈ rule do

for each value ∈ Domain(var) do

inter-rule ← Add(rule, lhs(var.value))

IR← IR ∪ {inter-rule}

rule ← SelectRule(IR)

R ← R∪ {rule}

RC ← InstancesCoveredBy(rule, E)

E ← E\RC

}

SelectRule: based on accuracy α = p/t; if α =

α′, for two rules, select the one with highest p

SelectRule example

Rule:

• RHS: Lens = hard

• LHS: Astigmatism = yes, with α = 4/12

Not very accurate; expanded rule:
(Astigmatism = yes ∧New-condition)

→ Lens = hard

Tear
Spectacle product

Age prescription Ast rate Lens

young myope yes reduced none
young myope yes normal hard
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none

• Age = young (2/4); Age = pre-presbyopic (1/4);
Age = presbyopic (1/4)

• Spectacles = myope (3/6); Spectacles = hyperme-
trope (1/6)

• Tears = reduced (0/6); Tears = normal (4/6)



SelectRule example (continued)

Rule:

(Astigmatism = yes ∧Tears = normal)

→ Lens = hard

Expanded rule:

(Astigmatism = yes ∧Tears = normal ∧

New-condition)→ Lens = hard

Tear
Spectacle product

Age prescription Ast rate Lens

young myope yes normal hard
young hypermetrope yes normal hard
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope yes normal none
presbyopic myope yes normal hard
presbyopic hypermetrope yes normal none

• Age = young (2/2); Age = pre-presbyopic (1/2);
Age = presbyopic (1/2)

• Spectacles = myope (3/3); Spectacles = hyperme-
trope (1/3)

⇒ (Astigmatism = yes ∧Tears = normal ∧

Spectacles = myope)→ Lens = hard

SC example (continued)

Delete 3 instances from E; new rule:

New-condition→ Lens = hard

Tear
Spectacle production

Age prescription Ast rate Lens

young myope no reduced none
young myope no normal soft
young myope yes reduced none
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none

WEKA Results

Rules:

If Astigmatism = no and Tears = normal
and Spectacles = hypermetrope then Lens = soft

If Astigmatism = no and Tears = normal
and age = young then Lens = soft

If age = pre-presbyopic and Astigmatism = no
and Tears = normal then Lens = soft

If Astigmatism = yes and Tears = normal
and Spectacles = myope then Lens = hard

If age = young and Astigmatism = yes
and Tears = normal then Lens = hard

If Tears = reduced then none
If age = presbyopic and Tears = normal

and Spectacles = myope
and Astigmatism = no then Lens = none

If Spectacles = hypermetrope
and Astigmatism = yes
and age = pre-presbyopic then Lens = none

If age = presbyopicand Spectacles = hypermetrope
and Astigmatism = yes then Lens = none

=== Confusion Matrix ===
a b c <-- classified as
5 0 0 | a = soft
0 4 0 | b = hard
0 0 15 | c = none

Correctly classified instances: 24 (100%)

Limitations

• Adding one condition at the time is greedy

search (‘optimal’ state may be missed)

• Accuracy α = p/t: promotes overfitting: the

more ‘correct’ (higher p compared to t) is,

the higher α

• Resulting rules cover all instances perfectly

Example

Consider rule r1 with accuracy α1 = 1/1 and

rule r2 with accuracy α2 = 19/20, then r1 is

considered superior to r2

Alternative 1: information gain

Alternative 2: probabilistic measure



Information gain

ID(r) = p′
[

log
p′

t′
− log

p

t

]

where

• α = p/t is the accuracy before adding a con-

dition to r

• α′ = p′/t′ is the accuracy after a condition

has been added to r

Example

Consider rule r′ with α′ = 1/1 and rule r′′ with

accuracy α′′ = 19/20, both modifications of r

with α = 20/200. Then is r′ considered supe-

rior to r′′ according to accuracy, but

ID(r′) = 1[log(1/1)− log(20/200)] = 1

ID(r′′) = 19[log(19/20)− log(20/200)] ≈ 18.6

hence r′ is inferior to r′′ according to informa-

tion gain

Comparison accuracy versus
information gain

Information gain I:

• Emphasis is on large number of positive in-

stances

• High coverage cases first, special cases later

• Resulting rules cover all instances perfectly

Accuracy α:

• Takes number of positive instances only into

account if ties break

• Special cases first, high coverage cases later

• Resulting rules cover all instances perfectly

Probabilistic measure

N instance in D

rule r
selects

t instances

p instances concern the class

M positive
concerning

the class

• N = |D|: # instances in dataset D

• M : # instances in D concerning a class

• t: # instances in D on which rule r succeeds

• p: # positive instances

Hypergeometric distribution:

f(k) =

(

M
k

)(

N−M
t−k

)

(

N
t

)

sampling without replacement: probability that

k instances out of t belong to the class

Probabilistic measure

N instance in D

rule r
selects

t instances

p instances concern the class

M positive
concerning

the class

Hypergeometric distribution:

f(k) =

(

M
k

)(

N−M
t−k

)

(

N
t

)

• Rule r selects t instances, of which p are

positive

• Probability that a randomly chosen rule r′

does as well or better than r:

P (r′) =

min{t,M}
∑

k=p

f(k) =

min{t,M}
∑

k=p

(

M
k

)(

N−M
t−k

)

(

N
t

)



Approximation

P (r′) =

min{t,M}
∑

k=p

(

M
k

)(

N−M
t−k

)

(

N
t

)

≈

min{t,M}
∑

k=p

(t

k

)

(

M

N

)k (

1−
M

N

)t−k

i.e. hypergeometric distribution approximated

by a binomial distribution

= IM/N(p, t− p + 1)

where Ix(α, β) is the incomplete beta function:

Ix(α, β) =
1

B(α, β)

∫ x

0
zα−1(1− z)β−1dz

where B(α, β) is the beta function, defined as

B(α, β) =
∫ 1

0
zα−1(1− z)β−1dz

Reduced-error pruning

Danger of overfitting to training set can be
reduced by splitting this into:

• a growing set (GS) (2/3 of training set)

• a pruning set (PS) (1/3 of training set)

REP(classvar, D)
{
R ← ∅; E ← D
(GS,PS)← Split(E)
while E 6= ∅ do

IR← ∅

for each val ∈ Domain(classvar) do
if GS and PS contain a val-instance then

rule← BSC(classvar.val, GS)
while P (rule | PS) > P (rule− | PS) do

rule← rule−

IR← IR ∪ {rule}
rule ← SelectRule(IR); R ← R∪ {rule}
RC ← InstancesCoveredBy(rule, E)
E ← E\RC
(GS,PS)← Split(E)

}

BSC is basic separate-and-cover algorithm, and
rule− is a rule with last condition removed

Divide-and-conquer: decision trees

Astigmatism

Spectacle
prescription

Age

Age

none

soft soft hard

hard none nonenone soft

myope hypermetrope

pre−prebyopic
young

young pre−prebyopic

yesno

normalreduced

Spectacle
prescription

Tears

myopehypermetrope

Lens = ?

presbyopic

presbyopic

Learning decision trees:

• R. Quinlan: ID3, C4.5 and C5.0

• L. Breiman: CART (Classification and Re-

gression Trees)

Which variable/attribute is best?

...

......

...

...

...

X

D

yes no

C
yes

no

yes
no

no

yes
no

yes

class variable

D = yesX

X = no

CX X
yes

yes

yes

yes

no

no
no

no

...

...

Dataset D:

D = DX=yes ∪DX=no

Entropy:

HC(X =x) = −
∑

c
P (C =c|X =x) lnP (C =c|X =x)

Expected entropy:

EHC
(X) =

∑

x
P (X = x)HC(X = x)



Information gain (again)

Dataset D:

D = DX=yes ∪DX=no

Entropy:

HC(X =x) = −
∑

c
P (C =c|X =x) lnP (C =c|X =x)

Expected entropy:

EHC
(X) =

∑

x
P (X = x)HC(X = x)

Without the split of the dataset D on variable

X, the entropy is:

HC(>) = −
∑

c
P (C = c) lnP (C = c)

Information gain GC from X:

GC(X) = HC(>)− EHC
(X)

Example: contact lenses
recommendation

Class variable is Lens:

P (Lens) =











5/24 if Lens = soft

4/24 if Lens = hard

15/24 if Lens = none

H(>) = −
5

24
ln

5

24
−

4

24
ln

4

24
−

15

24
ln

15

24
≈ 0.92

For variable Ast (Astigmatism):

P (Lens|Ast = no) =











5/12 if Lens = soft

0/12 if Lens = hard

7/12 if Lens = none

Therefore:

H(Ast=no) = −
5

12
ln

5

12
−

0

12
ln

0

12
−

7

12
ln

7

12
≈ 0.68

Example (continued)

For variable Ast (Astigmatism):

P (Lens|Ast = yes) =











0/12 if Lens = soft

4/12 if Lens = hard

8/12 if Lens = none

Therefore:

H(Ast=yes) = −
0

12
ln

0

12
−

4

12
ln

4

12
−

8

12
ln

8

12
≈ 0.64

⇒ EH(Ast) =
1

2
H(Ast=no) +

1

2
H(Ast=yes)

= 1/2(0.68 + 0.64) = 0.66

Information gain:

⇒ G(Ast) = H(>)− EH(Ast)

= 0.92− 0.66 = 0.26

Example (continued)

For variable Tears:

EH(Tears) =
1

2
H(Tears=red) +

1

2
H(Tears=norm)

≈ 1/2(0.0 + 1.1) = 0.55

Information gain:

⇒ G(Tears) = H(>)−EH(Tears)

= 0.92− 0.55 = 0.37

Comparison:

G(Tears) > G(Ast)

Select Tears as first splitting variable



Final remarks I

A node with too many branches causes the

information gain measure to break down

Example

Suppose that with each branch of a node a

dataset with exactly one instance is associated:

EHC
(X) = n · 1/n · (1 log1 + 0 log0) = 0

if X has n values. Hence, GC(X) = HC(>) −

0 = HC(>) attains a maximum

Solution: Gain ratio RC:

• Split information

HX(>) = −
∑

x
P (X = x) lnP (X = x)

• Gain ratio:

RC(X) = GC(X)/HX(>)

Final remarks II

• Variable selection is myopic: it does not

look beyond the effects of its own values;

a resulting decision tree is therefore likely

to be suboptimal

• Decision trees may grow unwieldy, and may

need to be pruned (ID3 ⇒ C4.5)

– subtree replacement

– subtree raising

• Decision trees can also be used for numer-

ical variables: regression trees


