Refinements
and
Evaluation

e ROC curves

Hold out method

e Cross-validation

The bootstrap

Bagging
Boosting

Optimal performance: ROC
e Output of probabilistic classifier:
Cmax = arg mcax P(C|€&)
may not yield the best performance

e Alternative: Receiver Operating Character-
istic (ROC): determine threshold d, such that

olc TP >d
~] —c¢ otherwise

1.0

0.8

TPR

0.6

,4;* wortéhless
0.4 1+
0.2 fofr

02 04 06 08 1.0
FPR

Area under the ROC curve

When comparing various techniques:

e actual performance for particular thresholds
(cut-off points) may vary

e area under the ROC curve A; = f(} f(x)dz
offers good measure for comparison, with

f relationship between FPR and TPR for
classifier

Comparing ROC Curves

P P —
0 0102 0204050607 0809 1
Fals e positive rate

Evaluation problem sketch

Initial Model (Assumptions)

‘ Training Trained Model [Application
— Process | Process
. Performance . Performance

Training Data

(<}

)

x oo o
X 0 x x

x o

x0000%0°%

X O x X 0%

o

o

OOOO ©

o
x ©

Fresh Data

e Fresh data differs from training set (which

affects performance)

e Overfitting

e Bias-variance decomposition

Solution 1: holdout method

Initial Model (Assumptions)

Training Trained Model Testing Tested
> >
— Process Process | wodel

. Performance . Performance

Training Data Test Data

Test set and training set disjoint

Select more (66%7) training instances than
test instances

Holdout: test set

Problem: what if the dataset is small?

Size of holdout

[
o
o

PRISM ——
Naive Bayes ====3¢--=

©
o

@
o

3

~;
/..
%

/"“.
[

o

5 g
o

Success rate (%)

w
o

N
o

=
o

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Training set size (%)

Test set (%) + Training set (%) = 100%

Two methods compared:

e PRISM classification-rule learning algorithm

e Naive Bayesian classifier

Solution 2: cross-validation

Initial Model (Assumptions)

Training Trained Model Testing
o
— Process Process
. Performance Performance
Training Data Test Data
Training Dat Test Training Dut
ramullg ata| Data a}nmg Tl a
Fold

K-fold cross-validation: split up dataset D into
K partitions (called folds)

fork=1,... K:

1.

Train model using K—1 of the folds (exclude
fold k)

. Evaluate using the remaining fold k (hold-

out)

. Gather performance results

Performance results

Initial Model (Assumptions)

Training Trained Model Testing
— Process Process
. Performance Performance
Training Data Test Data
I
Test -

Training Data Training Data

| Data | |
Fold

K-fold cross-validation:
e Dataset D, with N = |D|

e fk trained model based on dataset D after
removal of fold k

e Indexing function x: {1,...,N} — {1,..., K}
which associates fold x(z) to instance ¢

e Success rate with L 0-1 loss function:

1 % (i)
o= — L, F"(x})
Ni:l

How many folds?

©
=]

\\\\\\
Naive Bayes —+—
ID3 =weedteens

]
a

N ®

g o
L
",." L

o
al

Success rate (%)
~
o
& =

@
=]

4]
al

50

012 3 456 7 8 9 1011121314 1516 17 18 19 20
Number of folds

e Common choices: 5 and 10 (5-fold and 10-
fold cross-validation)

e | eave-one-out method:
— N = K (N-fold cross-validation)
— almost all available data is used

easy to implement, no random sampling

— computationally expensive

Stratification

e Folds not necessarily representative for whole
dataset

e Solution:
— check whether folds are representative

— if not: select new folds (at random)

e Further elimination of effect of random se-
lection of folds: run cross-validation re-
peatedly

Result: M-time stratified K-fold cross-validation

Solution 3: bootstrapping

I

(R
4

—
=
—

(D —

Test
Dataset

e Yields estimation of uncertainty in learning
e Basic idea:

1. sample N = |D| times from dataset with
replacement: result training set of size N

2. instances not selected are taken as test
set

e Expected size of test set?

Bootstrap: test-set size
e Probability that instance 7 is not selected:
1

N
e After taking N samples: (1—%) . Note
that:

k .
— et =Y % 4+ Ry(x), ie.
1 N k1
e = Z (-1) Ll + Ry
k=0
— Newton’s binomial theorem:

(-3 = SOGE)

k=0

N
_ W NN —1)- - (N —k+1)
- ,go(‘” kI Nk

%

N f 1
pOCOR

= the size of the test set: e 1. N ~ 0.37N

Bootstrap: practical

e Effect of random selection of test set:
sult may not be representative

e Solution:

— adjust error

rate:

€ = 0.63 - €test + 0.37 - €training

re-

— repeat the process a number of times,
and compute average outcome

e Usage: in the context of learning multiple

models (bagging)

Committee of experts

B
%)]

Hypothesis space

No single hypothesis fits all possible (or all
parts of a) dataset best

Combining many weak models may give rise
to a strong model (““Many hands make light
work™)

Bagging:

representation

e Bootstrap aggregating

e Use m bootstrap samples to learn m models

M;: multiple experts; output:

Futo =1 3 fito
k=1

is Monte-Carlo estimate for true function

f=limpn_o frﬂ;z

e Typical use:

U
T

M, M,

\

L) M

m

/

Voting

Averaging

Output

Bagging: learning

Bias-variance decomposition — bias is fixed
for specific technique; try reducing variance
of learning

Random samples = slightly different models

Result: expert models for a particular part
of the feature space

Bagging and naive Bayesian networks?

Boosting

e Limitation of bagging: models are learnt com-
pletely separately

e Solution: boosting — learn models that com-
plement each other

e Output: weighted combination of model re-
sults

sample

Boosting algorithm

e Dataset D with instances x € D; M models
e Correctly classified instances improve by

e/(1—¢)
where ¢ is the error rate

e w(x) are the weights attached to instances
Boosting(M, D)
{ for each x € D do
w(x) « initial-value
for k—1,...,m do
E «— Sample(D)
M, — LearnModel(E)
e «+ ErrorRate(D, M},)
if ¢ 20 and ¢ < 0.5 then
M — MU{M}
for each x € D do
if x is classified correctly by M;
then w(x) «— w(x) -€¢/(1 —¢€)
Renormalise(D)

Application multiple models

e Models are combined by weighted votes (clas-
sification) or weighted average (regression)

e Contribution of each model Mj:
€k
1-— €L
Note wy — oo if €, | O where ¢ is the error
rate for model M;

w = —log

e (. class variable with values ¢

Classify(M, x)
{

for each c € C' do
w(c) «— 0
for k—1,....,m do
if ¢ = MostLikelyClass(M},x) then
w(e) — w(c) + wy,
return highest ¢

