Refinements
and
Evaluation

e ROC curves

Hold out method

e Cross-validation

The bootstrap

Bagging
Boosting

Optimal performance: ROC
e Output of probabilistic classifier:
Cmax = arg mcax P(C|€&)
may not yield the best performance

e Alternative: Receiver Operating Character-
istic (ROC): determine threshold d, such that

olc TP >d
~ ] —c¢ otherwise

1.0

0.8

TPR

0.6

,4;* wortéhless
0.4 1+
0.2 fofr

02 04 06 08 1.0
FPR

Area under the ROC curve

When comparing various techniques:

e actual performance for particular thresholds
(cut-off points) may vary

e area under the ROC curve A; = f(} f(x)dz
offers good measure for comparison, with

f relationship between FPR and TPR for
classifier

Comparing ROC Curves
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Evaluation problem sketch
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Fresh Data

e Fresh data differs from training set (which

affects performance)

e Overfitting

e Bias-variance decomposition




Solution 1: holdout method
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Test set and training set disjoint

Select more (66%7) training instances than
test instances

Holdout: test set

Problem: what if the dataset is small?

Size of holdout
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Test set (%) + Training set (%) = 100%

Two methods compared:

e PRISM classification-rule learning algorithm

e Naive Bayesian classifier

Solution 2: cross-validation
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K-fold cross-validation: split up dataset D into
K partitions (called folds)

fork=1,... K:

1.

Train model using K—1 of the folds (exclude
fold k)

. Evaluate using the remaining fold k (hold-

out)

. Gather performance results

Performance results

Initial Model (Assumptions)

Training Trained Model Testing
— Process Process
. Performance Performance
Training Data Test Data
I
Test -

Training Data Training Data

| Data | |
Fold

K-fold cross-validation:
e Dataset D, with N = |D|

e fk trained model based on dataset D after
removal of fold k

e Indexing function x: {1,...,N} — {1,..., K}
which associates fold x(z) to instance ¢

e Success rate with L 0-1 loss function:
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How many folds?
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e Common choices: 5 and 10 (5-fold and 10-
fold cross-validation)

e | eave-one-out method:
— N = K (N-fold cross-validation)
— almost all available data is used

easy to implement, no random sampling

— computationally expensive

Stratification

e Folds not necessarily representative for whole
dataset

e Solution:
— check whether folds are representative

— if not: select new folds (at random)

e Further elimination of effect of random se-
lection of folds: run cross-validation re-
peatedly

Result: M-time stratified K-fold cross-validation

Solution 3: bootstrapping
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e Yields estimation of uncertainty in learning
e Basic idea:

1. sample N = |D| times from dataset with
replacement: result training set of size N

2. instances not selected are taken as test
set

e Expected size of test set?

Bootstrap: test-set size
e Probability that instance 7 is not selected:
1

N
e After taking N samples: (1—%) . Note
that:

k .
— et =Y % 4+ Ry(x), ie.
1 N k1
e = Z (-1) Ll + Ry
k=0
— Newton’s binomial theorem:
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Bootstrap: practical

e Effect of random selection of test set:
sult may not be representative

e Solution:

— adjust error

rate:

€ = 0.63 - €test + 0.37 - €training

re-

— repeat the process a number of times,
and compute average outcome

e Usage: in the context of learning multiple

models (bagging)

Committee of experts
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Hypothesis space

No single hypothesis fits all possible (or all
parts of a) dataset best

Combining many weak models may give rise
to a strong model (““Many hands make light
work™)

Bagging:

representation

e Bootstrap aggregating

e Use m bootstrap samples to learn m models

M;: multiple experts; output:

Futo =1 3 fito
k=1

is Monte-Carlo estimate for true function

f=limpn_o frﬂ;z

e Typical use:
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Voting

Averaging

Output

Bagging: learning

Bias-variance decomposition — bias is fixed
for specific technique; try reducing variance
of learning

Random samples = slightly different models

Result: expert models for a particular part
of the feature space

Bagging and naive Bayesian networks?




Boosting

e Limitation of bagging: models are learnt com-
pletely separately

e Solution: boosting — learn models that com-
plement each other

e Output: weighted combination of model re-
sults

sample

Boosting algorithm

e Dataset D with instances x € D; M models
e Correctly classified instances improve by

e/(1—¢)
where ¢ is the error rate

e w(x) are the weights attached to instances
Boosting(M, D)
{ for each x € D do
w(x) « initial-value
for k—1,...,m do
E «— Sample(D)
M, — LearnModel(E)
e «+ ErrorRate(D, M},)
if ¢ 20 and ¢ < 0.5 then
M — MU{M}
for each x € D do
if x is classified correctly by M;
then w(x) «— w(x) -€¢/(1 —¢€)
Renormalise(D)

Application multiple models

e Models are combined by weighted votes (clas-
sification) or weighted average (regression)

e Contribution of each model Mj:
€k
1-— €L
Note wy — oo if €, | O where ¢ is the error
rate for model M;

w = —log

e (. class variable with values ¢

Classify(M, x)
{

for each c € C' do
w(c) «— 0
for k—1,....,m do
if ¢ = MostLikelyClass(M},x) then
w(e) — w(c) + wy,
return highest ¢




