and **Evaluation**

- ROC curves
- Hold out method
- Cross-validation
- The bootstrap
- Bagging
- Boosting

Refinements

0.2 0.4 0.6 8.0 **FPR**

worthless

Optimal performance: ROC

• Alternative: Receiver Operating Character-

 $\begin{array}{ll} c & \text{if } P(c \mid \mathcal{E}) \geq d \\ \neg c & \text{otherwise} \end{array}$

istic (ROC): determine threshold d, such that

• Output of probabilistic classifier: $c_{max} = \arg \max_{C} P(C \mid \mathcal{E})$

1.0

8.0

0.6

0.4

may not yield the best performance

Area under the ROC curve

When comparing various techniques:

- actual performance for particular thresholds (cut-off points) may vary
- area under the ROC curve $A_f = \int_0^1 f(x) dx$ offers good measure for comparison, with f relationship between FPR and TPR for classifier

Evaluation problem sketch

- Fresh data differs from training set (which affects performance)
- Overfitting
- Bias-variance decomposition

Solution 1: holdout method

- Test set and training set disjoint
- Select more (66%?) training instances than test instances
- Holdout: test set
- Problem: what if the dataset is small?

Size of holdout

Test set (%) + Training set (%) = 100%

Two methods compared:

- PRISM classification-rule learning algorithm
- Naive Bayesian classifier

Solution 2: cross-validation

K-fold cross-validation: split up dataset D into K partitions (called folds)

for k = 1, ..., K:

- 1. Train model using K-1 of the folds (exclude fold k)
- 2. Evaluate using the remaining fold k (holdout)
- 3. Gather performance results

Performance results

K-fold cross-validation:

- Dataset D, with N = |D|
- \hat{f}^{-k} trained model based on dataset D after removal of fold k
- Indexing function $\kappa: \{1, ..., N\} \rightarrow \{1, ..., K\}$ which associates fold $\kappa(i)$ to instance i
- ullet Success rate with L 0-1 loss function:

$$\sigma = \frac{1}{N} \sum_{i=1}^{N} L(c_i, \hat{f}^{-\kappa(i)}(\mathbf{x}_i'))$$

How many folds?

- Common choices: 5 and 10 (5-fold and 10-fold cross-validation)
- Leave-one-out method:
 - -N = K (N-fold cross-validation)
 - almost all available data is used
 - easy to implement, no random sampling
 - computationally expensive

Stratification

- Folds not necessarily representative for whole dataset
- Solution:
 - check whether folds are representative
 - if not: select new folds (at random)
- Further elimination of effect of random selection of folds: run cross-validation repeatedly

Result: M-time stratified K-fold cross-validation

Solution 3: bootstrapping

- Yields estimation of uncertainty in learning
- Basic idea:
 - 1. sample N = |D| times from dataset with replacement: result training set of size N
 - instances not selected are taken as test set
- Expected size of test set?

Bootstrap: test-set size

• Probability that instance *i* is **not** selected:

$$P(i) = 1 - \frac{1}{N}$$

• After taking N samples: $\left(1-\frac{1}{N}\right)^N$. Note that:

$$-e^x = \sum_{k=0}^N \frac{x^k}{k!} + R_N(x)$$
, i.e.
$$e^{-1} = \sum_{k=0}^N (-1)^k \frac{1}{k!} + R_N$$

- Newton's binomial theorem:

$$\left(1 - \frac{1}{N}\right)^{N} = \sum_{k=0}^{N} {N \choose k} \left(\frac{-1}{N}\right)^{k}$$

$$= \sum_{k=0}^{N} (-1)^{k} \frac{N(N-1)\cdots(N-k+1)}{k!N^{k}}$$

$$\approx \sum_{k=0}^{N} (-1)^{k} \frac{1}{k!}$$

 \Rightarrow the size of the test set: $e^{-1} \cdot N \approx 0.37N$

Bootstrap: practical

- Effect of random selection of test set: result may not be representative
- Solution:
 - adjust error rate:

$$\epsilon = 0.63 \cdot \epsilon_{test} + 0.37 \cdot \epsilon_{training}$$

- repeat the process a number of times,
 and compute average outcome
- Usage: in the context of learning multiple models (bagging)

Bagging: representation

- Bootstrap aggregating
- Use m bootstrap samples to learn m models
 M_i: multiple experts; output:

$$\hat{f}_m^*(\mathbf{x}) = \frac{1}{m} \sum_{k=1}^m \hat{f}_k(\mathbf{x})$$

is Monte-Carlo estimate for true function $f=\lim_{m\to\infty} \hat{f}_m^*$

• Typical use:

Committee of experts

- Hypothesis space
- No single hypothesis fits all possible (or all parts of a) dataset best
- Combining many weak models may give rise to a strong model ("Many hands make light work")

Bagging: learning

- Bias-variance decomposition bias is fixed for specific technique; try reducing variance of learning
- Random samples ⇒ slightly different models
- Result: expert models for a particular part of the feature space
- Bagging and naive Bayesian networks?

Boosting

- Limitation of bagging: models are learnt completely separately
- Solution: boosting learn models that complement each other
- Output: weighted combination of model results

Application multiple models

- Models are combined by weighted votes (classification) or weighted average (regression)
- Contribution of each model M_k :

$$w_k = -\log \frac{\epsilon_k}{1 - \epsilon_k}$$

Note $w_k \to \infty$ if $\epsilon_k \downarrow 0$ where ϵ_k is the error rate for model M_k

• C: class variable with values c

Boosting algorithm

- Dataset D with instances $x \in D$; \mathcal{M} models
- ullet Correctly classified instances improve by $\epsilon/(1-\epsilon)$

where ϵ is the error rate

ullet $w(\mathbf{x})$ are the weights attached to instances

```
 \begin{cases} & \textbf{for each } \mathbf{x} \in D \ \textbf{do} \\ & w(\mathbf{x}) \leftarrow \text{initial-value} \\ & \textbf{for } k \leftarrow 1, \dots, m \ \textbf{do} \\ & E \leftarrow \text{Sample}(D) \\ & M_k \leftarrow \text{LearnModel}(E) \\ & \epsilon \leftarrow \text{ErrorRate}(D, M_k) \\ & \textbf{if } \epsilon \neq 0 \ \textbf{and } \epsilon < 0.5 \ \textbf{then} \\ & \mathcal{M} \leftarrow \mathcal{M} \cup \{M_k\} \\ & \textbf{for each } \mathbf{x} \in D \ \textbf{do} \\ & \textbf{if } \mathbf{x} \ \text{is classified correctly by } M_k \\ & \textbf{then } w(\mathbf{x}) \leftarrow w(\mathbf{x}) \cdot \epsilon/(1-\epsilon) \\ & \text{Renormalise}(D) \end{cases}
```