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Abstract

Probability theory is one of the earliest methods for associating a measure of uncertainty
to expressions concerning its truth. In this paper several notions from probability theory
are briefly introduced. In addition, we discuss the problems one encounters in applying
this theory in the context of knowledge-based systems.
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1 PROBABILITY DISTRIBUTION 2

1 Probability distribution

The notions that play a central role in probability theory have been developed for the descrip-
tion of experiments. In empirical research a more or less standard procedure is to repeatedly
perform a certain experiment under essentially the same conditions. Each performance yields
an outcome which cannot be predicted with certainty in advance. For many types of experi-
ments, however, one is able to describe the set of all possible outcomes. The nonempty set of
all possible outcomes of such an experiment is called its sample space; it is generally denoted
by Ω. In the sequel, we shall only be concerned with experiments having a countable sample
space.

Example Consider the experiment of throwing a die. The outcome of the experiment is the
number of spots up the die. The sample space of this experiment therefore consists of six
elements: Ω = {1, 2, 3, 4, 5, 6} 2

A subset e of the sample space Ω of a certain experiment is called an event. If upon perfor-
mance of the experiment the outcome is in e, then it is said that the event e has occurred. In
case the event e has not occurred, we use the notation ē, called the complement of e. Note
that we have ē = Ω \ e. The event that occurs if and only if both events e1 and e2 occur,
is called the intersection of e1 and e2, and will be denoted by e1 ∩ e2. The intersection of n
events ei will be denoted by

n
⋂

i=1

ei

The event occurring if at least one of e1 and e2 occurs is called the union of e1 and e2, and
will be denoted by e1 ∪ e2. The union of n events ei will be denoted by

n
⋃

i=1

ei

Example Consider the experiment of throwing a die and its associated sample space Ω once
more. The subset e1 = {2, 4, 6} of Ω represents the event that an even number of spots has
come up the die. The subset e2 = ē1 = Ω \ e1 = {1, 3, 5} represents the event that an odd
number of spots has come up. The events e1 and e2 cannot occur simultaneously: if event e1
occurs, that is, if an even number of spots has come up, then it is not possible that in the
same throw an odd number of spots has come up. So, the event e1 ∩ e2 cannot occur. Note
that the event e1 ∪ e2 occurs in every performance of the experiment. The subset e3 = {3, 6}
represents the event that the number of spots that has come up is a multiple of three. Note
that the events e1 and e3 have occurred simultaneously in case six spots are shown up the
die: in that case the event e1 ∩ e3 has occurred. 2

Definition 1 The events e1, . . . , en ⊆ Ω, n ≥ 1, are called mutually exclusive or disjoint
events if ei ∩ ej = ∅, i 6= j, 1 ≤ i, j ≤ n.

We assume that an experiment yields an outcome independent of the outcomes of prior per-
formances of the experiment. Now suppose that a particular experiment has been performed
N times. If throughout these N performances an event e has occurred n times, the ratio n

N
is

called the relative frequency of the occurrence of event e in N performances of the experiment.
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As N increases, the relative frequency of the occurrence of the event e tends to stabilize about
a certain value; this value is called the probability that the outcome of the experiment is in e,
or the probability of event e, for short.

In general, the notions of a probability and a probability function are defined axiomatically.

Definition 2 Let Ω be the sample space of an experiment. If a number P (e) is associated
with each subset e ⊆ Ω, such that

• P (e) ≥ 0,

• P (Ω) = 1, and

• P (
⋃n

i=1 ei) =
∑n

i=1 P (ei), if ei, i = 1, . . . , n, n ≥ 1, are mutually exclusive events,

then P is called a probability function on the sample space Ω. For each subset e ⊆ Ω, the
number P (e) is called the probability that event e will occur.

Note that a probability function P on a sample space Ω is a function P : ℘(Ω)→ [0, 1].

Example Consider the experiment of throwing a die once more, and its associated sample
space Ω = {1, 2, 3, 4, 5, 6}. The function P such that P ({1}) = P ({2}) = · · · = P ({6}) = 1

6 is
a probability function on Ω. Since the sets {2}, {4}, and {6} are disjoint, we have according
to the third axiom of the preceding definition that P ({2, 4, 6}) = 1

2 : the probability of an
even number of spots coming up the die, equals 1

2 . 2

Theorem 1 Let Ω be the sample space of an experiment and P a probability function on Ω.
Then, for each event e ⊆ Ω, we have

P (ē) = 1− P (e)

Proof: We have Ω = e∪ ē. Furthermore, e∩ ē = ∅ holds since e and ē are mutually exclusive
events. From the axioms 2 and 3 of the preceding definition we have that P (Ω) = P (e∪ ē) =
P (e) + P (ē) = 1. 2

2 Conditional probabilities and Bayes’ theorem

We consider the case in which probability theory is applied in a medical diagnostic expert
system. One would like to know for example the probability of the event that a specific patient
has a certain disease. For many diseases, the prior probability of the disease occurring in a
certain population is known. In the case of a specific patient, however, information concerning
the patient’s symptoms, medical history, etc. is available that might be useful in determining
the probability of the presence of the disease in this specific patient.

So, in some cases we are interested only in those outcomes which are in a given nonempty
subset e of the entire sample space which represents the pieces of evidence concerning the
final outcome that are known in advance. Let h be the event we are interested in, that is,
the hypothesis. Given that the evidence e has been observed, we now are interested in the
degree to which this information influences P (h), the prior probability of the hypothesis h.
The probability of h given e is defined in the following definition.
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Definition 3 Let Ω be the sample space of a certain experiment and let P be a probability
function on Ω. For each h, e ⊆ Ω with P (e) > 0, the conditional probability of h given e,
denoted by P (h | e), is defined as

P (h | e) =
P (h ∩ e)

P (e)

A conditional probability P (h | e) often is called a posterior probability.
The conditional probabilities given a fixed event e ⊆ Ω with P (e) > 0, again define a

probability function on Ω since the three axioms of a probability function are satisfied:

• P (h | e) =
P (h ∩ e)

P (e)
≥ 0, since P (h ∩ e) ≥ 0 and P (e) > 0;

• P (Ω | e) =
P (Ω ∩ e)

P (e)
=
P (e)

P (e)
= 1;

• P (
n
⋃

i=1

hi | e) =
P ((
⋃n

i=1 hi) ∩ e)

P (e)
=
P (
⋃n

i=1(hi ∩ e))

P (e)
=

∑n
i=1 P (hi ∩ e)

P (e)
=

n
∑

i=1

P (hi ∩ e)

P (e)
=

n
∑

i=1

P (hi | e), for mutually exclusive events hi, i = 1, . . . , n, n ≥ 1.

This probability function is called the conditional probability function given e.
In real-life practice, the probabilities P (h | e) cannot always be found in the literature or

obtained from statistical analysis. The conditional probabilities P (e | h), however, often are
easier to come by: in medical textbooks for example, a disease is described in terms of the
signs likely to be found in a typical patient suffering from the disease. The following theorem
now provides us with a method for computing the conditional probability P (h | e) from the
probabilities P (e), P (h), and P (e | h); the theorem may therefore be used to reverse the
‘direction’ of probabilities.

Theorem 2 (Bayes’ theorem) Let P be a probability function on a sample space Ω. For each
h, e ⊆ Ω such that P (e) > 0 and P (h) > 0, we have:

P (h | e) =
P (e | h)P (h)

P (e)

Proof: The conditional probability of h given e is defined as

P (h | e) =
P (h ∩ e)

P (e)

Furthermore, we have

P (e | h) =
P (e ∩ h)

P (h)

So,

P (e | h) · P (h) = P (h | e) · P (e) = P (h ∩ e)

The property stated in the theorem now follows from these observations. 2
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Example Consider the problem domain of medical diagnosis. Let h denote the hypoth-
esis that a patient is suffering from liver cirrhosis; furthermore, let e denote the evidence
that the patient has jaundice. In this case, the prior probability of liver cirrhosis, that is,
P (liver-cirrhosis), is known: it is the relative frequency of the disease in a particular pop-
ulation. If the prior probability of the occurrence of jaundice in the same population, that
is, P (jaundice), is likewise available and if the probability that a patient suffering from liver
cirrhosis has jaundice, that is, the conditional probability P (jaundice | liver-cirrhosis), is
known, then we can compute the probability that a patient showing signs of jaundice suffers
from liver cirrhosis, that is, using Bayes’ theorem we can compute the conditional probabil-
ity P (liver-cirrhosis | jaundice). It will be evident that the last-mentioned probability is of
importance in medical diagnosis. 2

To conclude, we define the notions of independence and conditional independence. Intuitively
speaking, it seems natural to call an event h independent of an event e if P (h | e) = P (h):
the prior probability of event h is not influenced by the knowledge that event e has occurred.
However, this intuitive definition of the notion of Independence is not symmetrical in h and
e; furthermore, the notion is defined this way only in case P (e) > 0. By using the definition
of conditional probability and by considering the case for n events, we come to the following
definition.

Definition 4 The events e1, . . . , en ⊆ Ω are (mutually) independent if

P (ei1 ∩ . . . ∩ eik) = P (ei1) · . . . · P (eik)

for each subset {i1, . . . , ik} ⊆ {1, . . . , n}, 1 ≤ k ≤ n, n ≥ 1. The events e1, . . . , en are
conditionally independent given an event h ⊆ Ω if

P (ei1 ∩ . . . ∩ eik | h) = P (ei1 | h) · . . . · P (eik | h)

for each subset {i1, . . . , ik} ⊆ {1, . . . , n}.

Note that if the events h and e are independent and if P (e) > 0, we have that the earlier
mentioned, intuitively more appealing notion of Independence

P (h | e) =
P (h ∩ e)

P (e)
=
P (h)P (e)

P (e)
= P (h)

is satisfied.

3 Application in knowledge-based systems

A typical application of probability theory is for the purpose of diagnostic classification.
During the 1960s several research efforts on probabilistic reasoning were undertaken. The
systems constructed in this period of time were primarily for (medical) diagnosis. Although
these systems did not exhibit any intelligent reasoning behaviour, they may now be viewed
as the precursors to the diagnostic systems developed in the 1990s

Let us take a closer look at the tasks of diagnosis and classification. Let H = {h1, . . . , hn}
be a set of n possible hypotheses, and let E = {e1, . . . , em} be a set of pieces of evidence which
may be observed. For ease of exposition, we assume that each of the hypotheses is either true
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or false for a given case; equally, we assume that each of the pieces of evidence is either true
(that is, it is actually observed in the given case) or false. The diagnostic task now is to find
a set of hypotheses h ⊆ H, called the (differential) diagnosis, which most likely accounts for
the set of observed evidence e ⊆ E. If we have observed a set of pieces of evidence e ⊆ E,
then we can simply compute the conditional probabilities P (h | e) for each subset h ⊆ H

and select the set h′ ⊆ H with the highest probability. We have mentioned before that since
for real-life applications, the conditional probabilities P (e | h) often are easier to come by
than the conditional probabilities P (h | e), generally Bayes’ theorem is used for computing
P (h | e). It will be evident that the task of diagnosis in this form is computationally complex:
since a diagnosis may comprise more than one hypothesis out of n possible ones, the number
of diagnoses to be investigated, that is, the number of probabilities to be computed, equals 2n.
A simplifying assumption generally made in the systems for probabilistic reasoning developed
in the 1960s, is that the hypotheses in H are mutually exclusive and collectively exhaustive.
With this assumption, we only have to consider the n singleton hypotheses hi ∈ H as separate
possible diagnoses. Bayes’ theorem can easily be reformulated to deal with this case.

Theorem 3 (Bayes’ theorem) Let P be a probability function on a sample space Ω. Let
hi ⊆ Ω, i = 1, . . . , n, n ≥ 1, be mutually exclusive hypotheses with P (hi) > 0, such that
⋃n

i=1 hi = Ω (that is, they are collectively exhaustive). Furthermore, let e ⊆ Ω such that
P (e) > 0. Then, the following property holds:

P (hi | e) =
P (e | hi)P (hi)

∑n
j=1 P (e | hj)P (hj)

Proof: Since h1, . . . , hn are mutually exclusive and collectively exhaustive, we have that P (e)
can be written as

P (e) = P ((
n
⋃

i=1

hi) ∩ e) = P (
n
⋃

i=1

(hi ∩ e)) =
n
∑

i=1

P (hi ∩ e) =
n
∑

i=1

P (e | hi) · P (hi)

Substitution of this result in the before-mentioned form of Bayes’ theorem yields the property
stated in the theorem. 2

For a successful application of Bayes’ theorem in the form mentioned in the previous theorem,
several conditional and prior probabilities are required. For example, conditional probabilities
P (e | hi) for every combination of pieces of evidence e ⊆ E, have to be available; note
that in general, these conditional probabilities P (e | hi) cannot be computed from their
‘component’ conditional probabilities P (ej | hi), ej ∈ e. It will be evident that exponentially
many probabilities have to be known beforehand. Since it is hardly likely that for practical
applications all these probabilities can be obtained from for example statistical analysis, a
second simplifying assumption was generally made in the systems developed in the 1960s:
it was assumed that the pieces of evidence ej ∈ E are conditionally independent given any
hypothesis hi ∈ H. Under this assumption Bayes’ theorem reduces to the following form.

Theorem 4 (Bayes’ theorem) Let P be a probability function on a sample space Ω. Let
hi ⊆ Ω, i = 1, . . . , n, n ≥ 1, be mutually exclusive and collectively exhaustive hypotheses as
in the previous theorem. Furthermore, let ej1 , . . . , ejk

⊆ Ω, 1 ≤ k ≤ m, m ≥ 1, be pieces
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of evidence such that they are conditionally independent given any hypothesis hi. Then, the
following property holds:

P (hi | ej1 ∩ · · · ∩ ejk
) =

P (ej1 | hi) · · ·P (ejk
| hi)P (hi)

∑n
i=1 P (ej1 | hi) · · ·P (ejk

| hi)P (hi)

Proof: The theorem follows immediately from the preceding theorem and the definition of
conditional independence. 2

It will be evident that with the two assumptions mentioned above only m · n conditional
probabilities and n− 1 prior probabilities suffice for a successful use of Bayes’ theorem.

The pioneering systems for probabilistic reasoning constructed in the 1960s which basically
employed the last-mentioned form of Bayes’ theorem, were rather small-scaled: they were
devised for clear-cut problem domains with only a small number of hypotheses and restricted
evidence. For these small systems, all probabilities necessary for applying Bayes’ theorem
were acquired from a statistical analysis of the data of several hundred sample cases. Now
recall that in deriving the last-mentioned form of Bayes’ theorem several assumptions were
made:

• the hypotheses h1, . . . , hn, n ≥ 1, are mutually exclusive;

• the hypotheses h1, . . . , hn furthermore are collectively exhaustive, that is,
n
⋃

i=1

hi = Ω;

• the pieces of evidence e1, . . . , em, m ≥ 1, are conditionally independent given any hy-
pothesis hi, 1 ≤ i ≤ n.

These conditions, which have to be satisfied for a correct use of Bayes’ theorem, generally
are not met in practice. But, in spite of these (over-)simplifying assumptions underlying
the systems from the 1960s, they performed considerably well. Nevertheless, interest in this
approach to reasoning with uncertainty faded in the early 1970s. One of the reasons for this
decline in interest is that the method informally sketched in the foregoing is feasible only
for highly restricted problem domains: for larger domains or domains in which the above-
mentioned simplifying assumptions are seriously violated, the method inevitably will become
demanding, either computationally or from the point of view of obtaining the necessary
probabilities: often a large number of conditional and prior probabilities is needed, thus
requiring enormous amounts of experimental data. Bayesian networks address this problem,
and researchers in this field have been able to offer solutions to this problem.

4 The likelihood ratio

Instead of probabilities, it is possible to use the equivalent notion of ‘odds’, which in some
circumstances is more convenient.

Definition 5 Let P be a probability function on a sample space Ω. Furthermore, let h ⊆ Ω
such that P (h) < 1. The prior odds of the event h, denoted by O(h), is defined as follows:

O(h) =
P (h)

1− P (h)
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Note that conversely

P (h) =
O(h)

1 +O(h)

In probability theory the notion of conditional or posterior probability is used. The subjective
Bayesian method uses the equivalent notion of posterior odds.

Definition 6 Let P be a probability function on a sample space Ω. Let h, e ⊆ Ω such that
P (e) > 0 and P (h | e) < 1. The posterior odds of a hypothesis h, given evidence e, denoted
by O(h | e), is defined as follows:

O(h | e) =
P (h | e)

1− P (h | e)

We introduce another two notions: the positive and the negative likelihood ratios.

Definition 7 Let P be a probability function on a sample space Ω. Furthermore, let h, e ⊆ Ω
such that 0 < P (h) < 1 and P (e | hbar) > 0. The (positive) likelihood ratio λ, given h and
e, is defined by

λ =
P (e | h)

P (e | h̄)

The likelihood ratio λ often is called the level of sufficiency ; it represents the degree to which
the observation of evidence e influences the prior probability of hypothesis h. A likelihood
ratio λ > 1 indicates that the observation of e tends to confirm the hypothesis h; a likelihood
ratio λ < 1 indicates that the hypothesis hbar is confirmed to some degree by the observation
of e, or in other words that the observation of e tends to disconfirm h. If λ = 1, then the
observation of e does not influence the prior confidence in h.

Definition 8 Let P be a probability function on a sample space Ω. Let h, e ⊆ Ω be such that
0 < P (h) < 1 and P (e | h̄) < 1. The (negative) likelihood ratio λ̄, given h and e, is defined
by

λ̄ =
1− P (e | h)

1− P (e | h̄)

The negative likelihood ratio λ̄ often is called the level of necessity. A comparison of the
likelihood ratios λ and λ̄ shows that from λ > 1 it follows that λ̄ < 1, and vice versa;
furthermore we have λ = 1 if and only if λ̄ = 1.

5 The odds-likelihood form of Bayes’ theorem

The ratios λ and λ̄ can be viewed as the bounds of an interval in which lies a value indicating
the degree to which evidence e, which has been (dis)confirmed to some degree by some prior
evidence e′, really influences the prior probability of h. This value is called the effective
likelihood ratio, and will be denoted by λ′. The ratio λ′ is computed from the value P (h | e′)
according to the following definition.
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Definition 9 Let P be a probability function on a sample space Ω, and let O be the corre-
sponding odds as defined in the foregoing. Furthermore, let h, e′ ⊆ Ω. The effective likelihood
ratio λ′, given h and e′, is defined as follows:

λ′ =
O(h | e′)

O(h)

The effective likelihood ratio λ′ lies between λ and λ̄. λ′ will be closer to λ if e has been
confirmed to some degree by the observation of the evidence e′; conversely, λ′ will be closer
to λ̄ if e has been disconfirmed to some degree by the prior evidence e′.

Recall that in probability theory Bayes’ theorem may be used to incorporate evidence.
Bayes’ theorem, however, may also be used in the form of the odds.

Theorem 5 Let P be a probability function on a sample space Ω, and let O be the corre-
sponding odds as defined in the foregoing. Let h,e⊆ Ω. Furthermore, let the likelihood ratio
λ be defined as above. Then, the following property holds:

O(h | e) = λ ·O(h)

Proof: From Bayes’ theorem we have

P (h | e) =
P (e | h)P (h)

P (e)

For the complement of h we have, again from Bayes’ theorem,

P (h̄ | e) =
P (e | h̄)P (h̄)

P (e)

Dividing the first equation by the second one results in the following equation:

P (h | e)

P (h̄ | e)
=
P (e | h)P (h)

P (e | h̄)P (h̄)

from which we have

P (h | e)

1− P (h | e)
=
P (e | h)

P (e | h̄)
·

P (h)

1− P (h)

From this observation it follows that O(h | e) = λ ·O(h). 2

This alternative form of Bayes’ theorem is called odds-likelihood form of the theorem.
The theorem stated above concerns the situation where evidence e has been obtained with

absolute certainty. In case we have that e has definitely not occurred, that is, in case ē has
been observed with absolute certainty, we obtain a similar formula.

Theorem 6 Let P be a probability function on a sample space Ω, and let O be the correspond-
ing odds as defined in the foregoing. Let h, e ⊆ Ω. Furthermore, let the negative likelihood
ratio λ̄ be defined as above. Then, the following property holds:

O(h | ē) = λ̄ ·O(h)
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Again if more than one piece of evidence is available, these must be combined to obtain
single measure of uncertainty for h. Again, we first consider the case where all ei’s have been
obtained with absolute certainty. It should be evident that by assuming that the ei’s are
conditionally independent given h we have that the following property holds:

O

(

h |
n
⋂

i=1

ei

)

=
n
∏

i=1

λi O(h)

where λi = P (ei|h)

P (ei|h̄)
. Similarly, for the case where all ēi’s have been obtained with absolute

certainty, we have:

O

(

h |
n
⋂

i=1

ēi

)

=
n
∏

i=1

λ̄i O(h)

We have argued before that in general the ei’s (or ēi’s respectively) will not have been obtained
with absolute certainty, but with a probability P (ei | e

′
i) given some prior observations e′i.

From the probabilities P (ei | e
′
i) the posterior odds O(h | e′i) are obtained from applying

the combination function for propagating uncertain evidence. From these posterior odds we
then compute the effective likelihood ratios λ′i. Again under the assumption that the e′i’s are
conditionally independent given h we obtain:

O

(

h |
n
⋂

i=1

e′i

)

=
n
∏

i=1

λ′i O(h)

Since multiplication is commutative and associative, we have that the order in which the
evidence is incorporated, will be irrelevant for the resulting uncertainty with respect to h.

Finally, the odds-likelihood form of Bayes’ theorem can be very suitably represented in
logarithmic form:

logO

(

h |
n
⋂

i=1

ei

)

= log
n
∏

i=1

λi O(h)

=
n
∑

i=1

λi + logO(h)

=
n
∑

i=0

ωi

where ωi = log λi, for i = 1, . . . , n, and ω0 = logO(h).


