(Artificial) Neural Networks

The real thing

• Brain with vessels:

Motor and sensory neural pathways:

1

Neuronal Tracts and Cells

• Microscopic cross section brain:

• Individual neuron (nerve cell):

_

Computational Properties of the Brain

- Content addressability: finding information by activating relevant units (in parallel)
- Graceful degradation: reduction in the number of known features yields a gradual decrease in quality of the response
- Default assignment: assuming certain properties in the absence of information, using analogies
- Spontaneous generalisation: abstraction from specific characteristics
- Robustness: the brain may still be functioning reasonably well despite considerable damage

Artificial Neuron

• Schema biological neuron:

• Schema artificial neuron:

- Σ : summation of weighed inputs
- Activation threshold: produce only output when activity is above a threshold

Some Useful Maths Notations

Vector:

$$\mathbf{v} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

ullet The transpose of a vector ${f v}$: ${f v}^T$:

$$\mathbf{v}^T = [x_1 \ x_2 \ \cdots \ x_n]$$

if

$$\mathbf{v} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

 \bullet Inner product of two vectors \mathbf{v} and \mathbf{w} :

$$\mathbf{v}^{T}\mathbf{w} = \begin{bmatrix} x_{1} \ x_{2} \ \cdots \ x_{n} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$
$$= x_{1}y_{1} + x_{2}y_{2} + \cdots + x_{n}y_{n}$$
Note: $\mathbf{v}^{T}\mathbf{w} = 0$ if $\mathbf{v} \perp \mathbf{w}$

5

Some Maths Notations (continued)

• $p \times n$ Matrix:

$$M = \begin{bmatrix} m_{1,1} & m_{1,2} & \cdots & m_{1,n} \\ m_{2,1} & m_{2,2} & \cdots & m_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ m_{p,1} & m_{p,2} & \cdots & m_{p,n} \end{bmatrix}$$

• Product of matrix and vector:

$$M\mathbf{v} = \begin{bmatrix} m_{1,1}x_1 + m_{1,2}x_2 + \dots + m_{1,n}x_n \\ m_{2,1}x_1 + m_{2,2}x_2 + \dots + m_{2,n}x_n \\ \vdots \\ m_{p,1}x_1 + m_{p,2}x_2 + \dots + m_{p,n}x_n \end{bmatrix}$$

• Partial differentiation:

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

with for example $f(x,y) = x^2 + 2xy + y^2$, then:

$$\frac{\partial f}{\partial x}(x,y) = 2x + 2y$$

$$\frac{\partial f}{\partial y}(x,y) = 2x + 2y$$

6

Artificial Neuron of McCulloch and Pitts

- Threshold function: $f: \mathbb{Z} \to \mathbb{Z}$, with y = f(a)
- Activity at time t:

$$a(t) = w_1 \cdot x_1(t) + w_2 \cdot x_2(t) + \dots + w_n \cdot x_n(t)$$

= $\sum_{i=1}^n w_i \cdot x_i(t)$
= $\mathbf{w}^T \mathbf{x}(t)$

where $\mathbf{w}^T = [w_1 w_2 \cdots w_n]$, and

$$\mathbf{x}(t)^T = [x_1(t)x_2(t)\cdots x_n(t)]$$

are (the transposes of) vectors

•
$$o(t+1) = f(a(t)) = f(\mathbf{w}^T \mathbf{x}(t))$$

Example of Activation Function

(ignoring time)

$$o = f(\mathbf{w}^T \mathbf{x})$$

with

$$f(a) = \begin{cases} 1 & \text{if } a \ge d \\ 0 & \text{otherwise} \end{cases}$$

for a given threshold value $d \in \mathbb{Z}$.

Modelling of **logical AND** with $\mathbf{w}^T = [11]$ and $\mathbf{x}^T = [x_1 \ x_2]$:

x_1	x_2	$x_1 \wedge x_2$	$\mathbf{w}^T\mathbf{x}$
1	1	1	$\begin{bmatrix} 1 \ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2$
1	0	0	$\begin{bmatrix} 1 \ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1$
0	1	0	$\begin{bmatrix} 1 \ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1$
0	0	0	$\begin{bmatrix} 1 \ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$

Conclusion: **choose** d = 2 (*linearly separable*)

Example of Activation Function

(ignoring time)

$$o = f(\mathbf{w}^T \mathbf{x})$$

with

$$f(a) = \begin{cases} 1 & \text{if } a \ge d \\ 0 & \text{otherwise} \end{cases}$$

for a given threshold value $d \in \mathbb{Z}$.

Modelling of **logical OR** with $\mathbf{w}^T = [1 \ 1]$ and $\mathbf{x}^T = [x_1 \ x_2]$:

x_1	x_2	$x_1 \lor x_2$	$\mathbf{w}^T \mathbf{x}$
1		1	$\begin{bmatrix} 1 \ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2$
1	0	1	$[1\ 1]\left[\begin{array}{c}1\\0\end{array}\right]=1$
0	1	1	$[1\ 1]\left[\begin{array}{c} 0\\1\end{array}\right]=1$
0	0	0	$\begin{bmatrix} 1 \ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$

Conclusion: **choose** d = 1

9

Generalisation of the McCulloch and Pitts' Neuron

- Continuous (instead of discrete) input and output values, i.e. $\mathbf{x} \in \mathbb{R}^n$ and $o(t+1) \in \mathbb{R}$
- Activation function: $f: \mathbb{R} \to \mathbb{R}$
- Typical example: $f: \mathbb{R} \to [1,0]$, with f(a) = a (identity; what does it do?)

10

Other Continuous Activation Functions

• Logistic sigmoid function: $f: \mathbb{R} \to [0, 1]$:

• Hyperbolic tangent:

The Learning Problem

- Normally, the weights are not known, and must be learnt from a dataset with problem cases:
 - Supervised learning target output known for each case – aim: to learn the relationship between input pattern and output as well as possible;
 - Unsupervised learning target output unknown – aim: to discover correlations and similarities among the input patterns.
- If the activation function is differentiable, we can analyse the behaviour of the learning strategy

Perceptron

- Perceptron = one-layer feedforward neural network
- One activation function: $f: \mathbb{R} \to \mathbb{R}$
- Input vector $\mathbf{x}^T = [x_0 \cdots x_n]^T$ is transformed into output vector $\mathbf{o}^T = [o_1 \cdots o_p]^T$: $o_i = f(a_i), \ i = 1, \dots, p$, where

$$a_i = \sum_{k=0}^n w_{ik} x_k$$

with f activation function, and \boldsymbol{w}_{ik} weights

Perceptron: Weight Matrix

0......

Note that:

$$a_i = \sum_{k=0}^n w_{ik} x_k$$

for $i=1,\ldots,p$, and $x_0=1$ (used to learn threshold) can also be written compactly as:

$$\mathbf{a} = \begin{bmatrix} w_{10} & w_{11} & w_{12} & \cdots & w_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ w_{p0} & w_{p1} & w_{p2} & \cdots & w_{pn} \end{bmatrix} \mathbf{x}$$
$$= W\mathbf{x}$$

with W the weight matrix

14

Perceptron Learning

General approach:

 Given a dataset T (training set) consisting of m training examples:

$$T = \{ (\mathbf{v}^q, \mathbf{d}^q) \mid q = 1, \dots, m \}$$

where:

- $-\mathbf{v}^q$: input vector
- d^q : target pattern, i.e. pattern that must be learnt
- Perceptron output vector \mathbf{o}^q for input vector \mathbf{v}^q , $q=1,\ldots,m$
- Goal: to find weight matrix W, such that output vector \mathbf{o}^q is closest to target pattern \mathbf{v}^q , for each example q with $1 \le q \le m$
- Result: optimal weight matrix W^*

Perceptron Learning: Schematic

Dataset

When is Output Closest to Target Patterns?

- Error measure E(W), with W weight matrix; measure of how close \mathbf{o}^q to \mathbf{d}^q , for $q=1,\ldots,m$
- Possible definition *sum-of-squares error*:

$$E(W) = \sum_{q=1}^{m} E^{q}(W)$$

where $E^q(W)$ is the error between output \mathbf{o}^q and target \mathbf{d}^q , i.e.

$$E^{q}(W) = \frac{1}{2} \sum_{i=1}^{p} (o_{i}^{q} - d_{i}^{q})^{2}$$

(Note that $E^q(W) = 0$ if $o^q = d^q$)

17

Incremental Perceptron Learning Algorithm

$$\begin{array}{l} \text{for } r \leftarrow 1,2,\dots \text{ do } \ / \ \text{iteration} \\ \text{for } q \leftarrow 1 \text{ to } m \text{ do } \ / \ \text{example} \\ \text{for } i \leftarrow 1 \text{ to } p \text{ do } \ / \ \text{output} \\ \text{for } k \leftarrow 1 \text{ to } n \text{ do } \ / \ \text{input} \\ w_{ik}^{(r+1)} \leftarrow w_{ik}^{(r)} + \Delta w_{ik}^{(r)} \\ \text{od} \\ \text{od} \\ \text{od} \\ \text{until } \Delta W = 0 \end{array}$$

 Δw_{ik} : change in the direction of the minimum of E(W), i.e. make E(W) as small as possible

From now on, we assume that we only have a single output node, i.e. $\mathbf{o} = [o]$, and W is a vector \mathbf{w}

18

How to Determine Δw_{ik} ?

Patterns: negative class examples:

$$C^- = \{(1,2), (3,2), (5,0.25)\}$$

and positive class examples:

$$C^+ = \{(1.5, 6), (2.5, 5), (4, 3), (5, 7)\}$$

are clearly separated from each other by the decision line x + 2y = 8.

Note that $-8+x+2y = [-8, 1, 2][1xy]^T = \mathbf{w}^T \mathbf{x}$

Examples:

- For $(1,2) \in C^-$: -8+1+4=-3<0
- For $(1.5, 6) \in C^+$: -8 + 1.5 + 12 = 5.5 > 0

How to Determine Δw_{ik} ?

- New negative pattern: $(x,y) = (0.8,4.3) \in C^-$, but x + 2y 8 > 0 (misclassified by w)
- Solution: modify weight vector w, e.g.

$$\mathbf{w} = [-8, 1, 2] \Rightarrow \mathbf{w}' = [-15, 2, 3]$$

i.e. the decision line is now 2x + 3y = 15

Geometry of Decision Hyperplane

$$\mathbf{w}^T \mathbf{x} = [-8, 1, 2][1 \ x \ y]^T = 0$$

- is the intersection of the plane z=x+2y-8 with the z=0 plane

21

How to Determine Δw_{ik} ?

Remarks:

- For the decision hyperplane it holds that $\mathbf{w}^T \mathbf{x} = \mathbf{0}$, i.e. $\mathbf{w} \perp \mathbf{x}$ (w and x orthogonal)
- Suppose that for an input vector $\mathbf{x} \in C^+$ it holds that $\mathbf{w}^T\mathbf{x} < \mathbf{0}$, then \mathbf{w} should be moved to the positive site of the decision hyperplane:

$$\mathbf{w}' = \mathbf{w} + c \cdot \mathbf{x}$$

for small $c \in \mathbb{R}_0^+$

• Suppose that for an input vector $\mathbf{x} \in C^-$ it holds that $\mathbf{w}^T\mathbf{x} > \mathbf{0}$, then \mathbf{w} should be moved to the negative site of the decision hyperplane:

$$\mathbf{w}' = \mathbf{w} - c \cdot \mathbf{x}$$

for small $c \in \mathbb{R}_0^+$

22

Example

Positive and negative examples:

$$C^+ = \{(1,1), (1,-1), (0,-1)\}\$$

 $C^- = \{(-1,-1), (-1,1), (0,1)\}$

Fill up with 1's, yielding instances of \mathbf{x} , i.e. the training set T:

$$T = \{(1, 1, 1), (1, 1, -1), (1, 0, -1), (1, -1, -1), (1, -1, 1), (1, 0, 1)\}$$

Fixed increment rule:

$$\mathbf{w}^{(r+1)} = \left\{ \begin{array}{ll} \mathbf{w}^{(r)} + c\mathbf{x}^{(r)} & \text{if } \mathbf{w}^{(r)T}\mathbf{x}^{(r)} \leq \mathbf{0} \\ & \text{and } \mathbf{x}^{(r)} \in C^{+} \\ \mathbf{w}^{(r)} - c\mathbf{x}^{(r)} & \text{if } \mathbf{w}^{(r)T}\mathbf{x}^{(r)} \geq \mathbf{0} \\ & \text{and } \mathbf{x}^{(r)} \in C^{-} \\ \mathbf{w}^{(r)} & \text{otherwise} \end{array} \right.$$

Example c = 1 (continued)

		T				
Pattern	Weight		Update	New		
Iteration 1						
[1, 1, 1]	[0, 1, 0]	1	No	[0, 1, 0]		
[1, 1, -1]	[0, 1, 0]	1	No	[0, 1, 0]		
[1, 0, -1]	[0, 1, 0]	0	Yes	[1, 1, -1]		
[1, -1, -1]	[1, 1, -1]	1	Yes	[0, 2, 0]		
[1, -1, 1]	[0, 2, 0]	-2	No	[0, 2, 0]		
[1, 0, 1]	[0, 2, 0]	0	Yes	[-1, 2, -1]		
Iteration 2						
[1, 1, 1]	[-1, 2, -1]	0	Yes	[0, 3, 0]		
[1, 1, -1]	[0, 3, 0]	3	No	[0, 3, 0]		
[1, 0, -1]	[0, 3, 0]	0	Yes	[1, 3, -1]		
[1, -1, -1]	[1, 3, -1]	-1	No	[1, 3, -1]		
[1, -1, 1]	[1, 3, -1]	-3	No	[1, 3, -1]		
[1, 0, 1]	[1, 3, -1]	0	Yes	[0, 3, -2]		
Iteration 3						
[1, 1, 1]	[0, 3, -2]	1	No	[0, 3, -2]		
[1, 1, -1]	[0, 3, -2]	5	No	[0, 3, -2]		
[1, 0, -1]	[0, 3, -2]	2	No	[0, 3, -2]		
[1, -1, -1]	[0, 3, -2]	-1	No	[0, 3, -2]		
[1, -1, 1]	[0, 3, -2]	-5	No	[0, 3, -2]		
[1, 0, 1]	[0, 3, -1]	-2	No	[0, 3, -2]		

Various Lines

- $0 \cdot 1 + 1x + 0y = x = 0$
- 1 + 1x 1y = 0
- -1 + 2x 1y = 0
- 1 + 3x 1y = 0
- 0 + 3x 2y = 0

Resulting Decision Line

Positive and negative examples:

$$C^+ = \{(1,1), (1,-1), (0,-1)\}\$$

 $C^- = \{(-1,-1), (-1,1), (0,1)\}$

Resulting weight: $\mathbf{w}^T = [0, 3, -2]$, i.e. decision line 3x - 2y = 0

26

Analysis of Fixed Increment Rule

$$\mathbf{w}^{(r+1)} = \left\{ \begin{array}{ll} \mathbf{w}^{(r)} + c\mathbf{x}^{(r)} & \text{if } \mathbf{w}^{(r)}^T\mathbf{x}^{(r)} \leq \mathbf{0} \\ & \text{and } \mathbf{x}^{(r)} \in C^+ \\ \mathbf{w}^{(r)} - c\mathbf{x}^{(r)} & \text{if } \mathbf{w}^{(r)}^T\mathbf{x}^{(r)} \geq \mathbf{0} \\ & \text{and } \mathbf{x}^{(r)} \in C^- \\ \mathbf{w}^{(r)} & \text{otherwise} \end{array} \right.$$

Simplification: if $\mathbf{x} \in C^-$, then replace \mathbf{x} by $-\mathbf{x}$, and merge C^+ and C^-

Example: If

$$T = \{(1,1,1), (1,1,-1), (1,0,-1), (1,-1,-1), (1,-1,1), (1,0,1)\}$$

then

$$T' = \{(1,1,1), (1,1,-1), (1,0,-1), (-1,1,1), (-1,1,-1), (-1,0,-1)\}$$

The fixed increment rule then becomes:

$$\mathbf{w}^{(r+1)} = \begin{cases} \mathbf{w}^{(r)} + c\mathbf{x}^{(r)} & \text{if } \mathbf{w}^{(r)}^T \mathbf{x}^{(r)} \le 0\\ \mathbf{w}^{(r)} & \text{if } \mathbf{w}^{(r)}^T \mathbf{x}^{(r)} > 0 \end{cases}$$

Analysis of Fixed Increment Rule

$$\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} + \Delta \mathbf{w}$$

where:

- (1) the change in \mathbf{w} should change the mean square error $E(\mathbf{w})$ as fast as possible
- (2) $c \in \mathbb{R}_0^+$

It is known that (1) is true when $\Delta \mathbf{w} = -c\nabla E$, where

$$\nabla E = \begin{bmatrix} \partial E/\partial w_1 \\ \vdots \\ \partial E/\partial w_n \end{bmatrix}$$

Let $e_r(\mathbf{w}^{(r)}, \mathbf{x}^{(r)}) = \frac{1}{2}(|\mathbf{w}^{(r)}^T \mathbf{x}^{(r)}| - \mathbf{w}^{(r)}^T \mathbf{x}^{(r)}),$ for iteration r

Note that $e_r(\mathbf{w}^{(r)}, \mathbf{x}^{(r)})$ has a minimum when $\mathbf{w}^{(r)^T}\mathbf{x}^{(r)} > 0$.

Fixed Increment Rule (continued)

$$\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} - c\nabla E$$

then:

$$\frac{\partial e_r(\mathbf{w}^{(r)^T}\mathbf{x}^{(r)})}{\partial \mathbf{w}^{(r)}} = \frac{1}{2} (\mathbf{x}^{(r)} Q(\mathbf{w}^{(r)^T}\mathbf{x}^{(r)}) - \mathbf{x}^{(r)})$$

where

$$Q(\mathbf{w}^{(r)^T}\mathbf{x}^{(r)}) = \begin{cases} 1 & \text{if } \mathbf{w}^{(r)^T}\mathbf{x}^{(r)} > 0\\ -1 & \text{if } \mathbf{w}^{(r)^T}\mathbf{x}^{(r)} \le 0 \end{cases}$$

Resulting rule:

$$\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} + \frac{c}{2} \cdot (\mathbf{x}^{(r)} - \mathbf{x}^{(r)} Q(\mathbf{w}^{(r)}^T \mathbf{x}^{(r)}))$$

29

Multilayer Feedforward Neural Networks

Limitation of one-layer feedforward neural network:

Modelling of **logical XOR** with $\mathbf{w}^T = [1\,1]$ and $\mathbf{x}^T = [x_1\,x_2]$:

x_1	x_2	$x_1 \otimes x_2$	$\mathbf{w}^T \mathbf{x}$
1	1	0	$\begin{bmatrix} 1 \ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2$
1	0	1	$\begin{bmatrix}1\ 1\end{bmatrix}\begin{bmatrix}1\ 0\end{bmatrix}=1$
0	1	1	$\begin{bmatrix} 1 \ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1$
0	0	0	$\begin{bmatrix} 1 \ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$

Conclusion: *not linearly separable* (i.e. results cannot be separated by a decision line); solution: *multilayer* network

30

Multilayer Feedforward Neural Networks

- L layers, $l=0,\ldots,L$, with l=0: input layer; l=L: output layer
- Output o_i , $i=1,\ldots,n_l$, of every layer:

$$o_i = f_i(a_i) = f_i \left(\sum_{k=0}^{n_{l-1}} w_{ik} o_k \right)$$

with n_l number of units in layer l

Universality property: ML networks universal, nonlinear discriminant functions

Solution of XOR problem

d are thresholds of the activation function

Example:

- Let $x_1=x_2=1$, then hidden layer $a_1=a_2=1\times 1+1\times 1=2$
- $o_1 = 1$, as 2 > 0.5; $o_2 = 1$, as 2 > 1.5
- Output layer: $a = 1 \times 1 + 1 \times -2 = -1$
- o = 0 as -1 < 0.5

Back-propagation Learning

- \bullet A multilayer neural network cannot be trained by only comparing outputs \mathbf{o}^q to targets \mathbf{d}^q
- **Solution:** back-propagation:
 - propagate input from the input layer to (final) output layer
 - error vector (= difference target vector and output vector) fed into the network
 - iterate until converged to a solution within satisfactory bounds

Back-propagation

$$\begin{split} \delta_i^{l-1} &= f'(a_i) \sum_{j=1}^{n_l} w_{ji} \delta_j^l, \text{ for layer } l-1, \text{ and } \delta_j^L \\ \text{the difference between output } o_j^L \text{ and target } d_j \end{split}$$