(Artificial) Neural Networks

The real thing

e Brain with vessels:

Neuronal Tracts and Cells

e Microscopic cross section brain:

s

[Uy e i
e Individual neuron (nerve cell):

| b g PO |
" dendrite.. *+

g - -
& ,. ! ﬁ;“'_" 5
W

Computational Properties
of the Brain

Content addressability: finding information
by activating relevant units (in parallel)

Graceful degradation: reduction in the num-
ber of known features yields a gradual de-
crease in quality of the response

Default assignment: assuming certain prop-
erties in the absence of information, using
analogies

Spontaneous generalisation: abstraction
from specific characteristics

Robustness: the brain may still be func-
tioning reasonably well despite considerable
damage

Artificial Neuron

e Schema biological neuron:

A = ? idg/ynapse j}
=

\h

dendrites

e Schema artificial neuron:

Output
time t+1

activity |Threshold

\fi\ Activation
Py

weights

— > summation of weighed inputs

— Activation threshold: produce only out-
put when activity is above a threshold

4

Some Useful Maths Notations Some Maths Notations (continued)

e Vector: e p X n Matrix:

X
1 mi1 mi2 - Mip

X
v=|"? mo1 Moo - Moy,
In ’
mpa]- mp72 T mp’n
e The transpose of a vector v: vZI:

T
v =[ryxo - xp] m1,121 +my %2+ -+ my,Tn

My = | M21%1+ 2,2_2+ + mo pTn

e Product of matrix and vector:

T ’
D mplel + mP72x2 + e + Mp,nTn

vV =
e Partial differentiation:

x
" F RxR—>R
with for example f(z,y) = z2 4 2zy + y2,
Y1 then:

Y2

e Inner product of two vectors v and w:

viw = [z120 - zn]

0
—f(sv, y) =2z + 2y
ox

Yn
= z1y1 +zoy2+ - + Tnyn ?(a}, y) =2z + 2y
Yy

Tw=0ifvlw

Note: v

Artificial Neuron of Example of Activation Function
McCulloch and Pitts (ignoring time)

— T
Xt " y=f(a) 0= fwix)

w
X,(1) —2 - .

o(t+1) 1 ifa>d

fla) = { 0 otherwise

for a given threshold value d € Z.

n
Xn(t) d a

e Threshold function: f :7Z — 7Z, with y =
f(a) Modelling of logical AND with w! = [11] and
T _ :
e Activity at time ¢: x' = [z1 22
a(t) = wy -x1(t) +wo-x2(t) + -+ + wn - zp(t) Tl | T2 | XTI NT2 w
= Y wi-xi(t) 1)1 1 [11]
= wlx(t)

>

0 [11]
where w! = [wiws - - - wy], and

x()T = [z1(H)zo(t) - - 2n(t)]

are (the transposes of) vectors 0 [11]

0 [11]

OO0 RO Or rKr|lN

° ‘O(t +1) = f(a(®) = F(wTx(1) ’ Conclusion: choose d = 2 (linearly separable)
38

Example of Activation Function
(ignoring time)

o= f(wlx)

1 ifa>d
0 otherwise

@ ={
for a given threshold value d € Z.

Modelling of logical OR with w! = [1 1] and
xI' = [m]_ :UQ]Z

”

o | x1 VT2 w
1 1 [11]

1 [11]
1 [11]

0 [11]

OO0 RO Or rKrl S

Conclusion: choose d =1

Generalisation of the McCulloch
and Pitts’ Neuron

e Continuous (instead of discrete) input and
output values, i.e. x e R®" and o(t+ 1) € R

e Activation function: f: R — R

e Typical example: f:R — [1,0], with f(a) =
a (identity; what does it do?)

Other Continuous Activation
Functions

e Logistic sigmoid function: f:R — [0, 1]:

1

"1/ +expx) —

08

06 /—
04l p

02

0

0.2 0.4 0.6 0.8

' 1
I =1y
e Hyperbolic tangent:

1

08|

06

04

0.2+

0,

The Learning Problem

e Normally, the weights are not known, and
must be learnt from a dataset with problem
cases:

— Supervised learning — target output
known for each case — aim: to learn the
relationship between input pattern and
output as well as possible;

— Unsupervised learning — target output
unknown — aim: to discover correlations
and similarities among the input pat-
terns.

e If the activation function is differentiable,
we can analyse the behaviour of the learn-
ing strategy

Perceptron

Output

e Perceptron = one-layer feedforward neural
network

e One activation function: f: R —R
e Input vector xT' = [zq - - - 2] is transformed
into output vector ol = [0 ---0p]T":
o; = f(a;), 1=1,...,p, where
n
a; = Z WikTh
k=0
with f activation function, and w;; weights

13

Perceptron: Weight Matrix
0p 02 Op Output

t

Wi,

Xo Xy Xz X3

Note that:

n
a; = Z WikT
k=0

for i = 1,...,p, and zg = 1 (used to learn
threshold) can also be written compactly as:

wip wil w1l -t Wip
’wpo wpl wp2 ccc Wpn
= Wx
with W the weight matrix

Perceptron Learning

General approach:
e Given a dataset T (training set) consisting
of m training examples:
T={(v%d9)|q=1,...,m}
where:
— v?%: input vector

— d4: target pattern, i.e. pattern that must
be learnt

e Perceptron output vector o9 for input vec-
torvl, g=1,...,m

e Goal: to find weight matrix W, such that
output vector o? is closest to target pattern
v4, for each example ¢ with 1 <¢g<m

e Result: |optimal weight matrix W*

Perceptron Learning: Schematic

Output

Difference?

Dataset

When is Output Closest
to Target Patterns?

e Error measure E(W), with W weight ma-
trix; measure of how close o9 to d4, for
g=1,....,m

e Possible definition — sum-of-squares error:

m
E(W)= > EYW)
=1
where EY(W) is the error between output
o? and target d9, i.e.

1 P
BIW) =23 (of - d?)?
=1

(Note that E9(W) =0 if 04 = d9)

Incremental Perceptron
Learning Algorithm

for r« 1,2,... do // iteration
for g+ 1 to m do // example
for i < 1 to p do // output
for k< 1 ton do // input
wig T =)+ Awf)
od
od
od
until AW =0

Aw;,: change in the direction of the minimum
of E(W), i.e. make E(W) as small as possible

From now on, we assume that we only have a
single output node, i.e. o = [o], and W is a
vector w

How to Determine Aw;.?
7 T T T T T

hd
00 1 . 2 3 4 5
Patterns: negative class examples:

Cc™ =1{(1,2),(3,2),(5,0.25)}
and positive class examples:
ct ={(1.5,6),(2.5,5),(4,3),(5,7)}

are clearly separated from each other by the
decision line x 4+ 2y = 8.
Note that —84z+2y =[-8, 1,2][1zy]T = wlx
Examples:

e For (1,2)eC™: -84+1+4+4=-3<0

e For (1.5,6) e CtT: —84+15412=55>0

19

How to Determine Aw,;;.?

4

e New negative pattern: (z,y) = (0.8,4.3) €
C~, but z 42y —8 > 0 (misclassified by w)

e Solution: modify weight vector w, e.g.
w=[-8,1,2] = w = [-15,2, 3]

i.e. the decision line is now 2z 4 3y = 15

20

Geometry of Decision Hyperplane How to Determine Aw;;?

Remarks:

e For the decision hyperplane it holds that
wlx =0, i.,e. w Lx (w and x orthogonal)

Suppose that for an input vector x € Ct+
it holds that w/x < 0, then w should be
moved to the positive site of the decision
hyperplane:

w=w+4c-x
for small ¢ € RY

. - Suppose that for an input vector x € C—
w x=[-8,1,2][1zy]" =0 it holds that w/x > 0, then w should be

e is the intersection of the plane z = z+2y—8 moved to the negative site of the decision
with the z = 0 plane hyperplane:

e modifying w = moving (possibly tilting) w=w-c-x
the hyperplane for small ¢ € R

Example Example ¢ =1 (continued)

Pattern Weight wTx Update New
Iteration 1
e R 7 R T 3
— y Ly T) o)+
C - {(_15_1)7(_151)7(071)} [1707_1] [07170] 0 Yes [171’_1]
[1,-1,-1] [1,1,-1] 1 Yes [0,2,0]
[1,-1,1] [0,2,0] -2 No [0,2,0]
[1,0,1] [0,2,0] 0 Yes [-1,2,-1]
Iteration 2
[1,1,1] [-1,2,-1] 0 Yes [0,3,0]
T=1{(1,1,1),(1,1,-1),(1,0,-1), [1,1,-1] [0,3,0] 3 No [0,3,0]
(1,-1,-1),(1,-1,1),(1,0,1)} [1,0,-1] [0, 3,0] 0 Yes [1,3,-1]
[1,—-1,-1] [1,3,-1] -1 No [1,3,-1]
[1,—-1,1] [1,3,-1] -3 No [1,3,-1]
Fixed increment rule: [1,0,1] [1,3,-1] 0 [0,3, 2]
Iteration 3
w4 ex(® if WX < 0 1,1,1 [0,3,-2] 1 [0,3, 2]
and x(" e ¢t [1,1,-1] [0,3,-2] 5 [0,3, 2]
witD =1 00 - @™ if w® Tk > 0 [1,0,-1] [0,3,-2] 2 0,3, —2]
and x(M € o [1,-1,-1] [0,3,-2] -1 0,3, —2]
[1,-1,1] [0,3,-2] -5 [0,3,-2]
[1,0,1] [0,3,—-1] -2 [0,3, —2]

24

Positive and negative examples:

Fill up with 1's, yielding instances of x, i.e. the
training set T':

w(r) otherwise

Various Lines

-0.5

e 0:-14+1z4+0y=a2=0

e 1+ 1x—1y=0

e —14+2x—1y=0

e 1+4+3x—1y=0
0+3x—2y=0

Resulting Decision Line

Positive and negative examples:
= {(171)7(17_1)7(07_1)}
C_ = {(_17_1)7(_171)7(071)}

Resulting weight: w! = [0,3,—2], i.e. decision
line 3x —2y =0

Analysis of Fixed Increment Rule
w(r) + ex(™)if W(T)TX(T) <0
and x(M) e ct
w() — ex() if W(T)Tx(r) >0
and x(") e C—-
w(r) otherwise

WD) —

Simplification: if x € C—, then replace x by —x,
and merge Ct and C~

Example: If

T={(1,1,1),(1,1,-1),(1,0,-1),
(1,-1,-1),(1,-1,1),(1,0,1)}

T/ = {(15 17 1)7 (]-a 17 _1)5 (17 07 _1)7
(_17 17 1)3 (_17 17 _1)7 (_1507 _1)}

The fixed increment rule then becomes:

WD) — w4 oex™ if wTx™ <o
w() if w x>0

27

Analysis of Fixed Increment Rule

w(tD) — w() L Aw
where:

(1) the change in w should change the mean
square error E(w) as fast as possible

(2) ceRY

It is known that (1) is true when Aw = —cVFE,
where
8E/8w1
VE = :

Let e, (w() x(M) = %(|W(T)Tx(r)| — Wk,
for iteration r

Note that e,(w(,x(")) has a minimum when
w®Tx() > 0.

Fixed Increment Rule (continued)

w1 = w() _ ovE
then:

8er(w(7")Tx(7")) 1

T
e — 5(X(T) Qw7 x(My — x(r)y

where

T
AT)y) 1 if w(x() > 0
w\x =
oA) { 1 if wTx(<o

Resulting rule:

w(rtD) = () 4 % (x™ — xMw ™ k(M)

Multilayer Feedforward
Neural Networks

Limitation of one-layer feedforward neural net-
work:

Modelling of logical XOR with w! = [11] and
x1' = [z1 zo]:

>

r1 | T2 | T1 ®xD w
1)1 0 [11]

1|0 1 [11]

01 1 [11]

T T T 1T
OO0 O Or +HKr N
L i L i i

olol| o 1]/

Conclusion: not linearly separable (i.e. results
cannot be separated by a decision line); solu-
tion: multilayer network

Multilayer Feedforward
Neural Networks

e [layers, | = 0,...,L, with [= 0: input
layer; | = L: output layer

e Output o;, © =1,...,n;, of every layer:

n—1
0; = fia;) = f; (Z wik0k>
k=0
with n; number of units in layer [

e Universality property: ML networks univer-
sal, nonlinear discriminant functions

Solution of XOR problem

d are thresholds of the activation function

Example:

e Let 1 = zo = 1, then hidden layer a1 =
ap=1x14+1x1=2

@0y =1,a2>0500=1,as2>15
e QOutput layer: a=1x14+1x -2=-1

e o=0as —-1<0.5

Back-propagation

Back-propagation Learning

e A multilayer neural network cannot be
trained by only comparing outputs o9 to
targets d¢

d31S A4vMHO4

e Solution: back-propagation:

— propagate input from the input layer to
(final) output layer

— error vector (= difference target vector
and output vector) fed into the network

NOILYOVdOdd-XOvd

— iterate until converged to a solution
within satisfactory bounds

8t = f'(ag) g wydl, for layer I — 1, and 6F
the difference between output o]L and target d;

34

