Bayesian Models and

Logistic Regression

Probability theory as basis for the construction
of classifiers:

Multivariate probabilistic models

e Independence assumptions

Naive Bayesian classifier

e Forest-augmented networks (FANS)

Approximation: logistic regression

Notation

e Random (= statistical = stochastic) vari-
able: upper-case letter, e.g. V or X, or
upper-case string, e.g. RAIN

e Binary variables: take one of two values,
X = true (abbreviated z) and X = false
(abbreviated —x)

e Conjunctions: (X = z) A (Y = y) as
X=z,Y =y

e Templates: X,Y means X = z,Y =y, for
any value z,y, i.e. the choice of the values
x and y does not really matter

e Yy P(X) = P(x) + P(—x), where X is bi-
nary

Joint probability distribution

Joint (= multivariate) distribution:
P(X1,X2,...,Xn)
Example of joint probability distribution:

P(X1,X5,X3) with:
P($1,$2,SC3) = 0.1
P(ﬂxl, o, m3) = 0.05
P(xl,—mcg,xg,) = 0.10

P(x1,25,—x3) = 0.0
P(-z1,—xo,23) = 0.3
P(:pl,—'scg,—'sc3) = 0.2
P(—z1,x,-23) = 0.1

P(—zq1,—x2,~x3) = 0.15

Note that: Yy, x, x5 P(X1, X0, X3) =1
Marginalisation:

P(z3) = Z P(Xq,X5,23) = 0.55
X1,X2

Chain rule
Definition of conditional probability distribu-
tion:

P(X1,Xo,...,Xn)
yeeesAn

= P(X1,Xo,...,Xpn) =
P(X1 | X, X0)P(Xa, .., Xn)

Furthermore,

P(X273Xn) =
P(X2 | X3,...,Xn)P(X3,...,Xn)

P(Xp-1,Xn) = P(Xp-1|Xn)P(Xn)
P(Xp) = P(Xn)

Chain rule yields factorisation:

P(A X)) =[] Pl A Xi)
i=1

i=1 k=i+1




Chain rule - digraph

Xy Xy

B G
(1) (2)

Factorisation (1):
P(X1,X2,X3) = P(X1]X2,X3)-
P(X2 | X3)P(X3)
Other factorisation (2):

P(X1,X2,X3) = P(Xo|Xq1,X3)-
P(X1 | X3)P(X3)

= different factorisations possible

Does the chain rule help?

X3

P(X1,X5,X3) = P(X1]X2,X3)-
P(X> | X3)P(X3)

i.e. we need:
P(x1 | 22,23)
P(zy | ~x2,23)
P(z1 | 20, x3)
P(xy | ~wp, ~x3)
P(z3 | z3)
P(x3 | —3)
P(z3)

Note P(—x1 | o,23) = 1 — P(z1 | zp,23), etc.
= 7 probabilities required (as for P(X1, X5, X3))

Use stochastic independence

P(X1,X2,X3) = P(X2|X1,X3)-
P(X3 | X1)P(X1)

Assume that X5 and X3 are conditionally in-
dependent given X7j:

P(X> | X1,X3) = P(X2 | X1)

and

P(X3 | X1,X5) =P(X3]|X1)

Notation: Xoll X3 ‘ X1, X3l X5 | X1

X3 (X3

——

Only 5 =2+ 2+ 1 probabilities (instead of 7)

Definition Bayesian Network (BN)

A Bayesian network B is a pair B = (G, P),
where:

e G = (V(@),A(R®)) is an acyclic directed graph,
with
- V(G) ={Xq,X5,...,Xn}, aset of vertices
(nodes)

- A(@) CV(G) x V(G) a set of arcs

e P : p(V(G)) — [0,1] is a joint probability
distribution, such that

P(V(G)) = [[ P(X; | ma(X))
=1

where m(X;) denotes the set of immediate
ancestors (parents) of vertex X; in G




Reasoning: evidence propagation
Example Bayesian network 9 propag

e Nothing known:

|P(FL,PN,MY,FE, TEMP)|
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Bayesian network structure
learning Special form Bayesian networks
Bayesian network B = (G, P), with Problems:
e digraph G = (V(G), A(@)), and e for many BNs too many probabilities have
e probability distribution to be assessed
PV)= ] PEX|=(X)) e complex BNs do not necessarily yield better
XeV(Q@) classifiers
e complex BNs may yield better estimates to
.o . L .
o— ./%{/ (6] ° ° the probability distribution
../ [e) \. e
¢ 0 %o ® © o pectram Solution:
(€] use simple probabilistic models for classifica-
naive Bayesian tree—augmented tion:
network Bayesian network '
general Bayesian (TAN) e naive (independent) form BN
networks
‘\ /' e Tree-Augmented Bayesian Network (TAN)

Unrestricted Restricted Structure Learning .
Structure e Forest-Augmented Bayesian Network (FAN)

Learning




Naive (independent) form BN

e (C is a class variable

e The evidence variables E; in the evidence
E C{F1,...,En} are conditionally indepen-
dent given the class variable C

This yields, using Bayes' rule:

P(E | C)P(C)

P(C|&) =
e PEE)
with, as E;jlLE; | C, for i # j:

PE|C) = [[ P(E|OC)
E€E

by cond. ind.

P(E) = Y P(E|C)P(C) marg. & cond.

c

Classifier: cmax = arg maxqg P(C | &)

Example of naive Bayes

P(myalgia | flu) = 0.96
P(myalgia | pneu) = 0.28

P(fever | flu) = 0.88
P(myalgia | pneu) = 0.82

P(TEMP <37.5| flu) =0.20

P(TEMP < 37.5 | pneu) = 0.26

Disease
pneu/flu
P(flu) = 0.67
P(pneu) = 0.33

Evidence: & = {Temp > 37.5}; computation
of the probability of flu using Bayes' rule:

P(temp > 37.5) | flu) P(flu)
P(temp > 37.5)

P(temp > 37.5) = P(Temp > 37.5 | flu) P(flu) +
P(temp > 37.5 | pneu) P(pneuw)
=0.8-0.674+0.74-0.33~ 0.78

P(flu | Temp > 37.5) =

= P(flu | Temp > 37.5) = 0.8 - 0.67/0.78 ~ 0.687

Computing probabilities from data

Compute the weighted average of

e estimate Pp(V | n(V)) of the conditional
probability distribution for variable V' based
on the dataset D

e Dirichlet prior ©, which reflects prior
knowledge
These are combined as follows:

n nQ

Pp(V | m(V)= Pp(V | 7(V)) +

n 4+ ng n

where
e n is the size of the dataset D

e ng is the estimated size of the (virtual) ‘dataset’
on which the prior knowledge is based (equiv-
alence sample size)

More complex Bayesian networks

e We want to add arcs to a naive Bayesian
network to improve its performance

e Result: possibly TAN

®.
@
@\ 2
©
e Which arc should be added?

B
e

Compute mutual information between variables
E, E' conditioned on the class variable C:
P(E,E'|C)

Ip(B, 2| C)= 3 P(B.E.C)-100 g s s 6

E.E.C




FAN algorithm

Choose k > 0. Given evidence variables FE;, a
class variable C, and a dataset D:

1. Compute mutual infor-
mation —Ip(E; E; | C)
\V/(Ei,Ej), 7 ;& 7, in a
complete undirected graph

2. Construct a minimum-cost
spanning forest containing
exactly k edges

3. Change each tree in the for-
est into a directed tree

4. Add an arc from the class
vertex C' to every evidence
vertex E; in the forest

5. Learn conditional probabil-
ity distributions from D us-
ing Dirichlet distributions

Performance evaluation

e Success rate o based on:
Cmaz = argmaxc{P(C | Xz)}

forz; e D,i=1,...,n=|D|
e Total entropy (penalty):

n
E:—ZInP(c|xi)
=1

— if P(c|x;) =1, then InP(c|x;) =0

— if P(c|x;) 10 then InP(c|x;) — —c0

Example COMIK BN

Based on COMIK dataset:

e Dataset with 1002 patient cases with liver
and biliary tract disease, collected by the
Danish COMIK group

e Has been used as vehicle for learning various
probabilistic models

Results for COMIK Dataset

Correct conclusion (%)
o
a
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Comparison Bayesian networks: NHL

Naive Bayes: odds-likelihood form

For class variable C' and evidence &:

[lgee P(E ] C)P(C)
P(&)

P(C &) =

if EILE' | C, VE,E' € &; for C = true:

[lgeg P(E | c)P(c)

P(cl&) = G)
For C = false:
_ lgeg P(E | ~c)P(—c)
P(—c| &)= PE)
P(c|&) _ Tlges P(E|c) P(c)
P(=c|€) [Igege P(E | =c) P(—c)
= [ - 0@
i=1
= 0O(c|é&)

Here is O(c | £) the conditional odds, and \; =
P(E; | ¢)/P(E; | —c) is a likelihood ratio

Odds and probabilities
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Note that:

¢« O(c|E)=1if P(c|€) =05
e O(c|&) =0 if P(c|&)T1

Odds, likelihoods and logarithms

Odds:
O(cl &) 7;2? |53)
_ P(c]&)
T 1-P(c| &)

Back to probabilities:

__0(|&)
P(C|€)_1—|—O(c|5)

Logarithmic odds-likelihood form:

INO(c| &) = In ﬁ A - 0(c)
i=1

= > InX;+1n0(c)
i=1

m
= Z wj;
1=0

with wg =1In0O(c) and w; =1InX;, 1 =1,...,m




Log-odds and weights

Log-odds:
m
INO(c|€) = In ][ Ai-O()
i=1
m
= Z InX; +1nO(c)
i=1

m
= Z wj
1=0

Back to probabilities:

O(c| &)
1+0(c| &)

exp(37 g w;)
1+ exp(Xitowi)

P(cl| &)

Adjust w; with weights 3; based in existing in-
teractions between variables:

NOE| &) = 3. fiws = Alw
=0

Logistic regression

decision hyperplane

Hyperplane: {w | 87w = 0} where

e ¢ = (Bpwp is the intercept (recall that wg =
In O(c), which is independent of any evidence
E)

e w;, 1 =1,...,m correspond to the probabili-
ties we want to find

Maximum likelihood estimate
Database D, |D| = N, with independent in-
stances x; € D, then likelihood function I:

N
18) = [[ Ps(Ci | x))
i=1
where Cj; is the class value for instance i, and
x} is x;, without C;
Log-likelihood function L:
L(B) = Inl(p)

N
= Y InPs(C;| x;)
=1

|
M=

(wiIn Pg(e; | x5) +
i=1
(1 =) In(1 = Pgle; | x1)))

where ¢; is (always) the value C; = true; y; = 1
if ¢; is the class value for z;, y; = 0, otherwise

Maximum likelihood estimate

N
L(B) = Y (wiIn Paleilx)) + (1 — y) In(1 — Py(ei[x})))

=1
= % (yzﬂTw —1In (1 + eﬁT“’»

i=1

Maximisation of L(3):

OL(B) _ Al (yw— Sl )
1

o8 1+ eflw

.
|

I
M=

(yaw — Pgles | x}))

it

Can be solved using equation solving methods,
such as Newton-Raphson method

s OE@)(PLENT
T o \9pTop
forr=20,1,..., and Bg = 0, result: approxima-
tion for g8




WEKA output

Scheme: weka.classifiers.Logistic
Relation: weather.symbolic
Instances: 14
Attributes: 5

outlook

temperature

humidity

windy

play
Test mode: evaluate on training data

=== (Classifier model (full training set) ===
Logistic Regression (2 classes)

Coefficients...
Variable Coeff.
1 34.9227
-48.1161
7.8472
17.3933
-33.0445
22.2601
-82.415
-54.6671
Intercept 66.1064
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