Bayesian Models and Logistic Regression

Probability theory as basis for the construction of classifiers:

- Multivariate probabilistic models
- Independence assumptions
- Naive Bayesian classifier
- Forest-augmented networks (FANs)
- Approximation: logistic regression

Joint probability distribution

Joint (= multivariate) distribution:

$$P(X_1, X_2, ..., X_n)$$

Example of joint probability distribution:

$$P(X_1, X_2, X_3)$$
 with:
 $P(x_1, x_2, x_3) = 0.1$
 $P(\neg x_1, x_2, x_3) = 0.05$
 $P(x_1, \neg x_2, x_3) = 0.10$
 $P(x_1, x_2, \neg x_3) = 0.0$
 $P(\neg x_1, \neg x_2, x_3) = 0.3$
 $P(x_1, \neg x_2, \neg x_3) = 0.2$
 $P(\neg x_1, x_2, \neg x_3) = 0.1$
 $P(\neg x_1, x_2, \neg x_3) = 0.1$

Note that: $\sum_{X_1,X_2,X_3} P(X_1,X_2,X_3) = 1$

Marginalisation:

$$P(x_3) = \sum_{X_1, X_2} P(X_1, X_2, x_3) = 0.55$$

Notation

- Random (= statistical = stochastic) variable: upper-case letter, e.g. V or X, or upper-case string, e.g. RAIN
- Binary variables: take one of two values, X = true (abbreviated x) and X = false (abbreviated x)
- Conjunctions: $(X = x) \land (Y = y)$ as X = x, Y = y
- Templates: X, Y means X = x, Y = y, for any value x, y, i.e. the choice of the values x and y does not really matter
- $\sum_{X} P(X) = P(x) + P(\neg x)$, where X is binary

Chain rule

Definition of conditional probability distribution:

$$P(X_1 | X_2, ..., X_n) = \frac{P(X_1, X_2, ..., X_n)}{P(X_2, ..., X_n)}$$

$$\Rightarrow P(X_1, X_2, ..., X_n) = P(X_1 | X_2, ..., X_n) P(X_2, ..., X_n)$$

Furthermore,

$$P(X_{2},...,X_{n}) = P(X_{2} | X_{3},...,X_{n})P(X_{3},...,X_{n})$$

$$\vdots \quad \vdots \quad \vdots$$

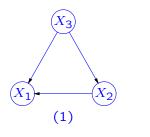
$$P(X_{n-1},X_{n}) = P(X_{n-1} | X_{n})P(X_{n})$$

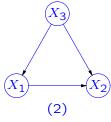
$$P(X_{n}) = P(X_{n})$$

Chain rule yields factorisation:

$$P(\bigwedge_{i=1}^{n} X_i) = \prod_{i=1}^{n} P(X_i \mid \bigwedge_{k=i+1}^{n} X_k)$$

Chain rule - digraph





Factorisation (1):

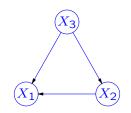
$$P(X_1, X_2, X_3) = P(X_1 | X_2, X_3) \cdot P(X_2 | X_3) P(X_3)$$

Other factorisation (2):

$$P(X_1, X_2, X_3) = P(X_2 \mid X_1, X_3) \cdot P(X_1 \mid X_3) P(X_3)$$

 \Rightarrow different *factorisations* possible

Does the chain rule help?



$$P(X_1, X_2, X_3) = P(X_1 | X_2, X_3) \cdot P(X_2 | X_3)P(X_3)$$

i.e. we need:

$$P(x_1 \mid x_2, x_3)$$
 $P(x_1 \mid \neg x_2, x_3)$
 $P(x_1 \mid x_2, \neg x_3)$
 $P(x_1 \mid \neg x_2, \neg x_3)$
 $P(x_2 \mid x_3)$
 $P(x_2 \mid \neg x_3)$
 $P(x_3)$

Note $P(\neg x_1 \mid x_2, x_3) = 1 - P(x_1 \mid x_2, x_3)$, etc. \Rightarrow 7 probabilities required (as for $P(X_1, X_2, X_3)$)

Use stochastic independence

$$P(X_1, X_2, X_3) = P(X_2 | X_1, X_3) \cdot P(X_3 | X_1) P(X_1)$$

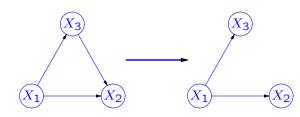
Assume that X_2 and X_3 are conditionally independent given X_1 :

$$P(X_2 \mid X_1, X_3) = P(X_2 \mid X_1)$$

and

$$P(X_3 \mid X_1, X_2) = P(X_3 \mid X_1)$$

Notation: $X_2 \perp \!\!\! \perp X_3 \mid X_1, X_3 \perp \!\!\! \perp X_2 \mid X_1$



Only 5 = 2 + 2 + 1 probabilities (instead of 7)

Definition Bayesian Network (BN)

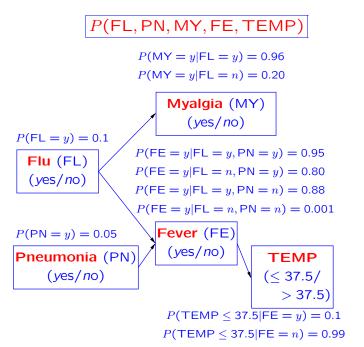
A Bayesian network \mathcal{B} is a pair $\mathcal{B}=(G,P)$, where:

- G = (V(G), A(G)) is an acyclic directed graph, with
 - $-V(G) = \{X_1, X_2, \dots, X_n\}$, a set of vertices (nodes)
 - $-A(G) \subseteq V(G) \times V(G)$ a set of arcs
- $P: \wp(V(G)) \to [0,1]$ is a joint probability distribution, such that

$$P(V(G)) = \prod_{i=1}^{n} P(X_i \mid \pi_G(X_i))$$

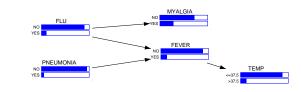
where $\pi_G(X_i)$ denotes the set of immediate ancestors (parents) of vertex X_i in G

Example Bayesian network

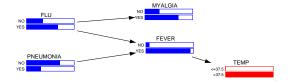


Reasoning: evidence propagation

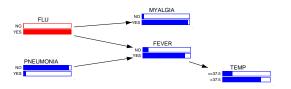
Nothing known:



• Temperature >37.5 °C:



• Likely symptoms of the flu?

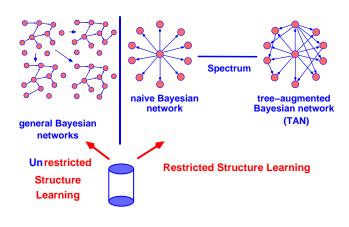


Bayesian network structure learning

Bayesian network $\mathcal{B} = (G, P)$, with

- digraph G = (V(G), A(G)), and
- probability distribution

$$P(V) = \prod_{X \in V(G)} P(X \mid \pi(X))$$



Special form Bayesian networks

Problems:

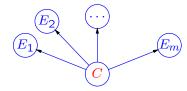
- for many BNs too many probabilities have to be assessed
- complex BNs do not necessarily yield better classifiers
- complex BNs may yield better estimates to the probability distribution

Solution:

use simple probabilistic models for classification:

- naive (independent) form BN
- Tree-Augmented Bayesian Network (TAN)
- Forest-Augmented Bayesian Network (FAN)

Naive (independent) form BN



- C is a class variable
- The evidence variables E_i in the evidence $\mathcal{E}\subseteq\{E_1,\ldots,E_m\}$ are conditionally independent given the class variable C

This yields, using Bayes' rule:

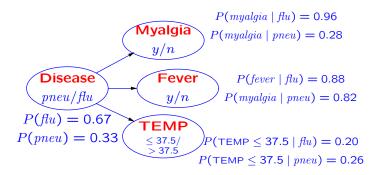
$$P(C \mid \mathcal{E}) = \frac{P(\mathcal{E} \mid C)P(C)}{P(\mathcal{E})}$$

with, as $E_i \perp \!\!\! \perp E_i \mid C$, for $i \neq j$:

$$\begin{array}{rcl} P(\mathcal{E} \mid C) & = & \prod_{E \in \mathcal{E}} P(E \mid C) & \text{by cond. ind.} \\ P(\mathcal{E}) & = & \sum_{C} P(\mathcal{E} \mid C) P(C) & \text{marg. \& cond.} \end{array}$$

Classifier: $c_{\text{max}} = \arg \max_{C} P(C \mid \mathcal{E})$

Example of naive Bayes



Evidence: $\mathcal{E} = \{\text{TEMP} > 37.5\}$; computation of the probability of flu using Bayes' rule:

$$\begin{split} P(\mathit{flu} \mid \mathsf{TEMP} > 37.5) &= \frac{P(\mathsf{TEMP} > 37.5) \mid \mathit{flu}) P(\mathit{flu})}{P(\mathsf{TEMP} > 37.5)} \\ P(\mathsf{TEMP} > 37.5) &= P(\mathsf{TEMP} > 37.5 \mid \mathit{flu}) P(\mathit{flu}) + \\ P(\mathsf{TEMP} > 37.5 \mid \mathit{pneu}) P(\mathit{pneu}) \\ &= 0.8 \cdot 0.67 + 0.74 \cdot 0.33 \approx 0.78 \end{split}$$

 $\Rightarrow P(flu \mid \text{TEMP} \ge 37.5) = 0.8 \cdot 0.67/0.78 \approx 0.687$

Computing probabilities from data

Compute the weighted average of

- estimate $\hat{P}_D(V \mid \pi(V))$ of the conditional probability distribution for variable V based on the dataset D
- Dirichlet prior ⊖, which reflects prior knowledge

These are combined as follows:

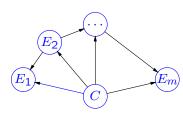
$$P_D(V \mid \pi(V)) = \frac{n}{n+n_0} \hat{P}_D(V \mid \pi(V)) + \frac{n_0}{n+n_0} \Theta$$

where

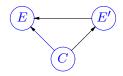
- ullet n is the size of the dataset D
- n₀ is the estimated size of the (virtual) 'dataset' on which the prior knowledge is based (equivalence sample size)

More complex Bayesian networks

- We want to add arcs to a naive Bayesian network to improve its performance
- Result: possibly TAN



• Which arc should be added?



Compute mutual information between variables E, E' conditioned on the class variable C:

$$I_P(E, E' \mid C) = \sum_{E, E', C} P(E, E', C) \cdot \log \frac{P(E, E' \mid C)}{P(E \mid C)P(E' \mid C)}$$

FAN algorithm

Choose $k \geq 0$. Given evidence variables E_i , a class variable C, and a dataset D:

- 1. Compute mutual information $-I_P(E_i, E_j \mid C)$ $\forall (E_i, E_j), i \neq j$, in a complete undirected graph
- 2. Construct a minimum-cost spanning forest containing exactly k edges
- 3. Change each tree in the forest into a directed tree
- 4. Add an arc from the class vertex C to every evidence vertex E_i in the forest
- 5. Learn conditional probability distributions from D using Dirichlet distributions

Performance evaluation

• Success rate σ based on:

$$c_{max} = \operatorname{argmax}_c \{ P(c \mid \mathbf{x}_i) \}$$

for
$$x_i \in D$$
, $i = 1, ..., n = |D|$

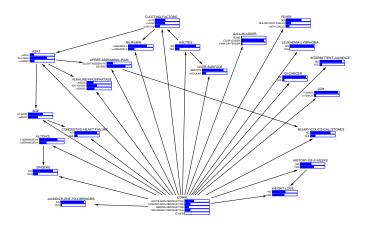
• Total entropy (penalty):

$$E = -\sum_{i=1}^{n} \ln P(c \mid \mathbf{x}_i)$$

- if
$$P(c \mid \mathbf{x}_i) = 1$$
, then $\ln P(c \mid \mathbf{x}_i) = 0$

- if
$$P(c \mid \mathbf{x}_i) \downarrow 0$$
 then $\ln P(c \mid \mathbf{x}_i) \rightarrow -\infty$

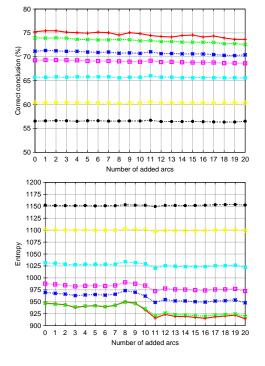
Example COMIK BN



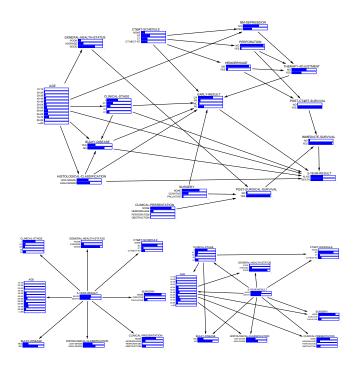
Based on COMIK dataset:

- Dataset with 1002 patient cases with liver and biliary tract disease, collected by the Danish COMIK group
- Has been used as vehicle for learning various probabilistic models

Results for COMIK Dataset



Comparison Bayesian networks: NHL



Naive Bayes: odds-likelihood form

For class variable C and evidence \mathcal{E} :

$$P(C \mid \mathcal{E}) = \frac{\prod_{E \in \mathcal{E}} P(E \mid C) P(C)}{P(\mathcal{E})}$$

if $E \perp \!\!\! \perp E' \mid C$, $\forall E, E' \in \mathcal{E}$; for C = true:

$$P(c \mid \mathcal{E}) = \frac{\prod_{E \in \mathcal{E}} P(E \mid c) P(c)}{P(\mathcal{E})}$$

For C = false:

$$P(\neg c \mid \mathcal{E}) = \frac{\prod_{E \in \mathcal{E}} P(E \mid \neg c) P(\neg c)}{P(\mathcal{E})}$$

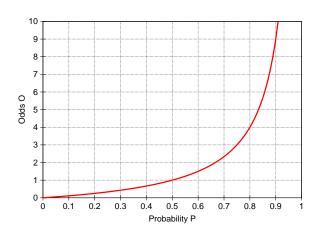
$$\Rightarrow \frac{P(c \mid \mathcal{E})}{P(\neg c \mid \mathcal{E})} = \frac{\prod_{E \in \mathcal{E}} P(E \mid c)}{\prod_{E \in \mathcal{E}} P(E \mid \neg c)} \frac{P(c)}{P(\neg c)}$$

$$= \prod_{i=1}^{m} \lambda_i \cdot O(c)$$

$$= O(c \mid \mathcal{E})$$

Here is $O(c \mid \mathcal{E})$ the conditional odds, and $\lambda_i = P(E_i \mid c)/P(E_i \mid \neg c)$ is a likelihood ratio

Odds and probabilities



Note that:

- $O(c \mid \mathcal{E}) = 1$ if $P(c \mid \mathcal{E}) = 0.5$
- $O(c \mid \mathcal{E}) \to \infty$ if $P(c \mid \mathcal{E}) \uparrow 1$

Odds, likelihoods and logarithms

Odds:

$$O(c \mid \mathcal{E}) = \frac{P(c \mid \mathcal{E})}{P(\neg c \mid \mathcal{E})}$$
$$= \frac{P(c \mid \mathcal{E})}{1 - P(c \mid \mathcal{E})}$$

Back to probabilities:

$$P(c \mid \mathcal{E}) = \frac{O(c \mid \mathcal{E})}{1 + O(c \mid \mathcal{E})}$$

Logarithmic odds-likelihood form:

$$\begin{aligned} \ln O(c \mid \mathcal{E}) &= & \ln \prod_{i=1}^{m} \lambda_i \cdot O(c) \\ &= & \sum_{i=1}^{m} \ln \lambda_i + \ln O(c) \\ &= & \sum_{i=0}^{m} \omega_i \end{aligned}$$

with $\omega_0 = \ln O(c)$ and $\omega_i = \ln \lambda_i$, i = 1, ..., m

Log-odds and weights

Log-odds:

$$\begin{aligned} \ln O(c \mid \mathcal{E}) &= & \ln \prod_{i=1}^{m} \lambda_i \cdot O(c) \\ &= & \sum_{i=1}^{m} \ln \lambda_i + \ln O(c) \\ &= & \sum_{i=0}^{m} \omega_i \end{aligned}$$

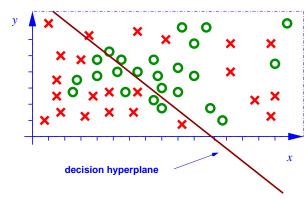
Back to probabilities:

$$P(c \mid \mathcal{E}) = \frac{O(c \mid \mathcal{E})}{1 + O(c \mid \mathcal{E})}$$
$$= \frac{\exp(\sum_{i=0}^{m} \omega_i)}{1 + \exp(\sum_{i=0}^{m} \omega_i)}$$

Adjust ω_i with weights β_i based in existing interactions between variables:

$$\ln O(c \mid \mathcal{E}) = \sum_{i=0}^{m} \beta_i \omega_i = \beta^T \omega$$

Logistic regression



Hyperplane: $\{\omega \mid \beta^T \omega = 0\}$ where

- $c=\beta_0\omega_0$ is the intercept (recall that $\omega_0=\ln O(c)$, which is independent of any evidence E)
- ω_i , $i=1,\ldots,m$ correspond to the probabilities we want to find

Maximum likelihood estimate

Database D, |D| = N, with independent instances $\mathbf{x}_i \in D$, then likelihood function l:

$$l(\beta) = \prod_{i=1}^{N} P_{\beta}(C_i \mid \mathbf{x}_i')$$

where C_i is the class value for instance i, and \mathbf{x}_i' is \mathbf{x}_i , without C_i

Log-likelihood function L:

$$L(\beta) = \ln l(\beta)$$

$$= \sum_{i=1}^{N} \ln P_{\beta}(C_i \mid \mathbf{x}_i')$$

$$= \sum_{i=1}^{N} \left(y_i \ln P_{\beta}(c_i \mid \mathbf{x}_i') + (1 - y_i) \ln(1 - P_{\beta}(c_i \mid \mathbf{x}_i')) \right)$$

where c_i is (always) the value $C_i = true$; $y_i = 1$ if c_i is the class value for x_i , $y_i = 0$, otherwise

Maximum likelihood estimate

$$L(\beta) = \sum_{i=1}^{N} \left(y_i \ln P_{\beta}(c_i | \mathbf{x}_i') + (1 - y_i) \ln(1 - P_{\beta}(c_i | \mathbf{x}_i')) \right)$$
$$= \sum_{i=1}^{N} \left(y_i \beta^T \omega - \ln\left(1 + e^{\beta^T \omega}\right) \right)$$

Maximisation of $L(\beta)$:

$$\frac{\partial L(\beta)}{\partial \beta} = \sum_{i=1}^{N} \left(y_i \omega - \frac{e^{\beta^T \omega}}{1 + e^{\beta^T \omega}} \right)$$
$$= \sum_{i=1}^{N} \left(y_i \omega - P_{\beta}(c_i \mid \mathbf{x}_i') \right)$$
$$= 0$$

Can be solved using equation solving methods, such as Newton-Raphson method

$$\beta_{r+1} = \beta_r - \frac{\partial L(\beta)}{\partial \beta} \cdot \left(\frac{\partial^2 L(\beta)}{\partial \beta^T \partial \beta} \right)^{-1}$$

for r=0,1,..., and $\beta_0=0$; result: approximation for β

WEKA output Scheme: weka.classifiers.Logistic Relation: weather.symbolic Instances: 14 Attributes: ${\tt outlook}$ temperature humidity windy play Test mode: evaluate on training data === Classifier model (full training set) === Logistic Regression (2 classes)

Coefficients...
Coeff.

2

3

4

5 6

7

8

Intercept

34.9227

7.8472

17.3933 -33.0445

22.2601

-82.415

-54.6671 66.1064

-48.1161