
Bayesian Models and

Logistic Regression

Probability theory as basis for the construction

of classifiers:

• Multivariate probabilistic models

• Independence assumptions

• Naive Bayesian classifier

• Forest-augmented networks (FANs)

• Approximation: logistic regression

Notation

• Random (= statistical = stochastic) vari-

able: upper-case letter, e.g. V or X, or

upper-case string, e.g. RAIN

• Binary variables: take one of two values,

X = true (abbreviated x) and X = false

(abbreviated ¬x)

• Conjunctions: (X = x) ∧ (Y = y) as

X = x, Y = y

• Templates: X, Y means X = x, Y = y, for

any value x, y, i.e. the choice of the values

x and y does not really matter

•
∑

X P (X) = P (x) + P (¬x), where X is bi-

nary

Joint probability distribution

Joint (= multivariate) distribution:

P (X1, X2, . . . , Xn)

Example of joint probability distribution:

P (X1, X2, X3) with:

P (x1, x2, x3) = 0.1

P (¬x1, x2, x3) = 0.05

P (x1,¬x2, x3) = 0.10

P (x1, x2,¬x3) = 0.0

P (¬x1,¬x2, x3) = 0.3

P (x1,¬x2,¬x3) = 0.2

P (¬x1, x2,¬x3) = 0.1

P (¬x1,¬x2,¬x3) = 0.15

Note that:
∑

X1,X2,X3
P (X1, X2, X3) = 1

Marginalisation:

P (x3) =
∑

X1,X2

P (X1, X2, x3) = 0.55

Chain rule

Definition of conditional probability distribu-

tion:

P (X1 | X2, . . . , Xn) =
P (X1, X2, . . . , Xn)

P (X2, . . . , Xn)

⇒ P (X1, X2, . . . , Xn) =

P (X1 | X2, . . . , Xn)P (X2, . . . , Xn)

Furthermore,

P (X2, . . . , Xn) =

P (X2 | X3, . . . , Xn)P (X3, . . . , Xn)
... ... ...

P (Xn−1, Xn) = P (Xn−1 | Xn)P (Xn)

P (Xn) = P (Xn)

Chain rule yields factorisation:

P (
n∧

i=1

Xi) =
n∏

i=1

P (Xi |
n∧

k=i+1

Xk)



Chain rule - digraph

X1 X2

X3

(1)

X1 X2

X3

(2)

Factorisation (1):

P (X1, X2, X3) = P (X1 | X2, X3) ·

P (X2 | X3)P (X3)

Other factorisation (2):

P (X1, X2, X3) = P (X2 | X1, X3) ·

P (X1 | X3)P (X3)

⇒ different factorisations possible

Does the chain rule help?

X1 X2

X3

P (X1, X2, X3) = P (X1 | X2, X3) ·

P (X2 | X3)P (X3)

i.e. we need:

P (x1 | x2, x3)

P (x1 | ¬x2, x3)

P (x1 | x2,¬x3)

P (x1 | ¬x2,¬x3)

P (x2 | x3)

P (x2 | ¬x3)

P (x3)

Note P (¬x1 | x2, x3) = 1 − P (x1 | x2, x3), etc.

⇒ 7 probabilities required (as for P (X1, X2, X3))

Use stochastic independence

P (X1, X2, X3) = P (X2 | X1, X3) ·

P (X3 | X1)P (X1)

Assume that X2 and X3 are conditionally in-

dependent given X1:

P (X2 | X1, X3) = P (X2 | X1)

and

P (X3 | X1, X2) = P (X3 | X1)

Notation: X2 |= X3 | X1, X3 |= X2 | X1

X1 X2

X3

X1 X2

X3

Only 5 = 2 + 2 + 1 probabilities (instead of 7)

Definition Bayesian Network (BN)

A Bayesian network B is a pair B = (G, P ),

where:

• G = (V (G), A(G)) is an acyclic directed graph,

with

– V (G) = {X1, X2, . . . , Xn}, a set of vertices

(nodes)

– A(G) ⊆ V (G) × V (G) a set of arcs

• P : ℘(V (G)) → [0,1] is a joint probability

distribution, such that

P (V (G)) =
n∏

i=1

P (Xi | πG(Xi))

where πG(Xi) denotes the set of immediate

ancestors (parents) of vertex Xi in G



Example Bayesian network

Flu (FL)

(yes/no)

Pneumonia (PN)

(yes/no)

Fever (FE)

(yes/no)

Myalgia (MY)

(yes/no)

TEMP

(≤ 37.5/

> 37.5)

P (FL,PN,MY,FE,TEMP)

P(FL = y) = 0.1

P(PN = y) = 0.05

P(FE = y|FL = y,PN = y) = 0.95

P(FE = y|FL = n,PN = y) = 0.80

P(FE = y|FL = y,PN = n) = 0.88

P(FE = y|FL = n,PN = n) = 0.001

P(MY = y|FL = y) = 0.96

P(MY = y|FL = n) = 0.20

P(TEMP ≤ 37.5|FE = y) = 0.1

P(TEMP ≤ 37.5|FE = n) = 0.99

Reasoning: evidence propagation

• Nothing known:

NO

YES

MYALGIA

NO

YES

FLU

NO

YES

FEVER

NO

YES

PNEUMONIA

<=37.5

>37.5

TEMP

• Temperature >37.5 ◦C:

NO

YES

MYALGIA

NO

YES

FLU

NO

YES

FEVER

NO

YES

PNEUMONIA

<=37.5

>37.5

TEMP

• Likely symptoms of the flu?

NO

YES

MYALGIA

NO

YES

FLU

NO

YES

FEVER

NO

YES

PNEUMONIA

<=37.5

>37.5

TEMP

Bayesian network structure
learning

Bayesian network B = (G, P ), with

• digraph G = (V (G), A(G)), and

• probability distribution

P (V ) =
∏

X∈V (G)

P (X | π(X))

tree−augmented
Bayesian network

(TAN)

Spectrum

naive Bayesian
network

general Bayesian

restricted

Structure
Learning

networks

Restricted Structure LearningUn

Special form Bayesian networks

Problems:

• for many BNs too many probabilities have

to be assessed

• complex BNs do not necessarily yield better

classifiers

• complex BNs may yield better estimates to

the probability distribution

Solution:

use simple probabilistic models for classifica-

tion:

• naive (independent) form BN

• T ree-Augmented Bayesian Network (TAN)

• Forest-Augmented Bayesian Network (FAN)



Naive (independent) form BN

C

E1

· · ·E2

Em

• C is a class variable

• The evidence variables Ei in the evidence

E ⊆ {E1, . . . , Em} are conditionally indepen-
dent given the class variable C

This yields, using Bayes’ rule:

P (C | E) =
P (E | C)P (C)

P (E)

with, as Ei |= Ej | C, for i 6= j:

P (E | C) =
∏

E∈E

P (E | C) by cond. ind.

P (E) =
∑

C

P (E | C)P (C) marg. & cond.

Classifier: cmax = argmaxC P (C | E)

Example of naive Bayes

Disease

pneu/flu

Myalgia

y/n

Fever

y/n

TEMP
≤ 37.5/
> 37.5

P(myalgia | flu) = 0.96

P(myalgia | pneu) = 0.28

P(fever | flu) = 0.88

P(myalgia | pneu) = 0.82

P(TEMP ≤ 37.5 | flu) = 0.20

P(TEMP ≤ 37.5 | pneu) = 0.26

P (flu) = 0.67

P (pneu) = 0.33

Evidence: E = {TEMP > 37.5}; computation

of the probability of flu using Bayes’ rule:

P (flu | TEMP > 37.5) =
P (TEMP > 37.5) | flu)P (flu)

P (TEMP > 37.5)

P (TEMP > 37.5) = P (TEMP > 37.5 | flu)P (flu) +

P (TEMP > 37.5 | pneu)P (pneu)

= 0.8 · 0.67 + 0.74 · 0.33 ≈ 0.78

⇒ P (flu | TEMP ≥ 37.5) = 0.8 · 0.67/0.78 ≈ 0.687

Computing probabilities from data

Compute the weighted average of

• estimate P̂D(V | π(V )) of the conditional

probability distribution for variable V based

on the dataset D

• Dirichlet prior Θ, which reflects prior

knowledge

These are combined as follows:

PD(V | π(V ))=
n

n + n0
P̂D(V | π(V )) +

n0

n + n0
Θ

where

• n is the size of the dataset D

• n0 is the estimated size of the (virtual) ‘dataset’

on which the prior knowledge is based (equiv-

alence sample size)

More complex Bayesian networks

• We want to add arcs to a naive Bayesian

network to improve its performance

• Result: possibly TAN

C

E1

· · ·

E2

Em

• Which arc should be added?

C

E E′

Compute mutual information between variables
E, E′ conditioned on the class variable C:

IP(E, E′ | C) =
∑

E,E ′,C

P(E, E′, C) · log
P(E, E′ | C)

P(E | C)P(E′ | C)



FAN algorithm

Choose k ≥ 0. Given evidence variables Ei, a

class variable C, and a dataset D:

1. Compute mutual infor-

mation −IP (Ei, Ej | C)

∀(Ei, Ej), i 6= j, in a

complete undirected graph

2. Construct a minimum-cost

spanning forest containing

exactly k edges

3. Change each tree in the for-

est into a directed tree

4. Add an arc from the class

vertex C to every evidence

vertex Ei in the forest

5. Learn conditional probabil-

ity distributions from D us-

ing Dirichlet distributions

Performance evaluation

• Success rate σ based on:

cmax = argmaxc{P (c | xi)}

for xi ∈ D, i = 1, . . . , n = |D|

• Total entropy (penalty):

E = −
n∑

i=1

lnP (c | xi)

– if P (c | xi) = 1, then lnP (c | xi) = 0

– if P (c | xi) ↓ 0 then lnP (c | xi) → −∞

Example COMIK BN

NO
YES

GI-CANCER

ACUTE-NON-OBSTRUCTIVE
CHRONIC-NON-OBSTRUCTIVE

BENIGN-OBSTRUCTIVE
MALIGNANT-OBSTRUCTIVE

OTHER

COMIK

<1300U/L
>=1300U/L

LDH

>0.70
<=0.55

0.56-0.70

CLOTTING-FACTORS

NO
YES

ASCITES

SMOOTH
NODULAR

LIVER-SURFACE

<200UMOL/L
>=200UMOL/L

BILIRUBIN

<40U/L
40-319U/L
>=320U/L

ASAT

<400U/L
400-1000U/L

>1000U/L

ALKALINE-PHOSPHATASE

SLIGHT-MODERATE
SEVERE

UPPER-ABDOMINAL-PAIN

NO
YES

BILIARY-COLICS-GALLSTONES

31-64YR
>=65YR

AGE

NO
YES

CONGESTIVE-HEART-FAILURE

NONE
COURVOISIER

FIRM-OR-TENDER

GALL-BLADDER

NO
YES

SPIDERS

1-4DRINKS/DAY
>=5DRINKS/DAY

ALCOHOL

NO
YES

WEIGHT-LOSS

NO
YES

HISTORY-GE-2-WEEKS

NO
YES

INTERMITTENT-JAUNDICE

NO
YES-WITHOUT-CHILLS

WITH-CHILLS

FEVER

NO
YES

LEUKAEMIA-LYMPHOMA

NO
YES

JAUNDICE-DUE-TO-CIRRHOSIS

Based on COMIK dataset:

• Dataset with 1002 patient cases with liver

and biliary tract disease, collected by the

Danish COMIK group

• Has been used as vehicle for learning various

probabilistic models

Results for COMIK Dataset
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Comparison Bayesian networks: NHL

NONE
HEMORRHAGE
PERFORATION
OBSTRUCTION

CLINICAL-PRESENTATION

NO
YES

POST-SURGICAL-SURVIVAL

POOR
AVERAGE

GOOD

GENERAL-HEALTH-STATUS

10-19
20-29
30-39
40-44
45-49
50-54
55-59
60-64
65-69
70-79
80-89
>=90

AGE

ALIVE
DEATH

5-YEAR-RESULT

NO
YES

IMMEDIATE-SURVIVAL

NO
YES

POST-CT&RT-SURVIVAL

NO
YES

HEMORRHAGE

NONE
RT
CT

CT-NEXT-RT

CT&RT-SCHEDULE

CR
PR
NC
PD

EARLY-RESULT

LOW-GRADE
HIGH-GRADE

HISTOLOGICAL-CLASSIFICATION

YES
NO

BULKY-DISEASE

I
II1
II2
III
IV

CLINICAL-STAGE

NO
YES

THERAPY-ADJUSTMENT

NO
YES

PERFORATION

NO
YES

BM-DEPRESSION

NONE
CURATIVE

PALLIATIVE

SURGERY

POOR
AVERAGE

GOOD

GENERAL-HEALTH-STATUS

ALIVE
DEATH

5-YEAR-RESULT

NONE
RT
CT

CT-NEXT-RT

CT&RT-SCHEDULE

NONE
CURATIVE

PALLIATIVE

SURGERY

NONE
HEMORRHAGE
PERFORATION
OBSTRUCTION

CLINICAL-PRESENTATION

LOW-GRADE
HIGH-GRADE

HISTOLOGICAL-CLASSIFICATION
YES
NO

BULKY-DISEASE

10-19
20-29
30-39
40-44
45-49
50-54
55-59
60-64
65-69
70-79
80-89
>=90

AGE

I
II1
II2
III
IV

CLINICAL-STAGE

LOW-GRADE
HIGH-GRADE

HISTOLOGICAL-CLASSIFICATION

10-19
20-29
30-39
40-44
45-49
50-54
55-59
60-64
65-69
70-79
80-89
>=90

AGE

I
II1
II2
III
IV

CLINICAL-STAGE

ALIVE
DEATH

5-YEAR-RESULT

NONE
RT
CT

CT-NEXT-RT

CT&RT-SCHEDULE

NONE
CURATIVE

PALLIATIVE

SURGERY

NONE
HEMORRHAGE
PERFORATION
OBSTRUCTION

CLINICAL-PRESENTATION
YES
NO

BULKY-DISEASE

POOR
AVERAGE

GOOD

GENERAL-HEALTH-STATUS

Naive Bayes: odds-likelihood form

For class variable C and evidence E:

P (C | E) =

∏
E∈E P (E | C)P (C)

P (E)

if E |= E′ | C, ∀E, E′ ∈ E; for C = true:

P (c | E) =

∏
E∈E P (E | c)P (c)

P (E)

For C = false:

P (¬c | E) =

∏
E∈E P (E | ¬c)P (¬c)

P (E)

⇒
P (c | E)

P (¬c | E)
=

∏
E∈E P (E | c)

∏
E∈E P (E | ¬c)

P (c)

P (¬c)

=
m∏

i=1

λi · O(c)

= O(c | E)

Here is O(c | E) the conditional odds, and λi =
P (Ei | c)/P (Ei | ¬c) is a likelihood ratio

Odds and probabilities
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O
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Note that:

• O(c | E) = 1 if P (c | E) = 0.5

• O(c | E) → ∞ if P (c | E) ↑ 1

Odds, likelihoods and logarithms

Odds:

O(c | E) =
P (c | E)

P (¬c | E)

=
P (c | E)

1 − P (c | E)

Back to probabilities:

P (c | E) =
O(c | E)

1 + O(c | E)

Logarithmic odds-likelihood form:

lnO(c | E) = ln
m∏

i=1

λi · O(c)

=
m∑

i=1

lnλi + lnO(c)

=
m∑

i=0

ωi

with ω0 = lnO(c) and ωi = lnλi, i = 1, . . . , m



Log-odds and weights

Log-odds:

lnO(c | E) = ln
m∏

i=1

λi · O(c)

=
m∑

i=1

lnλi + lnO(c)

=
m∑

i=0

ωi

Back to probabilities:

P (c | E) =
O(c | E)

1 + O(c | E)

=
exp(

∑m
i=0 ωi)

1 + exp(
∑m

i=0 ωi)

Adjust ωi with weights βi based in existing in-

teractions between variables:

lnO(c | E) =
m∑

i=0

βiωi = βTω

Logistic regression

x

y

decision hyperplane

Hyperplane: {ω | βTω = 0} where

• c = β0ω0 is the intercept (recall that ω0 =

lnO(c), which is independent of any evidence

E)

• ωi, i = 1, . . . , m correspond to the probabili-

ties we want to find

Maximum likelihood estimate

Database D, |D| = N , with independent in-

stances xi ∈ D, then likelihood function l:

l(β) =
N∏

i=1

Pβ(Ci | x
′
i)

where Ci is the class value for instance i, and

x
′
i is xi, without Ci

Log-likelihood function L:

L(β) = ln l(β)

=
N∑

i=1

lnPβ(Ci | x
′
i)

=
N∑

i=1

(
yi lnPβ(ci | x

′
i) +

(1 − yi) ln(1 − Pβ(ci | x
′
i))
)

where ci is (always) the value Ci = true; yi = 1

if ci is the class value for xi, yi = 0, otherwise

Maximum likelihood estimate

L(β) =
N∑

i=1

(
yi lnPβ(ci|x

′
i) + (1 − yi) ln(1 − Pβ(ci|x

′
i))
)

=
N∑

i=1

(
yiβ

Tω − ln

(
1 + eβT ω

))

Maximisation of L(β):

∂L(β)

∂β
=

N∑

i=1


yiω −

eβT ω

1 + eβT ω




=
N∑

i=1

(
yiω − Pβ(ci | x

′
i)
)

= 0

Can be solved using equation solving methods,

such as Newton-Raphson method

βr+1 = βr −
∂L(β)

∂β
·

(
∂2L(β)

∂βT∂β

)−1

for r = 0,1, . . ., and β0 = 0; result: approxima-

tion for β



WEKA output

Scheme: weka.classifiers.Logistic
Relation: weather.symbolic
Instances: 14
Attributes: 5

outlook
temperature
humidity
windy
play

Test mode: evaluate on training data

=== Classifier model (full training set) ===

Logistic Regression (2 classes)

Coefficients...
Variable Coeff.

1 34.9227
2 -48.1161
3 7.8472
4 17.3933
5 -33.0445
6 22.2601
7 -82.415
8 -54.6671

Intercept 66.1064


