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Supervised versus unsupervised

learning

• Supervised learning: “learning with a teacher”

P (X1, . . . , Xp, Y )

where X = {X1, . . . , Xp} are inputs, and Y is

output or class variable

Problems:

– find most frequent value for Y given X

– find the average value of Y as a function

of X

• Unsupervised learning: “learning without a

teacher”

P (X1, . . . , Xp)

where X = {X1, . . . , Xp} are variables in X-

space describing the problem

Problem: what is the structure of X-space?

Market basket analysis

Aims:

• Trying to understand customer

behaviour

• Collect check-out counter infor-

mation for each customer

• Classical example: “A conve-

nient store in USA found out

that beer and diapers sell to-

gether on Thursday evenings.”

• Try to discover associations

• Results are used for:

– improved stocking of shelves

– cross-marketing in sales

– sales promotion

– catalogue design

– consumer segmentation

Example: association rules

Tear
Spectacle production

Age prescription Ast rate Lens

young myope no reduced none
young myope no normal soft
young myope yes reduced none
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes normal none

Tear-prod-rate = reduced→

Contact-lenses = none

Contact-lenses = soft→

(Astigmatism = no ∧Tear-prod-rate = normal)



Learning association rules: Apriori

X1 X2 · · · Xp
... ... ... ...

P (X1, X2, . . . , Xp)

• Aim: find values for X1, X2, . . . , Xp such that

P (x1, x2, . . . , xp)

is large

• Simplification: find values xj for Xj, such

that

P







p
∧

j=1

∨

xj∈Sj

(Xj = xj)







is large, with

Sj ⊆ Domain(Xj)

for j = 1, . . . , p

Other simplifications

Original formulation:

P
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Choices:

1. assume that Sj = Domain(Xj), then
∨

xj∈Sj

(Xj = xj) ≡ >

or,

2. assume that |Sj| = 1, with subset of vari-

ables from {X1, . . . , Xp}, then
∨

xj∈Sj

(Xj = xj) ≡ (Xj = xj)

Choosing between (1) or (2) for each variable,

yields for each variable either (Xj = xj) or >

(variable is removed)

Final formulation

Find J ⊆ {1, . . . , p}, such that

P̂
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N
∑
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ι(Xj = xi,j)

= T (J )

is large, where ι(P ) =

{

1 if P = >
0 otherwise

and D

is a dataset with N = |D|, and Xj = xi,j is the

value of Xj in instance i. The set

I = {Xj = xj | j ∈ J }

is called the item set, and T (J ) is called the

support

Further simplification: assume that variables

Xj are binary (non-essential simplification)

Apriori algorithm: item sets

• Choose support threshold t, and only con-

sider item sets J with T (J ) > t

• If L ⊆ J then T (L) ≥ T (J ) (the more con-

ditions, the less support)

• This implies that any item set J ⊃ L with L
deleted, can also be deleted

Examples for t = 3/17:

• some single-item sets:

{Age = young}, T = 6/17
{Spectacle = hypermetrope}, T = 8/17
{Contact-lenses = none}, T = 12/17

• some two-item sets:

{Age = young,
Spectacle = hypermetrope}, T = 3/17 (deleted)

{Age = young,
Contact-lenses = none}, T = 4/17

{Spectacle = hypermetrope,
Contact-lenses = none}, T = 5/17



Apriori algorithm: rules

Steps in the algorithm:

1. generate item sets with minimum support

as required

2. generate rules with minimum accuracy a

(confidence) where accuracy α(r) is defined

as:

α(φ→ ψ) =
T (φ ∧ ψ)

T (ψ)

which can be seen as an estimate of

P (ψ | φ). Final ruleset R

R = {r | α(r) > a}

Example of rules:

Spectacle = hypermetrope→

Contact-lenses = none, α = 5/12

Contact-lenses = none→

Age = young, α = 4/6

Apriori: example from WEKA

Minimum support: 0.25
Minimum metric <accuracy>: 0.9

Size of set of large itemsets L(1): 11
Size of set of large itemsets L(2): 20
Size of set of large itemsets L(3): 6

Best rules found:
1. tear-prod-rate=reduced 9

==> contact-lenses=none 9 alpha:(1)
2. spectacle-prescrip=myope tear-prod-rate=reduced 6

==> contact-lenses=none 6 alpha:(1)
3. astigmatism=yes 6 ==> contact-lenses=none 6 alpha:(1)
4. contact-lenses=soft 5 ==>

astigmatism=no tear-prod-rate=normal 5 alpha:(1)
5. astigmatism=no contact-lenses=soft 5

==> tear-prod-rate=normal 5 alpha:(1)
6. tear-prod-rate=normal contact-lenses=soft 5

==> astigmatism=no 5 alpha:(1)
7. astigmatism=no tear-prod-rate=reduced 5

==> contact-lenses=none 5 alpha:(1)
8. contact-lenses=soft 5

==> tear-prod-rate=normal 5 alpha:(1)
9. contact-lenses=soft 5 ==> astigmatism=no 5 alpha:(1)
10. astigmatism=yes tear-prod-rate=reduced 4

==> contact-lenses=none 4 alpha:(1)

Note: there can be arbitrary conjunctions in
premises and consequences of rules

Apriori: tricks

Suppose the the three-item set I contains the

following elements (with support greater than

the threshold):

{A,B,C}

{A,C,D}

{A,B,E}

{B,C,E}

where elements are of the form Xj = xj

Then, the four-item set

{A,B,C,D}

is not accepted, as for example {B,C,D} is be-

low the support threshold, and therefore lack-

ing in the three-item sets

Cluster analysis
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Distance

• Grouping of related objects into subsets (clus-

ters)

• Sometimes: ordering of clusters into a hier-

archy

• Required: degree of (dis)similarity

• Top-down and bottom-up approaches



Dissimilarity

Let X = {X1, . . . , Xp} be a set of variables,

where the variable Xj attains a value xi,j within

instance xi ∈ D (dataset)

Dissimilarity d(xi,j, xk,j) between values xi,j and

xk,j of variable Xj:

• quantitative variable, various examples:

– squared distance d(xi,j, xk,j) = (xi,j−xk,j)
2

– absolute value d(xi,j, xk,j) = f(|xi,j−xk,j|),

where f is a monotonously increasing func-

tion, e.g. f(x) = xp, p ∈ N

• qualitative (categorical) variables: if Xj has

m values, then define vector xj, with

xi,j =

{

1 if Xj = xi,j
0 otherwise

Multi-variable dissimilarity

• Difference between two instances xi,xk ∈ D:

∆(xi,xk) =
p

∑

j=1

ωj · d(xi,j, xk,j)

with weights ωj, and
∑p
j=1 ωj = 1

• Average dissimilarity for dataset D, with N =

|D|:

∆̄ =
1

N2

N
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∆(xi,xk)

=
p
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j=1

ωj · d̄j

with

d̄j =
1

N2

N
∑

i=1

N
∑

k=1

d(xi,j, xk,j)

• Equal contribution of variables to dissimilar-

ity: ωj = 1
d̄j

, which is normally undesirable

Some remarks

• Choice of appropriate (dis)similarity mea-

sure is more important than the choice of

the algorithm

• This choice is dependent of the problem

domain

• Incorporating domain characteristics into

the weight vector ω is the difficult part

• Normally, matters are complicated by:

– mixture of qualitative and quantitative

variables

– missing values

• Alternative: correlation ρ(xi,xk) (similar-

ity)

Combinatorial clustering algorithm

Let D be a dataset with N = |D|, and let K
be the prespecified number of clusters

Clustering problem: Find function

C : {1, . . . , N} → {1, . . . ,K}

called encoder with ∀xi ∈ D : C(i) = k, fulfilling

some measure of optimality

Example measure: total point scatter

T =
1

2

N
∑

i=1

N
∑

k=1

∆(xi,xk)



Decomposition of total scatter

T =
1
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∑
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k=1

∆(xi,xk)

=
1
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∆i,k)
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= W (C) +B(C)

where ∆i,k = ∆(xi,xk); T is constant for dataset
D

Components:

• within-cluster point scatter:

W (C) =
1

2

K
∑

l=1

∑

C(i)=l

∑

C(k)=l

∆(xi,xk)

• between-cluster point scatter:

B(C) =
1

2

K
∑
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∑

C(i)=l

∑

C(k)6=l

∆(xi,xk)

Algorithm: minimise W (C) = T −B(C)

Basic ideas K-means algorithm

Basic approach:

• greedy approach (so, fast – cluster oriented)

• dissimilarity: squared Euclidean distance

∆(xi,xk) =
p

∑

j=1

(xi,j − xk,j)
2 = ||xi − xk||

2

• within cluster point scatter:

W (C) =
1

2

K
∑

l=1

∑

C(i)=l

∑

C(k)=l

||xi − xk||
2

=
K
∑

l=1

∑

C(i)=l

||xi − x̄l||
2

where x̄l is the average (cluster centroid) of

cluster l

• optimisation problem: determine

C∗ = min
C

K
∑

l=1

∑

C(i)=l

||xi − x̄l||
2

K-means in WEKA

K-means K = 2

=============

Cluster centroids:

Cluster 0: pre-presbyopic hypermetrope yes reduced none

Cluster 1: young myope no reduced none

Clustered Instances: C0 14 (58%), C1 10 (42%)

K-means K = 3

=============

Cluster centroids:

Cluster 0: pre-presbyopic hypermetrope yes reduced none

Cluster 1: young myope no reduced none

Cluster 2: young myope yes normal hard

Clustered Instances: C0 11 (46%), C1 9 (38%), C2 4 (17%)

K-means K = 4

=============

Cluster centroids:

Cluster 0: pre-presbyopic hypermetrope yes reduced none
Cluster 1: young myope no reduced none

Cluster 2: young myope yes normal hard

Cluster 3: pre-presbyopic hypermetrope no normal soft

Clustered Instances: C0 9 (38%), C1 7 (29%), C2 4 (17%),

C3 4 (17%)

K-means (continued)

Solution of

C∗ = min
C

K
∑

l=1

∑

C(i)=l

||xi − x̄l||
2

Note that for the average x̄S of the data in S

it holds that

x̄S = argmin
m

∑

i∈S

||xi −m||
2

Hence, solving

min
C,{ml}

K
l=1

K
∑

l=1

∑

C(i)=l

||xi −ml||
2

yields C∗ (this is a local optimum)



K-means algorithm

K-means(D,K)

{
initialise C

for l = 1, . . . ,K do

ml ← initial-value

until C is stable do

for l = 1, . . . ,K do

ml ← argminml

∑

C(i)=l ||xi −ml||
2

for i = 1, . . . , N do

C(i)← argmin1≤l≤K ||xi −ml||
2

}

• Iteration continues until the assignments made

by the encoder C do not change anymore

• Initial choices for means ml affect results;

solution:

– take random choices for ml

– determine the ml’s for which C is minimal

• Experimentation with different number of

clusters K is normally required

Hierarchical clustering

entire dataset

individual instances

Dendrogram:

• binary tree, where

– root represents entire dataset, and leaves

individual instances

– from leaves to root, dissimilary between

merged clusters in increasing

• single-linkage clustering:

∆(G,H) = min
x∈G,x′∈H

∆(x,x′)

is the difference between clusters G and H

(other possibilities: max and cluster aver-

age)

Microarray example


