Unsupervised Learning Supervised versus unsupervised

learning

e Supervised learning: “learning with a teacher”
P(X1,...,Xp,Y)

where X = {X1,...,Xp} are inputs, and Y is
output or class variable

Content:

e comparison with supervised learning

] Problems:
e market basket analysis

— find most frequent value for Y given X

L .. . — find the average value of Y as a function
e association rules (Apriori algorithm) 9

of X
e Unsupervised learning: “learning without a
e Cluster analysis teacher”
P(X1,...,Xp)
e K-means algorithm where X = {X3,...,Xp} are variables in X-

space describing the problem

e hierarchical clustering Problem: what is the structure of X-space?

Market basket analysis Example: association rules

Tear

Spectacle production
e Trying to understand customer Age prescription | Ast | rate Lens
. young myope no reduced none
behaviour young myope no | normal soft
R youngd myope yes reduced none
e Collect check-out counter infor- young hypermetrope | no | reduced none
mation for each customer young hypermetrope | no normal soft
youngd hypermetrope | yes | reduced none
e Classical example: “A conve- pre-presbyopic | myope no | reduced none
. . pre-presbyopic | myope no normal soft
nient store in USA found out pre-presbyopic | myope yes | reduced none
that beer and diapers sell to- pre-presbyopic | hypermetrope | no reduced none
gether on Thursday evenings.” pre—presbyop!c hypermetrope | no normal soft
pre-presbyopic | hypermetrope | yes | normal none
e Try to discover associations presbyopic myope no | reduced none
presbyopic myope no normal none
e Results are used for: presbyopic myope yes | reduced none
presbyopic hypermetrope | no normal soft
— improved stocking of shelves presbyopic hypermetrope | yes | normal none

— cross-marketing in sales
Tear-prod-rate = reduced —

Contact-lenses = none
Contact-lenses = soft —
(Astigmatism = no A Tear-prod-rate = normal)

— sales promotion

catalogue design

consumer segmentation




Learning association rules: Apriori

(X1 [Xo |- [Xp]
G

e Aim: find values for X, Xo,..., Xp such that

P(X17X2a"'aXp)

P($17.’13’27 cee 7xp)
is large

e Simplification: find values x; for Xj, such
that

p
PI AV (Xj=g)
j=1z;€S;
is large, with
S; € Domain(X;)
forj=1,...,p

Other simplifications

Original formulation:

p
PIA YV Xj=1)

Choices:
1. assume that S; = Domain(X;), then
33]‘65]‘
or,
2. assume that [S;| = 1, with subset of vari-
ables from {X1,...,Xp}, then

V (X =1z =(X; =z;)
aijESj

Choosing between (1) or (2) for each variable,
yields for each variable either (X; = z;) or T
(variable is removed)

Final formulation

Find 7 C {1,...,p}, such that

_ 1 X
P ( N (Xj= %’)> = vy H«x5=2

JjeTJ =1jeJ
= T(J)
is large, where ((P) = Lif P =T and D

0 otherwise
is a dataset with N = |D|, and X; = z; ; is the
value of X in instance 7. The set

is called the item set, and T(J) is called the
support

Further simplification: assume that variables
X; are binary (non-essential simplification)

Apriori algorithm: item sets

e Choose support threshold ¢, and only con-
sider item sets J with T(J) >t

o If L C J then T(L) > T(J) (the more con-
ditions, the less support)

e This implies that any item set 7 D £ with £
deleted, can also be deleted

Examples for t = 3/17:

e some single-item sets:

{Age = young}, T = 6/17
{Spectacle = hypermetrope}, T = 8/17
{Contact-lenses = none}, T = 12/17

e some two-item sets:
{Age = young,

Spectacle = hypermetrope}, T = 3/17 (deleted)

{Age = young,

Contact-lenses = none}, T = 4/17
{Spectacle = hypermetrope,
Contact-lenses = none}, T = 5/17




Apriori algorithm: rules

Steps in the algorithm:

1. generate item sets with minimum support
as required

2. generate rules with minimum accuracy a
(confidence) where accuracy «a(r) is defined
as:

_ T
a6 =) = =1

which can be seen as an estimate of
P(y | ¢). Final ruleset R
R={r|alr)>a}

Example of rules:

Spectacle = hypermetrope —
Contact-lenses = none,aa = 5/12
Contact-lenses = none —
Age = young,a = 4/6

Apriori: example from WEKA

Minimum support: 0.25
Minimum metric <accuracy>: 0.9

Size of set of large itemsets L(1): 11
Size of set of large itemsets L(2): 20
Size of set of large itemsets L(3): 6

Best rules found:
1. tear-prod-rate=reduced 9
==> contact-lenses=none 9 alpha: (1)
2. spectacle-prescrip=myope tear-prod-rate=reduced 6
==> contact-lenses=none 6 alpha: (1)
3. astigmatism=yes 6 ==> contact-lenses=none 6 alpha: (1)
4. contact-lenses=soft 5 ==>
astigmatism=no tear-prod-rate=normal 5 alpha: (1)
5. astigmatism=no contact-lenses=soft 5
==> tear-prod-rate=normal 5 alpha: (1)
6. tear-prod-rate=normal contact-lenses=soft 5
==> astigmatism=no 5 alpha: (1)
7. astigmatism=no tear-prod-rate=reduced 5
==> contact-lenses=none 5 alpha: (1)
8. contact-lenses=soft 5
==> tear-prod-rate=normal 5 alpha: (1)
9. contact-lenses=soft 5 ==> astigmatism=no 5 alpha: (1)
10. astigmatism=yes tear-prod-rate=reduced 4
==> contact-lenses=none 4 alpha: (1)

Note: there can be arbitrary conjunctions in
premises and consequences of rules

Apriori: tricks

Suppose the the three-item set 7 contains the
following elements (with support greater than
the threshold):

{A,B,C}
{A,C,D}
{A, B, E}
{B,C, E}

where elements are of the form Xj =z
Then, the four-item set
{A7 B? C’ ‘D}

is not accepted, as for example {B,C, D} is be-
low the support threshold, and therefore lack-
ing in the three-item sets

Cluster analysis
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Grouping of related objects into subsets (clus-
ters)

e Sometimes: ordering of clusters into a hier-
archy

Required: degree of (dis)similarity

Top-down and bottom-up approaches




Dissimilarity

Let X = {X3,...,Xp} be a set of variables,
where the variable X; attains a value z; ; within
instance x; € D (dataset)

Dissimilarity d(z; j, = ;) between values z; ; and
zy ; of variable X;:
e quantitative variable, various examples:

— squared distance d(z; j, zy, ;) = (@; j—y j)?

— absolute value d(xz; j,xy, ;) = f(|z; j—=1 1),
where f is a monotonously increasing func-
tion, e.g. f(z) =2P,pe N

e qualitative (categorical) variables: if X; has
m values, then define vector X, with

R 1 ifXj=xi,j
Tii =\ 0 otherwise

Multi-variable dissimilarity

e Difference between two instances x;,x; € D:

p
A(xy,xp) = > w; - d(zj, )
=1

with weights w;, and 0 w; =1

e Average dissimilarity for dataset D, with N =
|D:

1 N N
A = N_Z Z A(x4,%y,)
P
= 2w
=1
with

_ 1 N N
dj=~3 Z . Al wk )
1=1 k=1

e Equal contribution of variables to dissimilar-

ity: w; = 1, which is normally undesirable

<D

Some remarks

e Choice of appropriate (dis)similarity mea-
sure is more important than the choice of
the algorithm

e This choice is dependent of the problem
domain

e Incorporating domain characteristics into
the weight vector w is the difficult part

e Normally, matters are complicated by:

— mixture of qualitative and quantitative
variables

— missing values

e Alternative: correlation p(x;,x;) (similar-
ity)

Combinatorial clustering algorithm

.

o
.
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Let D be a dataset with N = |D|, and let K
be the prespecified number of clusters

Clustering problem: Find function
C:{1,...,N} = {1,...,K}

called encoder with Vx; € D : C(i) = k, fulfilling
some measure of optimality

Example measure: total point scatter

1 N N

T= 2 Z Z A(wak)

i=1k=1




Decomposition of total scatter

1N N
T = EZ Z (Xiaxk)
1 K
= 52 > Yoo At > Ak
I=1c(i)=l \C(k)=l C(k)#l
= W(C)+ B(CO)

where A; ;. = A(x;,xy); T is constant for dataset
D

Components:

e within-cluster point scatter:

w(c) =3 Z Yo D Alxxg)

1_1 c(i)=1C(k)=l
° between—cluster point scatter:

B(C) = Z S>> Ay xg)

2121 o=t o (k)£

Algorithm: minimise W(C) =T — B(C)

Basic ideas K-means algorithm

Basic approach:
e greedy approach (so, fast — cluster oriented)
e dissimilarity: squared Euclidean distance
P
Ax,xp) = > () — 2 )% = |1x; — x|
j=1
e within cluster point scatter:

w(C) = fz S0 k- xl

2= C@i)=IC(k)=l
=112
= Z Y xi =T
I=1C(i)=l
where z; is the average (cluster centroid) of
Cluster [

e Ooptimisation problem' determine

—min Y Y -7l

I=1C(i)=l

K-means in WEKA

K-means K = 2

Cluster centroids:
Cluster 0: pre-presbyopic hypermetrope yes reduced none
Cluster 1: young myope no reduced none

Clustered Instances: CO 14 (58%), C1 10 (42%)

K-means K = 3

Cluster centroids:

Cluster 0: pre-presbyopic hypermetrope yes reduced none
Cluster 1: young myope no reduced none

Cluster 2: young myope yes normal hard

Clustered Instances: CO 11 (46%), C1 9 (88%), C2 4 (17%)

K-means K = 4

Cluster centroids:

Cluster 0: pre-presbyopic hypermetrope yes reduced none
Cluster 1: young myope no reduced none

Cluster 2: young myope yes normal hard

Cluster 3: pre-presbyopic hypermetrope no normal soft

Clustered Instances: CO 9 (38%), C1 7 (29%), C2 4 (17%),
C3 4 (17%)

K-means (continued)

Solution of

K
= mc'“ > Z |x; — 7|2

l:: )::

Note that for the average zg of the data in S
it holds that

Zg=argmin 3 ||z — ml|?
€S

Hence, solving

mln Z > |1x; — my||?

{ml}z—l I=1C@G)=l

yields C* (this is a local optimum)




K-means algorithm

K-means(D, K)

{

initialise C
fori=1,..., K do
my «— initial-value
until C is stable do
fori=1,...,K do
my — arg Minm, o y= |1%i — myl|?
fori=1,...,N do
C(i) < argminy< <k [|x; — my|[?

Iteration continues until the assignments made
by the encoder C' do not change anymore

Initial choices for means m; affect results;
solution:

— take random choices for m;
— determine the m;'s for which C is minimal

Experimentation with different number of
clusters K is normally required

Hierarchical clustering

entire dataset

. . . . individual instances

Dendrogram:
e binary tree, where

— root represents entire dataset, and leaves
individual instances

— from leaves to root, dissimilary between
merged clusters in increasing

e single-linkage clustering:

A(G,H)= min A(x,x
( ) xeGx'eH ( )
is the difference between clusters G and H
(other possibilities: max and cluster aver-

age)

Microarray example




