Unsupervised Learning

Content:

- comparison with supervised learning
- market basket analysis
- association rules (Apriori algorithm)
- cluster analysis
- K-means algorithm
- hierarchical clustering

Supervised versus unsupervised learning

• Supervised learning: "learning with a teacher"

$$P(X_1,\ldots,X_p,Y)$$

where $\mathbf{X} = \{X_1, \dots, X_p\}$ are inputs, and Y is output or class variable

Problems:

- find most frequent value for Y given \mathbf{X}
- find the average value of Y as a function of $\mathbf X$
- Unsupervised learning: "learning without a teacher"

$$P(X_1,\ldots,X_p)$$

where $\mathbf{X} = \{X_1, \dots, X_p\}$ are variables in X-space describing the problem

Problem: what is the structure of X-space?

Market basket analysis

Aims:

- Trying to understand customer behaviour
- Collect check-out counter information for each customer
- Classical example: "A convenient store in USA found out that beer and diapers sell together on Thursday evenings."
- Try to discover associations
- Results are used for:
 - improved stocking of shelves
 - cross-marketing in sales
 - sales promotion
 - catalogue design
 - consumer segmentation

Example: association rules

	Spectacle		Tear production	
Age	prescription	Ast	rate	Lens
young	myope	no	reduced	none
young	myope	no	normal	soft
young	myope	yes	reduced	none
young	hypermetrope	no	reduced	none
young	hypermetrope	no	normal	soft
young	hypermetrope	yes	reduced	none
pre-presbyopic	myope	no	reduced	none
pre-presbyopic	myope	no	normal	soft
pre-presbyopic	myope	yes	reduced	none
pre-presbyopic	hypermetrope	no	reduced	none
pre-presbyopic	hypermetrope	no	normal	soft
pre-presbyopic	hypermetrope	yes	normal	none
presbyopic	myope	no	reduced	none
presbyopic	myope	no	normal	none
presbyopic	myope	yes	reduced	none
presbyopic	hypermetrope	no	normal	soft
presbyopic	hypermetrope	yes	normal	none

Tear-prod-rate = $reduced \rightarrow$ Contact-lenses = noneContact-lenses = $soft \rightarrow$ (Astigmatism = $no \land Tear-prod-rate = normal$)

Learning association rules: Apriori

$$\begin{array}{c|cccc} X_1 & X_2 & \cdots & X_p \\ \hline \vdots & \vdots & \vdots & \vdots \\ \end{array} \quad P(X_1, X_2, \dots, X_p)$$

ullet Aim: find values for X_1, X_2, \dots, X_p such that $P(x_1, x_2, \dots, x_p)$

is large

ullet Simplification: find values x_j for X_j , such that

$$P\left(\bigwedge_{j=1}^{p} \bigvee_{x_j \in S_j} (X_j = x_j)\right)$$

is large, with

$$S_j \subseteq \mathsf{Domain}(X_j)$$

for
$$j = 1, \ldots, p$$

Final formulation

Find $\mathcal{J} \subseteq \{1, \dots, p\}$, such that

$$\hat{P}\left(\bigwedge_{j\in\mathcal{J}}(X_j=x_j)\right) = \frac{1}{N}\sum_{i=1}^N\prod_{j\in\mathcal{J}}\iota(X_j=x_{i,j})$$
$$= T(\mathcal{J})$$

is large, where $\iota(P) = \left\{ \begin{array}{l} 1 \quad \text{if } P = \top \\ 0 \quad \text{otherwise} \end{array} \right.$ and D is a dataset with N = |D|, and $X_j = x_{i,j}$ is the value of X_j in instance i. The set

$$\mathcal{I} = \{X_j = x_j \mid j \in \mathcal{J}\}$$

is called the item set, and $T(\mathcal{J})$ is called the support

Further simplification: assume that variables X_i are binary (non-essential simplification)

Other simplifications

Original formulation:

$$P\left(\bigwedge_{j=1}^{p} \bigvee_{x_j \in S_j} (X_j = x_j)\right)$$

Choices:

1. assume that $S_j = Domain(X_j)$, then

$$\bigvee_{x_j \in S_j} (X_j = x_j) \equiv \top$$

or,

2. assume that $|S_j|=1$, with subset of variables from $\{X_1,\ldots,X_p\}$, then

$$\bigvee_{x_j \in S_j} (X_j = x_j) \equiv (X_j = x_j)$$

Choosing between (1) or (2) for each variable, yields for each variable either $(X_j = x_j)$ or \top (variable is removed)

Apriori algorithm: item sets

- Choose support threshold t, and only consider item sets $\mathcal J$ with $T(\mathcal J)>t$
- If $\mathcal{L} \subseteq \mathcal{J}$ then $T(\mathcal{L}) \geq T(\mathcal{J})$ (the more conditions, the less support)
- This implies that any item set $\mathcal{J}\supset\mathcal{L}$ with \mathcal{L} deleted, can also be deleted

Examples for t = 3/17:

• some single-item sets:

```
{Age = young}, T = 6/17
{Spectacle = hypermetrope}, T = 8/17
{Contact-lenses = none}, T = 12/17
```

• some two-item sets:

{Age = young,
Spectacle = hypermetrope},
$$T = 3/17$$
 (deleted)
{Age = young,
Contact-lenses = none}, $T = 4/17$
{Spectacle = hypermetrope,
Contact-lenses = none}, $T = 5/17$

Apriori algorithm: rules

Steps in the algorithm:

- 1. **generate item sets** with minimum support as required
- 2. **generate rules** with minimum accuracy a (confidence) where accuracy $\alpha(r)$ is defined as:

$$\alpha(\phi \to \psi) = \frac{T(\phi \land \psi)}{T(\psi)}$$

which can be seen as an estimate of $P(\psi \mid \phi)$. Final ruleset $\mathcal R$

$$\mathcal{R} = \{r \mid \alpha(r) > a\}$$

Example of rules:

Spectacle =
$$hypermetrope \rightarrow$$

Contact-lenses = $none$, $\alpha = 5/12$
Contact-lenses = $none \rightarrow$
Age = $young$, $\alpha = 4/6$

Apriori: tricks

Suppose the the three-item set $\mathcal I$ contains the following elements (with support greater than the threshold):

$${A, B, C}$$

 ${A, C, D}$
 ${A, B, E}$
 ${B, C, E}$

where elements are of the form $X_i = x_i$

Then, the four-item set

$$\{A, B, C, D\}$$

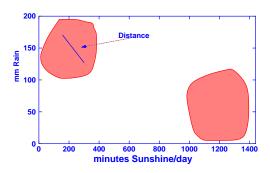
is not accepted, as for example $\{B,C,D\}$ is below the support threshold, and therefore lacking in the three-item sets

Apriori: example from WEKA

```
Minimum support: 0.25
Minimum metric <accuracy>: 0.9
Size of set of large itemsets L(1): 11
Size of set of large itemsets L(2): 20
Size of set of large itemsets L(3): 6
Best rules found:
 1. tear-prod-rate=reduced 9
    ==> contact-lenses=none 9 alpha:(1)
 2. spectacle-prescrip=myope tear-prod-rate=reduced 6
     ==> contact-lenses=none 6
                                  alpha:(1)
 3. astigmatism=yes 6 ==> contact-lenses=none 6 alpha:(1)
 4. contact-lenses=soft 5 ==>
   astigmatism=no tear-prod-rate=normal 5 alpha:(1)
 5. astigmatism=no contact-lenses=soft 5
    ==> tear-prod-rate=normal 5 alpha:(1)
 6. tear-prod-rate=normal contact-lenses=soft 5
   ==> astigmatism=no 5 alpha:(1)
 7. astigmatism=no tear-prod-rate=reduced 5
   ==> contact-lenses=none 5 alpha:(1)
 8. contact-lenses=soft 5
    ==> tear-prod-rate=normal 5 alpha:(1)
 9. contact-lenses=soft 5 ==> astigmatism=no 5 alpha:(1)
10. astigmatism=yes tear-prod-rate=reduced 4
   ==> contact-lenses=none 4 alpha:(1)
```

Note: there can be arbitrary conjunctions in premises and consequences of rules

Cluster analysis



- Grouping of related objects into subsets (clusters)
- Sometimes: ordering of clusters into a hierarchy
- Required: degree of (dis)similarity
- Top-down and bottom-up approaches

Dissimilarity

Let $\mathbf{X}=\{X_1,\ldots,X_p\}$ be a set of variables, where the variable X_j attains a value $x_{i,j}$ within instance $\mathbf{x}_i\in D$ (dataset)

Dissimilarity $d(x_{i,j}, x_{k,j})$ between values $x_{i,j}$ and $x_{k,j}$ of variable X_j :

- quantitative variable, various examples:
 - squared distance $d(x_{i,j}, x_{k,j}) = (x_{i,j} x_{k,j})^2$
 - absolute value $d(x_{i,j},x_{k,j})=f(|x_{i,j}-x_{k,j}|)$, where f is a monotonously increasing function, e.g. $f(x)=x^p, p\in\mathbb{N}$
- qualitative (categorical) variables: if X_j has m values, then define vector \mathbf{x}_j , with

$$x_{i,j} = \begin{cases} 1 & \text{if } X_j = x_{i,j} \\ 0 & \text{otherwise} \end{cases}$$

Some remarks

- Choice of appropriate (dis)similarity measure is more important than the choice of the algorithm
- This choice is dependent of the problem domain
- \bullet Incorporating domain characteristics into the weight vector ω is the difficult part
- Normally, matters are complicated by:
 - mixture of qualitative and quantitative variables
 - missing values
- ullet Alternative: correlation $ho(\mathbf{x}_i,\mathbf{x}_k)$ (similarity)

Multi-variable dissimilarity

• Difference between two instances $x_i, x_k \in D$:

$$\Delta(\mathbf{x}_i, \mathbf{x}_k) = \sum_{j=1}^p \omega_j \cdot d(x_{i,j}, x_{k,j})$$

with weights ω_j , and $\sum_{i=1}^p \omega_i = 1$

• Average dissimilarity for dataset D, with N = |D|:

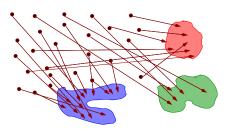
$$\bar{\Delta} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{k=1}^{N} \Delta(\mathbf{x}_i, \mathbf{x}_k)$$
$$= \sum_{j=1}^{p} \omega_j \cdot \bar{d}_j$$

with

$$\bar{d}_j = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{k=1}^{N} d(x_{i,j}, x_{k,j})$$

• Equal contribution of variables to dissimilarity: $\omega_j=\frac{1}{d_i}$, which is normally undesirable

Combinatorial clustering algorithm



Let D be a dataset with N = |D|, and let K be the prespecified number of clusters

Clustering problem: Find function

$$C: \{1, ..., N\} \to \{1, ..., K\}$$

called encoder with $\forall \mathbf{x}_i \in D : C(i) = k$, fulfilling some measure of optimality

Example measure: total point scatter

$$T = \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \Delta(\mathbf{x}_i, \mathbf{x}_k)$$

Decomposition of total scatter

$$T = \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \Delta(\mathbf{x}_{i}, \mathbf{x}_{k})$$

$$= \frac{1}{2} \sum_{l=1}^{K} \sum_{C(i)=l} \left(\sum_{C(k)=l} \Delta_{i,k} + \sum_{C(k)\neq l} \Delta_{i,k} \right)$$

$$= W(C) + B(C)$$

where $\Delta_{i,k} = \Delta(\mathbf{x}_i, \mathbf{x}_k)$; T is constant for dataset D

Components:

within-cluster point scatter:

$$W(C) = \frac{1}{2} \sum_{l=1}^{K} \sum_{C(i)=l} \sum_{C(k)=l} \Delta(\mathbf{x}_i, \mathbf{x}_k)$$

between-cluster point scatter.

$$B(C) = \frac{1}{2} \sum_{l=1}^{K} \sum_{C(i)=l} \sum_{C(k)\neq l} \Delta(\mathbf{x}_i, \mathbf{x}_k)$$

Algorithm: minimise W(C) = T - B(C)

K-means in WEKA

K-means K = 2

Cluster centroids:

Cluster 0: pre-presbyopic hypermetrope yes reduced none

Cluster 1: young myope no reduced none

Clustered Instances: CO 14 (58%), C1 10 (42%)

K-means K = 3

Cluster centroids:

Cluster 0: pre-presbyopic hypermetrope yes reduced none

Cluster 1: young myope no reduced none

Cluster 2: young myope yes normal hard

Clustered Instances: CO 11 (46%), C1 9 (38%), C2 4 (17%)

K-means K = 4

Cluster centroids:

Cluster 0: pre-presbyopic hypermetrope yes reduced none

Cluster 1: young myope no reduced none

Cluster 2: young myope yes normal hard

Cluster 3: pre-presbyopic hypermetrope no normal soft

Clustered Instances: CO 9 (38%), C1 7 (29%), C2 4 (17%), C3 4 (17%)

Basic ideas K-means algorithm

Basic approach:

- greedy approach (so, fast cluster oriented)
- dissimilarity: squared Euclidean distance

$$\Delta(\mathbf{x}_{i}, \mathbf{x}_{k}) = \sum_{j=1}^{p} (x_{i,j} - x_{k,j})^{2} = ||\mathbf{x}_{i} - \mathbf{x}_{k}||^{2}$$

• within cluster point scatter:

$$W(C) = \frac{1}{2} \sum_{l=1}^{K} \sum_{C(i)=l} \sum_{C(k)=l} ||\mathbf{x}_i - \mathbf{x}_k||^2$$
$$= \sum_{l=1}^{K} \sum_{C(i)=l} ||\mathbf{x}_i - \bar{\mathbf{x}}_l||^2$$

where \bar{x}_l is the average (cluster centroid) of cluster l

• optimisation problem: determine

$$C^* = \min_{C} \sum_{l=1}^{K} \sum_{C(i)=l} ||\mathbf{x}_i - \bar{x}_l||^2$$

K-means (continued)

Solution of

$$C^* = \min_{C} \sum_{l=1}^{K} \sum_{C(i)=l} ||\mathbf{x}_i - \bar{x}_l||^2$$

Note that for the average \bar{x}_S of the data in S it holds that

$$\bar{x}_S = \arg\min_{m} \sum_{i \in S} ||x_i - m||^2$$

Hence, solving

$$\min_{C,\{m_l\}_{l=1}^K} \sum_{l=1}^K \sum_{C(i)=l} ||\mathbf{x}_i - m_l||^2$$

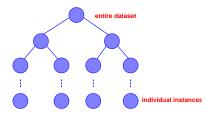
yields C^* (this is a local optimum)

K-means algorithm

```
K\text{-means}(D,K) \left\{\begin{array}{l} \text{initialise } C\\ \text{ for } l=1,\ldots,K \text{ do}\\ m_l \leftarrow \text{initial-value}\\ \text{until } C \text{ is stable do}\\ \text{ for } l=1,\ldots,K \text{ do}\\ m_l \leftarrow \arg\min_{m_l}\sum_{C(i)=l}||\mathbf{x}_i-m_l||^2\\ \text{ for } i=1,\ldots,N \text{ do}\\ C(i) \leftarrow \arg\min_{1\leq l\leq K}||\mathbf{x}_i-m_l||^2\\ \end{array}\right.
```

- ullet Iteration continues until the assignments made by the encoder C do not change anymore
- ullet Initial choices for means m_l affect results; solution:
 - take random choices for m_l
 - determine the m_l 's for which C is minimal
- \bullet Experimentation with different number of clusters K is normally required

Hierarchical clustering



Dendrogram:

- binary tree, where
 - root represents entire dataset, and leaves individual instances
 - from leaves to root, dissimilary between merged clusters in increasing
- single-linkage clustering:

$$\Delta(G, H) = \min_{\mathbf{x} \in G, \mathbf{x}' \in H} \Delta(\mathbf{x}, \mathbf{x}')$$

is the difference between clusters ${\cal G}$ and ${\cal H}$ (other possibilities: max and cluster average)

Microarray example

