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chapter eight

Nuts and bolts: Machine
learning algorithms in Java

Il the algorithms discussed in this book have been implemented and

made freely available on the World Wide Web (www.cs.waikato.

ac.nz/ml/weka) for you to experiment with. This will allow you to

learn more about how they work and what they do. The
implementations are part of a system caled Weka, developed at the
University of Waikato in New Zealand. “Weka” stands for the Waikato
Environment for Knowledge Analysis. (Also, the weka, pronounced to
rhyme with Mecca, is aflightless bird with an inquisitive nature found only
on the islands of New Zealand.) The system is written in Java, an object-
oriented programming language that is widely available for al major
computer platforms, and Weka has been tested under Linux, Windows, and
Macintosh operating systems. Java allows us to provide a uniform interface
to many different learning algorithms, along with methods for pre- and
postprocessing and for evaluating the result of learning schemes on any
given dataset. The interface is described in this chapter.

There are several different levels at which Weka can be used. First of all,
it provides implementations of state-of-the-art learning algorithms that you
can apply to your dataset from the command line. It also includes a variety
of tools for transforming datasets, like the algorithms for discretization
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discussed in Chapter 7. Y ou can preprocess a dataset, feed it into alearning
scheme, and analyze the resulting classifier and its performance—all
without writing any program code at all. As an example to get you started,
we will explain how to transform a spreadsheet into a dataset with the right
format for this process, and how to build a decision tree from it.

Learning how to build decision trees is just the beginning: there are
many other algorithms to explore. The most important resource for
navigating through the software is the online documentation, which has
been automatically generated from the source code and concisely reflects
its structure. We will explain how to use this documentation and identify
Weka's major building blocks, highlighting which parts contain supervised
learning methods, which contain tools for data preprocessing, and which
contain methods for other learning schemes. The online documentation is
very helpful even if you do no more than process datasets from the
command line, because it is the only complete list of available algorithms.
Wekais continually growing, and—being generated automatically from the
source code—the online documentation is always up to date. Moreover, it
becomes essential if you want to proceed to the next level and access the
library from your own Java programs, or to write and test learning schemes
of your own.

One way of using Weka isto apply alearning method to a dataset and
analyze its output to extract information about the data. Another is to
apply several learners and compare their performance in order to choose
one for prediction. The learning methods are called classifiers. They all
have the same command-line interface, and there is a set of generic
command-line options—as well as some scheme-specific ones. The
performance of al classifiers is measured by a common evauation
module. We explain the command-line options and show how to interpret
the output of the evaluation procedure. We describe the output of decision
and model trees. We include alist of the major learning schemes and their
most important scheme-specific options. In addition, we show you how to
test the capabilities of a particular learning scheme, and how to obtain a
bias-variance decomposition of its performance on any given dataset.

Implementations of actual learning schemes are the most vauable
resource that Weka provides. But tools for preprocessing the data, called
filters, come a close second. Like classifiers, filters have a standardized
command-line interface, and there is a basic set of command-line options
that they all have in common. We will show how different filters can be
used, list the filter algorithms, and describe their scheme-specific options.

The main focus of Wekais on classifier and filter algorithms. However,
it aso includes implementations of algorithms for learning association
rules and for clustering data for which no class value is specified. We
briefly discuss how to use these implementations, and point out their
limitations.
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In most data mining applications, the machine learning component is
just a small part of afar larger software system. If you intend to write a
data mining application, you will want to access the programs in Weka
from inside your own code. By doing so, you can solve the machine
learning subproblem of your application with a minimum of additional
programming. We show you how to do that by presenting an example of a
simple data mining application in Java. This will enable you to become
familiar with the basic data structures in Weka, representing instances,
classifiers, and filters.

If you intend to become an expert in machine learning algorithms (or,
indeed, if you already are one), you'll probably want to implement your
own agorithms without having to address such mundane details as reading
the data from afile, implementing filtering algorithms, or providing code
to evaluate the results. If so, we have good news for you: Weka already
includes al this. In order to make full use of it, you must become
acquainted with the basic data structures. To help you reach this point, we
discuss these structures in more detal and explain example
implementations of aclassifier and afilter.

Getting started

Suppose you have some data and you want to build a decision tree from it.
A common situation is for the data to be stored in a spreadsheet or
database. However, Weka expects it to be in ARFF format, introduced in
Section 2.4, because it is necessary to have type information about each
attribute which cannot be automatically deduced from the attribute values.
Before you can apply any algorithm to your data, is must be converted to
ARFF form. This can be done very easily. Recall that the bulk of an ARFF
file consists of alist of all the instances, with the attribute values for each
instance being separated by commas (Figure 2.2). Most spreadsheet and
database programs allow you to export your data into afile in comma-
separated format—as a list of records where the items are separated by
commas. Once this has been done, you need only load the file into a text
editor or aword processor; add the dataset’s name using the @el ati on tag,
the attribute information using @t tri but e, and a @at a line; save the file as
raw text—and you’re done!

In the following example we assume that your data is stored in a
Microsoft Excel spreadsheet, and you’re using Microsoft Word for text
processing. Of course, the process of converting data into ARFF format is
very similar for other software packages. Figure 8.1a shows an Excel
spreadsheet containing the weather data from Section 1.2. It is easy to save
this datain comma-separated format. First, select the Save As... item from
the File pull-down menu. Then, in the ensuing dialog box, select CSV
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i Microsoft Word - weather.csv

= | File Edit VYiew Insert Format Tools Data Window Help

=| File Edit View Insent Format Tools Table Window Help

ima Ok

A B | ¢ | b | E
outlook  |temperatuihumidity  windy play

outlook, temperature, humidity,windy,play

T -]+ |*

sunny,83,85, FALSE.no
sunny,80,90, TRUE,no

1
| 2 |
i sunny 85 85 FALSE no overcast,83,86,FALSE, yes
| 4 [sunny 80 90 TRUE no rainy,70,96,FALSE,yes
| 5 |overcast 83 86 FALSE vyes rainy,68,80,FALSE yes
| 6 |rainy 70 96 FALSE vyes rainy,65,70,TRUE,no
7 rainy 68 80 FALSE yes overcast, 64,65, TRUE yes
8 iy G 70 TRUE o b
| 9 |overcast 64 65 TRUE vyes rainy,75,80,FALSE,yes
| 10 |sunny 72 95 FALSE no sunny, 75,70, TRUE yes
| 11 |sunny 69 70 FALSE vyes overcast, 72,90, TRUE, yes
12 |rainy 75 80 FALSE vyes overcast, 81,75, FALSE,yes
E sunny 75 70 TRUE yes E‘my’ﬂ L IRUE10
| 14 |overcast 72 90 TRUE yes
| 15 |overcast 81 75 FALSE vyes
| 16 |rainy 71 91 TRUE no
17
18
19
20| 5] [EEEET ——
H q’l’r weather T+ = Page 1 Sec 1 171 (At 25cm Ln1  Coll

~

=| File Edit View Insert Formai Tools Table Window Help
{@relation weather

0 -

T =gl

{@attribute outlook {sunny, overcast, rainy}
{@attribute temperature real

@attribute humidity real

{@attribute windy {TRUE, FALSE}
@attribute play {yes, no}

@data

sunny, 85,85 FALSE,no
sunny, 80,90, TRUE,no
overcast,83,86, FALSE,ves
rainy, 70,96, FALSE yes
rainy,68,80,FALSE, yes
rainy,65,70,TRUE,no
overcast,64,65, TRUE yes
sunny, 72,95 FALSE no
sunny,69,70 FALSE, yes
rainy, 75,80, FALSE yes
sunny, 75,70, TRUE yes
overcast,72,90, TRUE yes
overcast,81,75 FALSE yes
rainy,71,91, TRUE,no

Figure 8.1 Weather data: (a) in fool Sl M A bl Wl i
spreadshest; (b) comma-separated;
(c) in ARFF format. ©

(Comma Delimited) from the file type popup menu, enter a name for the
file, and click the Save button. (A message will warn you that this will only
save the active sheet: just ignore it by clicking OK.)
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Now load this file into Microsoft Word. Your screen will look like
Figure 8.1b. The rows of the original spreadsheet have been converted into
lines of text, and the elements are separated from each other by commas.
All you have to do is convert the first line, which holds the attribute names,
into the header structure that makes up the beginning of an ARFF file.

Figure 8.1c shows the result. The dataset’s name is introduced by a
@el ation tag, and the names, types, and values of each attribute are
defined by @t tri but e tags. The data section of the ARFF file begins with a
@at a tag. Once the structure of your dataset matches Figure 8.1c, you
should save it as a text file. Choose Save as... from the File menu, and
specify Text Only with Line Breaks as the file type by using the
corresponding popup menu. Enter a file name, and press the Save button.
We suggest that you rename the file to weather.arff to indicate that itisin
ARFF format. Note that the classification schemes in Weka assume by
default that the class is the last attribute in the ARFF file, which fortunately
itisinthis case. (We explain in Section 8.3 below how to override this
default.)

Now you can start analyzing this data using the algorithms provided. In
the following we assume that you have downloaded Weka to your system,
and that your Java environment knows where to find the library. (More
information on how to do this can be found at the Weka Web site.)

To see what the C4.5 decision tree learner described in Section 6.1 does
with this dataset, we use the J4.8 agorithm, which is Weka's
implementation of this decision tree learner. (J4.8 actually implements a
later and slightly improved version called C4.5 Revision 8, which was the
last public version of this family of algorithms before C5.0, a commercial
implementation, was released.) Type

java weka.classifiers.j48.3J48 -t weather.arff

at the command line. This incantation calls the Java virtual machine and
instructs it to execute the J48 algorithm from the j48 package—a
subpackage of classifiers which is part of the overall weka package. Weka
is organized in “packages” that correspond to a directory hierarchy.
We'll give more details of the package structure in the next section: in this
case, the subpackage nameis j48 and the program to be executed from it is
called J48. The —t option informs the algorithm that the next argument is
the name of the training file.

After pressing Return, you’ll see the output shown in Figure 8.2. The
first part is a pruned decision tree in textual form. As you can see, the first
split is on the out | ook attribute, and then, at the second level, the splits are
on humdity and windy, respectively. In the tree structure, a colon
introduces the class label that has been assigned to a particular leaf,
followed by the number of instances that reach that leaf, expressed as a
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J48 pruned tree

out | ook = sunny

| humdity <= 75: yes (2.0)
| hunmidity > 75: no (3.0)
out | ook = overcast: yes (4.0)
outl ook = rainy

| windy = TRUE no (2.0)

| windy = FALSE yes (3.0)

Nunber of Leaves : 5
Size of the tree : 8

=== Error on training data ===

Correctly dassified | nstances 14
Incorrectly Qassified Instances 0
Mean absol ute error 0
Root mean squared error 0
Total Nunber of Instances 14

=== Confusion Matrix ===

ab <-- classified as
90| a=yes
05| b=no

=== Stratified cross-validation ===

Correctly dassified I nstances 9
Incorrectly dassified Instances 5
Mean absol ute error 0. 3036
Root nean squared error 0. 4813
Total Nunber of Instances 14

=== Confusion Matrix ===

ab <-- classified as
72| a=yes
32| b=no

100 %

64. 2857 %
35.7143 %

Figure 8.2 Output from the J4.8 decision tree learner.
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decimal number because of the way the algorithm uses fractional instances
to handle missing values. Below the tree structure, the number of leavesis
printed, then the total number of nodes in the tree (Si ze of the tree).

The second part of the output gives estimates of the tree’s predictive
performance, generated by Weka's evaluation module. The first set of
measurements is derived from the training data. As discussed in Section
5.1, such measurements are highly optimistic and very likely to
overestimate the true predictive performance. However, it is still useful to
look at these results, for they generally represent an upper bound on the
model’s performance on fresh data. In this case, all fourteen training
instances have been classified correctly, and none were left unclassified. An
instance can be left unclassified if the learning scheme refrains from
assigning any class label to it, in which case the number of unclassified
instances will be reported in the output. For most learning schemes in
Weka, this never occurs.

In addition to the classification error, the evaluation module also outputs
measurements derived from the class probabilities assigned by the tree.
More specifically, it outputs the mean absolute error and the root mean-
squared error of the probability estimates. The root mean-squared error is
the square root of the average quadratic loss, discussed in Section 5.6. The
mean absolute error is calculated in a similar way by using the absolute
instead of the squared difference. In this example, both figures are 0
because the output probabilities for the tree are either 0 or 1, due to the
fact that al leaves are pure and al training instances are classified
correctly.

The summary of the results from the training data ends with a confusion
matrix, mentioned in Chapter 5 (Section 5.7), showing how many instances
of each class have been assigned to each class. In this case, only the
diagonal elements of the matrix are non-zero because all instances are
classified correctly.

The final section of the output presents results obtained using stratified
ten-fold cross-validation. The evaluation module automatically performs a
ten-fold cross-validation if no test file is given. Asyou can see, more than
30% of the instances (5 out of 14) have been misclassified in the cross-
validation. This indicates that the results obtained from the training data
are very optimistic compared with what might be obtained from an
independent test set from the same source. From the confusion matrix you
can observe that two instances of class yes have been assigned to class no,
and three of class no are assigned to class yes.

Javadoc and the class library

Before exploring other learning algorithms, it is useful to learn more about
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the structure of Weka. The most detailed and up-to-date information can
be found in the online documentation on the Weka Web site. This
documentation is generated directly from comments in the source code
using Sun’s Javadoc utility. To understand its structure, you need to know
how Java programs are organized.

Classes, instances, and packages

Every Java program is implemented as a class. In object-oriented
programming, a classis a collection of variables along with some methods
that operate on those variables. Together, they define the behavior of an
object belonging to the class. An object is simply an instantiation of the
class that has values assigned to all the class' s variables. In Java, an object is
also called an instance of the class. Unfortunately this conflicts with the
terminology used so far in this book, where the terms class and instance
have appeared in the quite different context of machine learning. From
now on, you will have to infer the intended meaning of these terms from
the context in which they appear. This is not difficult—though sometimes
we'll use the word object instead of Java' s instance to make things clear.

In Weka, the implementation of a particular learning algorithm is
represented by a class. We have already met one, the J48 class described
above that builds a C4.5 decision tree. Each time the Java virtual machine
executes J48, it creates an instance of this class by allocating memory for
building and storing a decision tree classifier. The algorithm, the classifier
it builds, and a procedure for outputting the classifier, are all part of that
instantiation of the J48 class.

Larger programs are usually split into more than one class. The J48
class, for example, does not actually contain any code for building a
decision tree. It includes references to instances of other classes that do
most of the work. When there are alot of classes—as in Weka—they can
become difficult to comprehend and navigate. Java allows classes to be
organized into packages. A package is simply a directory containing a
collection of related classes. The j48 package mentioned above contains
the classes that implement J4.8, our version of C4.5, and PART, which isthe
name we use for the scheme for building rules from partial decision trees
that was explained near the end of Section 6.2 (page 181). Not
surprisingly, these two learning algorithms share a lot of functionality, and
most of the classes in this package are used by both algorithms, so it is
logical to put them in the same place. Because each package corresponds
to a directory, packages are organized in a hierarchy. As already
mentioned, the j48 package is a subpackage of the classifiers package,
which isitself a subpackage of the overall weka package.

When you consult the online documentation generated by Javadoc from
your Web browser, the first thing you see is alist of all the packagesin
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® package weka.core
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=

@

Figure 8.3 Using Javadoc: (a) the front
page; (b) the weka.core package.

ALl Packages ©lass Hierarchy Index

package weka.core

Interface Index
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& CheckOptonH andler
® ContingencyTables
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& [nstance

® [nstances

(b)

Weka (Figure 8.3a). In the following we discuss what each one contains.
On the Web page they are listed in alphabetical order; here we introduce

them in order of importance.

The weka.core package

The core package is central to the Weka system. It contains classes that are
accessed from almost every other class. Y ou can find out what they are by
clicking on the hyperlink underlying weka.core, which brings up Figure

8.3Db.
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The Web page in Figure 8.3b is divided into two parts: the Interface
Index and the Class Index. The latter isalist of all classes contained within
the package, while the former lists all the interfaces it provides. An
interface is very similar to a class, the only difference being that it doesn’t
actually do anything by itself—it is merely alist of methods without actual
implementations. Other classes can declare that they “implement” a
particular interface, and then provide code for its methods. For example,
the oot i onHandl er interface defines those methods that are implemented by
all classes that can process command-line options—including al classifiers.

The key classes in the core package are called Attri bute, I nst ance, and
I nstances. An object of class Attri but e represents an attribute. It contains
the attribute’s name, its type and, in the case of a nominal attribute, its
possible values. An object of class I nst ance contains the attribute values of
a particular instance; and an object of class I nst ances holds an ordered set
of instances, in other words, a dataset. By clicking on the hyperlinks
underlying the classes, you can find out more about them. However, you
need not know the details just to use Weka from the command line. We will
return to these classes in Section 8.4 when we discuss how to access the
machine learning routines from other Java code.

Clicking on the All Packages hyperlink in the upper left corner of any
documentation page brings you back to the listing of all the packagesin
Weka (Figure 8.3a).

The weka.classifiers package

The classifiers package contains implementations of most of the algorithms
for classification and numeric prediction that have been discussed in this
book. (Numeric prediction isincluded in classifiers: it is interpreted as
prediction of a continuous class.) The most important class in this package
is A assifier, which defines the general structure of any scheme for
classification or numeric prediction. It contains two methods,
bui | dd assifier() and classifylnstance(), which al of these learning
algorithms have to implement. In the jargon of object-oriented
programming, the learning algorithms are represented by subclasses of
d assi fier, and therefore automatically inherit these two methods. Every
scheme redefines them according to how it builds a classifier and how it
classifies instances. This gives a uniform interface for building and using
classifiers from other Java code. Hence, for example, the same evaluation
modul e can be used to evaluate the performance of any classifier in Weka.

Another important class is Dstributiondassifier. This subclass of
d assi fi er defines the method di st ri buti onFor I nst ance(), which returns a
probability distribution for a given instance. Any classifier that can
calculate class probabilitiesis a subclass of DistributionQassifier and
implements this method.
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Figure 8.4 A class of the weka.classifiers package.
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To see an example, click on Deci si onSt unp, wWhich is a class for building
a simple one-level binary decision tree (with an extra branch for missing
values). Its documentation page, shown in Figure 8.4, begins with the fully
qualified name of this class: weka. cl assi fi ers. Deci si onSt unp. Y ou have to
use this rather lengthy expression if you want to build a decision stump
from the command line. The page then displays a tree structure showing
the relevant part of the class hierarchy. As you can see, Deci si onStunp isa
subclass of Dstributiondassifier, and therefore produces class
probabilities. D stributi ond assifier, inturn, isasubclass of dassifier,
which isitself a subclass of tj ect. The Mj ect classis the most general one
in Java: al classes are automatically subclasses of it.

After some generic information about the class, its author, and its
version, Figure 8.4 gives an index of the constructors and methods of this
class. A constructor is a special kind of method that is called whenever an
object of that class is created, usually initializing the variables that
collectively define its state. The index of methods lists the name of each
one, the type of parameters it takes, and a short description of its
functionality. Beneath those indexes, the Web page gives more details
about the constructors and methods. We return to those details | ater.

Asyou can see, Deci si onSt unp implements all methods required by both
a dassifier and a Distributiondassifier. In addition, it contains
toString() and mai n() methods. The former returns a textual description
of the classifier, used whenever it is printed on the screen. The latter is
called every time you ask for a decision stump from the command line, in
other words, every time you enter a command beginning with

java weka. cl assi fi ers. Deci si onSt unp

The presence of a mai n() method in a class indicates that it can be run
from the command line, and all learning methods and filter algorithms
implement it.

Other packages
Several other packages listed in Figure 8.3a are worth mentioning here:
weka.classifiers.j48, weka.classifiers.mb, weka.associations, weka.clusterers,
weka.estimators,  weka.filters, and weka.attributeSel ection. The
weka.classifiers.j48 package contains the classes implementing J4.8 and the
PART rule learner. They have been placed in a separate package (and
hence in a separate directory) to avoid bloating the classifiers package. The
weka.classifiers.m5 package contains classes implementing the model tree
algorithm of Section 6.5, which is called M5G

In Chapter 4 (Section 4.5) we discussed an algorithm for mining
association rules, called APRIORI. The weka.associations package contains
two classes, I tenset and Apriori, which together implement this algorithm.
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They have been placed in a separate package because association rules are
fundamentally different from classifiers. The weka.clusterers package
contains an implementation of two methods for unsupervised learning:
COBWEB and the EM algorithm (Section 6.6). The weka.estimators
package contains subclasses of a generic Esti mat or class, which computes
different types of probability distribution. These subclasses are used by the
Naive Bayes algorithm.

Along with actual learning schemes, tools for preprocessing a dataset,
which we call filters, are an important component of Weka. In wekafilters,
the Filter classisthe analog of the Q assifier class described above. It
defines the general structure of al classes containing filter
algorithms—they are al implemented as subclasses of Filter. Like
classifiers, filters can be used from the command line; we will see later how
thisis done. It is easy to identify classes that implement filter algorithms:
their names end in Filter.

Attribute selection is an important technique for reducing the
dimensionality of a dataset. The weka.attributeSelection package contains
several classes for doing this. These classes are used by the
AttributeSel ectionFilter from wekafilters, but they can also be used

separately.

Indexes

As mentioned above, all classes are automatically subclasses of j ect. This
makes it possible to construct a tree corresponding to the hierarchy of all
classesin Weka. Y ou can examine this tree by selecting the Class Hierarchy
hyperlink from the top of any page of the online documentation. This
shows very concisely which classes are subclasses or superclasses of a
particular class—for example, which classes inherit from Q assifier.

The online documentation contains an index of all publicly accessible
variables (called fields) and methods in Weka—in other words, all fields
and methods that you can access from your own Java code. To view it,
click on the Index hyperlink located at the top of every documentation

page.

Processing datasets using the machine
leaming programs

We have seen how to use the online documentation to find out which
learning methods and other tools are provided in the Weka system. Now we
show how to use these algorithms from the command line, and then discuss
them in more detail.
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MVAX <= 14000 : L
MVAX > 14000 : L

LML: class = 4

+

+

+

+

+ o+

Pruned traini ng nodel tree:

ML (141/4.18%
MR (68/51. 8%

Model s at the | eaves (snoot hed):

.15
2. 05vendor =honeywel | , i pl , i bm cdc, ncr, basf,
goul d, si enens, nas, advi ser, sperry, andahl
5. 43vendor =advi ser, sperry, andahl
5. 78vendor =andahl + 0. 00638MYCT
0. 00158MM N + 0. 00345MVAX
0. 552CACH + 1. 14CHM N + 0. 0945CHVAX

LM2: class = -113

56. 1vendor =honeywel | , i pl , i bm cdc, ncr, basf,
goul d, si enens, nas, advi ser, sperry, andahl

10. 2vendor =advi ser, sperry, amdahl

10. 9vendor =andahl

0. 012MYCT + 0. 0145MM N + 0. 0089MVAX

0. 808CACH + 1. 29CHVAX

=== Error on training data ===

Correl ation coefficient
Mean absol ute error

Root mean squared error

Rel ati ve absolute error
Root rel ative squared error
Total Nunber of Instances

=== (ross-validation ===

Correl ation coefficient
Mean absol ute error

Root mean squared error

Rel ati ve absol ute error
Root rel ative squared error
Total Nunber of Instances

209

0.
13.
33.
14.
21.

209

. 9853
13.
26.
15.
17.

4072
3977
3431
0985

9767
1239
4455
9884
6147

%
%

%
%

Figure 8.5 Output from the M5¢program for numeric prediction.
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Using M5

Section 8.1 explained how to interpret the output of a decision tree learner
and showed the performance figures that are automatically generated by
the evaluation module. The interpretation of these is the same for all
models that predict a categorical class. However, when evaluating models
for numeric prediction, Weka produces a different set of performance
measures.

As an example, suppose you have a copy of the CPU performance
dataset from Table 1.5 of Chapter 1 named cpu.arff in the current
directory. Figure 8.5 shows the output obtained if you run the model tree
inducer M5I on it by typing

java weka.classifiers.nb. MbPrime -t cpu.arff

and pressing Return. The structure of the pruned model tree is surprisingly
simple. It is adecision stump, a binary 1-level decision tree, with asplit on
the maXx attribute. Attached to that stump are two linear models, one for
each leaf. Both involve one nominal attribute, called vendor. The
expression vendor =advi ser, sperry,andahl is interpreted as follows: if
vendor is either advi ser, sperry, or amdahl , then substitute 1, otherwise 0.

The description of the model tree is followed by several figures that
measure its performance. As with decision tree output, the first set is
derived from the training data and the second uses tenfold cross-validation
(this time not stratified, of course, because that doesn’t make sense for
numeric prediction). The meaning of the different measures is explained
in Section 5.8.

Generic options

In the examples above, the -t option was used to communicate the name of
the training file to the learning algorithm. There are several other options
that can be used with any learning scheme, and also scheme-specific ones
that apply only to particular schemes. If you invoke a scheme without any
command-line options at all, it displays all options that can be used. First
the general options are listed, then the scheme-specific ones. Try, for
example,

java weka.classifiers.j48.J48

You'll see alisting of the options common to all learning schemes, shown
in Table 8.1, followed by alist of those that just apply to J48, shown in
Table 8.2. We will explain the generic options and then briefly review the
scheme-specific ones.
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Table 8.1  Generic options for learning schemes in Weka.

option function

-t <training file> Specify training file

-T <test file> Specify test file. If none, a cross-validation is
performed on the training data

-c <cl ass index> Specify index of class attribute

-x <nunber of fol ds> Specify number of folds for cross-validation

-s <random nunber seed> Specify random number seed for cross-validation

-m<cost matrix file> Specify file containing cost matrix

-v Output no statistics for training data

| <input file> Specify input file for model

-d <output file> Specify output file for model

0 Output statistics only, not the classifier

[ Output information retrieval statistics for two-

class problems

k Output information-theoretic statistics

-p Only output predictions for test instances

Only output cumulative margin distribution

The optionsin Table 8.1 determine which datais used for training and
testing, how the classifier is evaluated, and what kind of datistics are
displayed. You might want to use an independent test set instead of
performing a cross-validation on the training data to evaluate a learning
scheme. The —T option allows just that: if you provide the name of afile,
the datainitisused to derive performance satigtics, instead of cross-
validation. Sometimes the class is not the last attribute in an ARFF file: you
can declare that another one is the class using —c. This option requires you
to specify the position of the desired attribute in the file, 1 for the first
attribute, 2 for the second, and so on. When tenfold cross-validation is
performed (the default if atest file is not provided), the datais randomly
shuffled first. If you want to repeat the cross-validation several times, each
time reshuffling the data in a different way, you can set the random
number seed with —s (default value 1). With a large dataset you may want
to reduce the number of folds for the cross-validation from the default
value of 10 using —x.

Weka also implements cost-sensitive classification. If you provide the
name of afile containing a cost matrix using the —moption, the dataset will
be reweighted (or resampled, depending on the learning scheme)
according to the information in this file. Here is a cost matrix for the
weather data above:
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0110 %If true class yes and prediction no, penalty is 10

101 %If true class no and prediction yes, penalty is 1

Each line must contain three numbers: the index of the true class, the index
of the incorrectly assigned class, and the penalty, which is the amount by
which that particular error will be weighted (the penalty must be a positive
number). Not all combinations of actual and predicted classes need be
listed: the default penalty is 1. (In all Weka input files, comments
introduced by % can be appended to the end of any line.)

J48 pruned tree
yes (14.0/0. 74)

Nunber of Rules 1
Size of the tree : 1

=== Confusion Matrix ===

ab <-- classified as
90| a=yes
50| b=no

=== Stratified cross-validation ===

Correctly dassified | nstances 9 64. 2857 %
Incorrectly dassified I nstances 5 35.7143 %
Correctly Qassified Wth Cost 90 94. 7368 %
Incorrectly dassified Wth Cost 5 5.2632 %
Mean absol ute error 0. 3751

Root mean squared error 0.5714

Total Nunber of Instances 14

Total Nunber Wth Cost 95

=== Confusion Matrix ===

ab <-- classified as
90| a=yes
50| b=no

Figure 8.6 Output from J4.8 with cost-sensitive classification.
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To illustrate cost-sensitive classification, let’s apply J4.8 to the weather
data, with a heavy penalty if the learning scheme predicts no when the true
classis yes. Save the cost matrix above in afile called costsin the same
directory as weather.arff. Assuming that you want the cross-validation
performance only, not the error on the training data, enter

java weka.classifiers.j48.J48 -t weather.arff -mcosts -v

The output, shown in Figure 8.6, is quite different from that given earlier
in Figure 8.2. To begin with, the decision tree has been reduced to its root!
Also, four new performance measures are included, each one ending in
Wth Cost. These are calculated by weighting the instances according to the
weights given in the cost matrix. As you can see, the learner has decided
that it’'s best to always predict yes in this situation—which is not surprising,
given the heavy penalty for erroneously predicting no.

Returning to Table 8.1, it is also possible to save and load models. If
you provide the name of an output file using -d, Weka will save the
classifier generated from the training data into this file. If you want to
evaluate the same classifier on a new batch of test instances, you can load it
back using -I instead of rebuilding it. If the classifier can be updated
incrementally (and you can determine this by checking whether it
implements the Wpdat eabl ed assi fi er interface), you can provide both a
training file and an input file, and Weka will load the classifier and update
it with the given training instances.

If you only wish to assess the performance of alearning scheme and are
not interested in the model itself, use —o to suppress output of the model.
To see the information-retrieval performance measures of precision, recall,
and the F-measure that were introduced in Section 5.7, use —i (note that
these can only be calculated for two-class datasets). Information-theoretic
measures computed from the probabilities derived by a learning

Table 8.2 Scheme-specific options for the J4.8 decision tree leaner.

option function

-U Use unpruned tree

- C <pruni ng confi dence> Specify confidence threshold for pruning

-M <nunber of instances> Specify minimum number of instances in a leaf

-R Use reduced-error pruning

-N <nunber of fol ds> Specify number of folds for reduced error pruning.
One fold is used as pruning set

-S Use binary splits only

Don't perform subtree raising
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scheme—such as the informational loss function discussed in Section
5.6—can be obtained with —k.

Users often want to know which class values the learning scheme
actually predicts for each test instance. The —p option, which only applies if
you provide atest file, prints the number of each test instance, its class, the
confidence of the scheme's prediction, and the predicted class value.
Finally, you can output the cumulative margin distribution for the training
data. This allows you to investigate how the distribution of the margin
measure from Section 7.4 (in the subsection Boosting) changes with the
number of iterations performed when boosting a learning scheme.

Scheme-specific options

Table 8.2 shows the options specific to J4.8. You can force the algorithm
to use the unpruned tree instead of the pruned one. You can suppress
subtree raising, which results in a more efficient algorithm. Y ou can set the
confidence threshold for the pruning procedure, and the minimum
number of instances permissible at any leaf—both parameters were
discussed in Section 6.1 (p. 169). In addition to C4.5’s standard pruning
procedure, reduced-error pruning (Section 6.2) can be performed, which
prunes the decision tree to optimize performance on a holdout set. The —N
option governs how large this set is: the dataset is divided equally into that
number of parts, and the last is used as the holdout set (default value 3).
Finally, to build a binary tree instead of one with multiway branches for
nominal attributes, use -B.

Classifiers

J4.8 isjust one of many practical |earning schemes that you can apply to
your dataset. Table 8.3 lists them all, giving the name of the class
implementing the scheme along with its most important scheme-specific
options and their effects. It also indicates whether the scheme can handle
weighted instances (W column), whether it can output a class distribution
for datasets with a categorical class (D column), and whether it can be
updated incrementally (I column). Table 8.3 omits a few other schemes
designed mainly for pedagogical purposes that implement some of the
basic methods covered in Chapter 4—a rudimentary implementation of
Naive Bayes, a divide-and-conquer decision tree algorithm (ID3), a
covering algorithm for generating rules (PRISM), and a nearest-neighbor
instance-based learner (IB1); we will say something about these in Section
8.5 when we explain how to write new machine learning schemes. Of
course, Weka is a growing system: other learning algorithms will be added
in due course, and the online documentation must be consulted for a
definitive list.
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The most primitive of the schemesin Table 8.3 is called zeroR it simply
predicts the majority classin the training data if the classis categorical and
the average class value if it is numeric. Although it makes little sense to use
this scheme for prediction, it can be useful for determining a baseline
performance as a benchmark for other learning schemes. (Sometimes
other schemes actually perform worse than zeroR this indicates serious
overfitting.)

Ascending the complexity ladder, the next learning scheme is meR,
discussed in Section 4.1, which produces simple rules based on one
attribute only. It takes a single parameter: the minimum number of
instances that must be covered by each rule that is generated (default value
6).

Nai veBayes implements the probabilistic Naive Bayesian classifier from
Section 4.2. By default it uses the normal distribution to model numeric
attributes; however, the —-K option instructs it to use kernel density
estimators instead. This can improve performance if the normality
assumption is grossly incorrect.

The next scheme in Table 8.3, Deci si onTabl e, produces a decision table
using the wrapper method of Section 7.1 to find a good subset of attributes
for inclusion in the table. This is done using a best-first search. The
number of non-improving attribute subsets that are investigated before the
search terminates can be controlled using -s (default value 5). The number
of cross-validation folds performed by the wrapper can be changed using
-X (default: leave-one-out). Usually, a decision table assigns the majority
class from the training data to a test instance if it does not match any entry
in the table. However, if you specify the —I option, the nearest match will
be used instead. This often improves performance significantly.

IBk is an implementation of the k-nearest-neighbors classifier that
employs the distance metric discussed in Section 4.7. By default it uses just
one nearest neighbor (k = 1), but the number can be specified manually
with —K or determined automatically using leave-one-out cross-validation.
The —x option instructs | Bk to use cross-validation to determine the best
value of k between 1 and the number given by -k If more than one
neighbor is selected, the predictions of the neighbors can be weighted
according to their distance to the test instance, and two different formulas
are implemented for deriving the weight from the distance (-Dand -F). The
time taken to classify a test instance with a nearest-neighbor classifier
increases linearly with the number of training instances. Consequently it is
sometimes necessary to restrict the number of training instances that are
kept in the classifier, which is done by setting the window size option.

We have already discussed the options for J4.8; those for PART, which
forms rules from pruned partial decision trees built using C4.5's heuristics
as described near the end of Section 6.2 (page 181), are a subset of these.



286

CHAPTER EIGHT | MACHINE LEARNING ALGORITHMS IN JAVA

Just as reduced-error pruning can reduce the size of a J4.8 decision tree, it
can also reduce the number of rules produced by PART—with the side
effect of decreasing run time because complexity depends on the number
of rules that are generated. However, reduced-error pruning often reduces
the accuracy of the resulting decision trees and rules because it reduces the
amount of data that can be used for training. With large enough datasets,
this disadvantage vanishes.

In Section 6.3 we introduced support vector machines. The SMO class
implements the sequential minimal optimization algorithm, which learns
this type of classifier. Despite being one of the fastest methods for learning
support vector machines, sequential minimal optimization is often slow to
converge to a solution—particularly when the datais not linearly separable
in the space spanned by the nonlinear mapping. Because of noise, this
often happens. Both run time and accuracy depend critically on the values
that are given to two parameters: the upper bound on the coefficients
values in the equation for the hyperplane (—C), and the degree of the
polynomials in the non-linear mapping (—E). Both are set to 1 by default.
The best settings for a particular dataset can be found only by
experimentation.

The next three learning schemes in Table 8.3 are for numeric
prediction. The simplest is linear regression, whose only parameter controls
how attributes to be included in the linear function are selected. By default,
the heuristic employed by the model tree inducer M5¢is used, whose run
timeislinear in the number of attributes. However, it is possible to suppress
al attribute selection by setting —S to 1, and to use greedy forward
selection, whose run time is quadratic in the number of attributes, by
setting —S to 2.

The class that implements M5¢ has already been described in the
example on page 279. It implements the algorithm explained in Section
6.5 except that a simpler method is used to deal with missing values: they
are replaced by the global mean or mode of the training data before the
model tree is built. Several different forms of model output are provided,
controlled by the —O option: a model tree (—O m), a regression tree
without linear models at the leaves (—O r ), and a simple linear regression
(—=O 1). The automatic smoothing procedure described in Section 6.5 can
be disabled using —U. The amount of pruning that this algorithm performs
can be controlled by setting the pruning factor to a value between 0 and
10. Finally, the verbosity of the output can be set to avalue from 0 to 3.

Locally weighted regression, the second scheme for numeric prediction
described in Section 6.5, isimplemented by the LWR class. Its performance
depends critically on the correct choice of kernel width, which is
determined by calculating the distance of the test instance to its kth nearest
neighbor. The value of k can be specified using —K. Another factor that
influences performance is the shape of the kernel: choices are O for a
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Table 84  The metaldeaming schemes in Weka.

scheme option function
weka. cl assi fi ers. Baggi ng -l < Specify number of iterations
-W<> Specify base leamer
-S < Specify random number seed
weka. cl assi fi ers. AdaBoost ML -l <> Specify number of iterations
-P <> Specify weight mass to be used
-W<> Specify base learmner
-Q Use resampling
-S < Specify random number seed
weka. cl assi fi ers. Logi t Boost -l <> Specify number of iterations
-P <> Specify weight mass to be used
-W<> Specify base leamer
weka. cl assifiers. -W<> Specify base learmner
Mil ti d assd assifier
weka. cl assifiers. -W<> Specify base leamer
CVPar anet er Sel ecti on -P < Specify option to be optimized
-X <> Specify number of cross-validation
folds
-S <> Specify random number seed
weka. cl assifiers. -B <> Specify level-0 learner and options
St acki ng -M <> Specify level-1 leamer and options
-X <> Specify number of cross-validation
folds
-S < Specify random number seed

linear kernel (the default), 1 for an inverse one, and 2 for the classic
Gaussian kernel.

The final scheme in Table 8.3, Deci si onStunp, builds binary decision
stumps—one-level decision trees—for datasets with either a categorical or a
numeric class. It copes with missing values by extending a third branch
from the stump, in other words, by treating mi ssi ng as a separate attribute
value. It is designed for use with the boosting methods discussed later in
this section.

Meta-leaming schemes

Chapter 7 described methods for enhancing the performance and
extending the capabilities of learning schemes. We call these meta-learning
schemes because they incorporate other learners. Like ordinary learning
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schemes, meta learners belong to the classifiers package: they are
summarized in Table 8.4.

The first is an implementation of the bagging procedure discussed in
Section 7.4. You can specify the number of bagging iterations to be
performed (default value 10), and the random number seed for
resampling. The name of the learning scheme to be bagged is declared
using the —~woption. Here is the beginning of a command line for bagging
unpruned J4.8 decision trees:

java weka. cl assifiers.bagging -Wjaws.classifiers.j48.348...-- -U

There are two lists of options, those intended for bagging and those for the
base |earner itself, and a double minus sign (—) is used to separate the lists.
Thus the —uin the above command line is directed to the J48 program,
where it will cause the use of unpruned trees (see Table 8.2). This
convention avoids the problem of conflict between option letters for the
meta learner and those for the base learner.

AdaBoost . ML, also discussed in Section 7.4, is handled in the same way as
bagging. However, there are two additional options. First, if —Q is used,
boosting with resampling will be performed instead of boosting with
reweighting. Second, the —P option can be used to accelerate the learning
process: in each iteration only the percentage of the weight mass specified
by —Pis passed to the base learner, instances being sorted according to their
weight. This means that the base learner has to process fewer instances
because often most of the weight is concentrated on a fairly small subset,
and experience shows that the consequent reduction in classification
accuracy is usually negligible.

Another boosting procedure is implemented by Logi t Boost . A detailed
discussion of this method is beyond the scope of this book; suffice to say
that it is based on the concept of additive logistic regression (Friedman et
al. 1998). In contrast to AdaBoost. ML, Logi t Boost can successfully boost
very simple learning schemes, (like Deci si onStunp, that was introduced
above), even in multiclass situations. From auser’s point of view, it differs
from AdaBoost. M. in an important way because it boosts schemes for
numeric prediction in order to form a combined classifier that predicts a
categorical class.

Weka also includes an implementation of a meta learner which performs
stacking, as explained in Chapter 7 (Section 7.4). In stacking, the result of
a set of different level-0 learnersis combined by alevel-1 learner. Each
level-0 learner must be specified using -B, followed by any relevant
options—and the entire specification of the level-0 learner, including the
options, must be enclosed in double quotes. The level-1 learner is specified
in the same way, using -M Here is an example:

java weka. cl assifiers. Stacking -B “weka. cl assifiers.j48.J48 -U
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-B “weka.classifiers.IBk -K 5 -M*“weka. cl assifiers.j48.J48" ...

By default, tenfold cross-validation is used; this can be changed with the —X
option.

Some learning schemes can only be used in two-class situations—for
example, the sMD class described above. To apply such schemes to
multiclass datasets, the problem must be transformed into several two-class
ones and the results combined. Mil ti O assQ assi fi er does exactly that: it
takes a base learner that can output a class distribution or a numeric class,
and applies it to a multiclass learning problem using the simple one-per-
class coding introduced in Section 4.6 (p. 114).

Often, the best performance on a particular dataset can only be achieved
by tedious parameter tuning. Weka includes a meta learner that performs
optimization automatically using cross-validation. The -w option of
CvPar anet er Sel ecti on takes the name of a base learner, and the —P option
specifies one parameter in the format

“<option nane> <starting val ue> <l ast val ue> <nunber of steps>"
An exampleis:

java...CvParameterSel ection -W..(neR -P “B 1 10 10 -t
weat her . ar f f

which evaluates integer values between 1 and 10 for the B parameter of 1R.
Multiple parameters can be specified using several —p options.

CVPar anet er Sel ecti on causes the space of all possible combinations of
the given parameters to be searched exhaustively. The parameter set with
the best cross-validation performance is chosen, and thisis used to build a
classifier from the full training set. The —-x option allows you to specify the
number of folds (default 10).

Suppose you are unsure of the capabilities of a particular classifier—for
example, you might want to know whether it can handle weighted

@el ation weather-weka.filters. AttributeFilter-RlL_2
@ttribute humdity real

@ttribute w ndy {TRUE FALSE}
@ttribute play {yes, no}

@lat a

85, FALSE, no
90, TRUE, no

Figure 8.7 Effect of Attri but eFi | t er ontheweather dataset.
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Table85  Thefilter algorithms in Weka.

filter option function

weka. filters. AddFil ter -C <> Specify index of new attribute
-L <> Specify labels for nominal attribute
-N <> Specify name of new attribute

weka. filters. -E <> Specify evaluation class
AttributeSel ectionFilter -S <> Specify search class
ST <> Set threshold by which to discard
attributes
weka.filters. AttributeFilter -R <> Specify attributes to be deleted
-V Invert matching sense
weka. filters. DiscretizeFilter -B <> Specify number of bins
-0 Optimize number of bins
-R <> Specify attributes to be discretized
-V Invert matching sense
-D Output binary attributes
weka. filter. Makel ndicatorFilter -C <> Specify attribute index
-V <> Specify value index
-N Output nominal attribute
weka. filter.MergeTwoVal uesFil ter -C <> Specify attribute index

-F <> Specify first value index
-S <> Specify second value index

instances. The weka. cl assi fi ers. Checkd assi fi er tool prints a summary of
any classifier’'s properties. For example,

java weka. cl assifiers. Checkd assi fier -Wweka. cl assifiers.|Bk

prints a summary of the properties of the I Bk class discussed above.

In Section 7.4 we discussed the bias-variance decomposition of a
learning algorithm. Weka includes an algorithm that estimates the bias and
variance of a particular learning scheme with respect to a given dataset.
BvDeconpose takes the name of alearning scheme and atraining file and
performs a bias-variance decomposition. It provides options for setting the
index of the class attribute, the number of iterations to be performed, and
the random number seed. The more iterations that are performed, the
better the estimate.
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Table 85  The filter algorithms in Weka. (continued)

filter option function

weka. filters. -N Output nominal attributes
Nom nal ToBi naryFi | t er

weka. filters.
Repl aceM ssi ngVal uesFi | t er

weka. filters.|nstanceFilter -C <> Specify attribute index
-S < Specify numeric value
-L <> Specify nominal values

-V Invert matching sense
weka. filters. -C <> Specify attribute index
SwapAt t ri but eval uesFi | t er -F <> Specify first value index
-S < Specify second value index
weka. filters. -R <> Specify attributes to be transformed
Nurrer i cTransf or ni | t er -V Invert matching sense

-C <> Specify Java class
-M <> Specify transformation method
weka. filters. -R <> Specify range of instances to be split
SplitDatasetFilter -V Invert matching sense
-N <> Specify number of folds
-F <> Specify fold to be returned
-S < Specify random number seed

Filters

Having discussed the learning schemes in the classifiers package, we now
turn to the next important package for command-line use, filters We begin
by examining a simple filter that can be used to delete specified attributes
from a dataset, in other words, to perform manual attribute selection. The
following command line

java weka.filters. AttributeFilter -R 1,2 -i weather.arff

yields the output in Figure 8.7. As you can see, attributes 1 and 2, namely
outl ook and tenperature, have been deleted. Note that no spaces are
allowed in the list of attribute indices. The resulting dataset can be placed
in the file weather.new.arff by typing:

java...AttributeFilter -R 1,2 -i weather.arff -o weather.new arff

All filtersin Weka are used in the same way. They take an input file
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specified using the —i option and an optional output file specified with —o.
A class index can be specified using —c. Filters read the ARFF file,
transform it, and write it out. (If files are not specified, they read from
standard input and write to standard output, so that they can be used as a
“pipe” in Unix systems.) All filter algorithms provide a list of available
optionsin response to —h, asin

java weka.filters. AttributeFilter -h

Table 8.5 lists the filters implemented in Weka, along with their principal
options.

The first, AddFilter, inserts an attribute at the given position. For all
instances in the dataset, the new attribute’ s value is declared to be missing.
If alist of comma-separated nominal valuesis given using the —L option,
the new attribute will be a nominal one, otherwise it will be numeric. The
attribute’ s name can be set with -N

AttributeSel ectionFilter allows you to select a set of attributes using
different methods: since it is rather complex we will leave it to last.

AttributeFilter has already been used above. However, there is a
further option: if —vis used the matching set is inverted—that is, only
attributes not included in the —R specification are del eted.

An important filter for practical applications is D scretizeFilter. It
contains an unsupervised and a supervised discretization method, both
discussed in Section 7.2. The former implements equal-width binning, and
the number of bins can be set manually using -B. However, if —0is present,
the number of bins will be chosen automatically using a cross-validation
procedure that maximizes the estimated likelihood of the data. In that case,
—-Bgives an upper bound to the possible number of bins. If the index of a
class attribute is specified using —c, supervised discretization will be
performed using the MDL method of Fayyad and Irani (1993). Usually,
discretization loses the ordering implied by the original numeric attribute
when it is transformed into a nominal one. However, thisinformation is
preserved if the discretized attribute with k valuesis transformed into k-1
binary attributes. The —Doption does this automatically by producing one
binary attribute for each split point (described in Section 7.2 [p. 239]).

Makel ndi cat or Fi | ter is used to convert anominal attribute into a binary
indicator attribute and can be used to transform a multiclass dataset into
several two-class ones. The filter substitutes a binary attribute for the
chosen nominal one, setting the corresponding value for each instance to 1
if aparticular original value was present and to 0 otherwise. Both the
attribute to be transformed and the original nominal value are set by the
user. By default the new attribute is declared to be numeric, but if —Nis
given it will be nominal.

Suppose you want to merge two values of a nominal attribute into a
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single category. Thisis done by MergeAt tri but eVal uesFi I ter. The name of
the new value is a concatenation of the two original ones, and every
occurrence of either of the original valuesis replaced by the new one. The
index of the new value is the smaller of the original indexes.

Some learning schemes, like support vector machines, can handle only
binary attributes. The advantage of binary attributes is that they can be
treated as either nominal or numeric. Noni nal ToBi naryFi | t er transforms all
multivalued nominal attributes in a dataset into binary ones, replacing each
attribute with k values by k-1 binary attributes. If a class is specified using
the —c option, it is left untouched. The transformation used for the other
attributes depends on whether the class is numeric. If the classis numeric,
the M5¢transformation method is employed for each attribute; otherwise a
simple one-per-value encoding is used. If the -Noption is used, all new
attributes will be nominal, otherwise they will be numeric.

One way of dealing with missing values is to replace them globally
before applying a learning scheme. Repl aceM ssi ngVal uesFi | t er substitutes
the mean, for numeric attributes, or the mode, for nominal ones, for each
occurrence of a missing value.

To remove from a dataset all instances that have certain values for
nominal attributes, or numeric values above or below a certain threshold,
use I nst anceFi | ter. By default all instances are deleted that exhibit one of
a given set of nomina attribute values (if the specified attribute is
nominal), or a numeric value below a given threshold (if it is numeric).
However, the matching criterion can be inverted using -V.

The SwapAt tri but eVal uesFil ter isasimple one: all it doesis swap the
positions of two values of anominal attribute. Of course, this could also be
accomplished by editing the ARFF file in a word processor. The order of
attribute values is entirely cosmetic: it does not affect machine learning at
all. If the selected attribute is the class, changing the order affects the
layout of the confusion matrix.

In some applications it is necessary to transform a numeric attribute
before a learning scheme is applied—for example, replacing each value
with its square root. This is done using NurericTransfornfilter, which
transforms all of the selected numeric attributes using a given function.
The transformation can be any Java function that takes a doubl e as its
argument and returns another double, for example, sgrt() in
j ava. | ang. Mat h. The name of the class that implements the function (which
must be a fully qualified name) is set using -C, and the name of the
transformation method is set using —M thus to take the square root use:

java weka.filters. NurmericTransfornFilter -C java.lang. Math -Msqrt. ..

Weka also includes a filter with which you can generate subsets of a
dataset, SplitDataset Fi l ter. You can either supply arange of instances to
be selected using the —Roption, or generate a random subsample whose
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size is determined by the —Noption. The dataset is split into the given
number of folds, and one of them (indicated by —-F) is returned. If a
random number seed is provided (with -S), the dataset will be shuffled
before the subset is extracted. Moreover, if a class attribute is set using —c
the dataset will be stratified, so that the class distribution in the subsampleis
approximately the same as in the full dataset.

It is often necessary to apply afilter algorithm to a training dataset and
then, using settings derived from the training data, apply the same filter to
a test file. Consider a filter that discretizes numeric attributes. If the
discretization method is supervised—that is, if it uses the class values to
derive good intervals for the discretization—the results will be biased if it is
applied directly to the test data. It is the discretization intervals derived
from the training data that must be applied to the test data. More generally,
the filter algorithm must optimize its internal settings according to the
training data and apply these same settings to the test data. This can be
done in a uniform way with all filters by adding -b as a command-line
option and providing the name of input and output files for the test data
using -r and -s respectively. Then the filter class will derive its internal
settings using the training data provided by -i and use these settings to
transform the test data.

Finally, wereturnto Attri but eSel ecti onFi | ter. Thislets you select a set
of  attributes  using attribute  selection  classes in the
weka. attri but eSel ecti on package. The —c option sets the class index for
supervised attribute selection. With —-E you provide the name of an
evaluation class from weka. attribut eSel ection that determines how the
filter evaluates attributes, or sets of attributes; in addition you may need to
use -S to specify a search technique. Each feature evaluator, subset
evaluator, and search method has its own options. They can be printed with
~h.

There are two types of evaluators that you can specify with —E ones that
consider one attribute at a time, and ones that consider sets of attributes
together. The former are subclasses of weka. attributeSel ection.
Attri but eEval uat or—an example is weka. attri but eSel ecti on.
InfoGai nAttributeEval, which evaluates attributes according to their
information gain. The latter are subclasses of weka. attributeSel ecti on.
Subset Eval uat or—like  weka. attri buteSel ecti on. Cf sSubset Eval, which
evaluates subsets of features by the correlation among them. If you give
the name of a subclass of Attri but eEval uat or, you must also provide, using
-T, athreshold by which the filter can discard low-scoring attributes. On
the other hand, if you give the name of a subclass of Subset Eval uat or, you
must provide the name of a search class using -S, which is used to search
through  possible subsets of  attributes. Any  subclass  of
weka. attri but eSel ecti on. ASSearch can be used for this option—for
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Apriori

M ni mum support: 0.2
M ni mum confi dence: 0.9
Nunber of cycl es performed: 17

CGenerated sets of |arge itensets:

Size of set of large itemsets L(1): 12
Size of set of large itemsets L(2): 47
Size of set of large itenmsets L(3): 39
Size of set of large itensets L(4): 6

Best rul es found:

hum di t y=nornal wi ndy=FALSE 4 ==> pl ay=yes 4 (1)

t enper at ure=cool 4 ==> humdity=normal 4 (1)

out | ook=overcast 4 ==> pl ay=yes 4 (1)

t enper at ur e=cool play=yes 3 ==> humdity=normal 3 (1)
out | ook=rai ny wi ndy=FALSE 3 ==> pl ay=yes 3 (1)

out | ook=rai ny play=yes 3 ==> wi ndy=FALSE 3 (1)
out | ook=sunny hum di t y=hi gh 3 ==> play=no 3 (1)
out | ook=sunny play=no 3 ==> humdity=high 3 (1)
t enper at ur e=cool wi ndy=FALSE 2 ==> huni di ty=normal play=yes 2 (1)
t enper at ur e=cool hum di ty=nor mal wi ndy=FALSE 2 ==> pl ay=yes 2 (1)

© 0o ~NO U WNPF

[Eny
©.

Figure 8.8 Output from the APRIORI association rule learner.

example weka. attribut eSel ection. BestFirst, which implements a best-
first search.

Here is an example showing Attri but eSel ecti onFi I ter being used with
correlation-based subset evaluation and best-first search for the weather
data:

java weka.filters. AttributeSel ectionFilter
-S weka. attri buteSel ection. Best Fi rst
-E weka. attri but eSel ecti on. Cf sSubset Eval
-i weather.arff -c5

To provide options for the evaluator, you must enclose both the name of
the evaluator and its options in double quotes (e.g., —S *“<eval uator>
<opt i ons>*). Options for the search class can be specified in the same way.
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Table 8.6 Principal options for the APRIORI association rule leamer.

option function

-t <training file> Specify training file

-N <requi red nunber of rul es> Specify required number of rules

- C <ni ni num confi dence of a rule> Specify minimum confidence of a rule

-D <delta for m ni num support > Specify delta for decrease of minimum support

-M <l ower bound for mi ni mum support> Specify lower bound for minimum support

Association rules

Weka includes an implementation of the APRIORI algorithm for generating
association rules: the class for thisis weka. associ ati ons. Apriori. TO see
what it does, try

java weka. associ ations. Apriori —t weather.nonmnal.arff

where weat her . nomi nal . arff isthe nominal version of the weather data
from Section 1.2. (The APRIORI algorithm can only deal with nominal
attributes.)

The output is shown in Figure 8.8. The last part gives the association
rules that are found. The number preceding the ==> symbol indicates the
rule’s support, that is, the number of items covered by its premise.
Following the rule is the number of those items for which the rule’'s
consequent holds as well. In parentheses is the confidence of the rule—in
other words, the second figure divided by the first. In this simple example,
the confidence is 1 for every rule. APRIORI orders rules according to their
confidence and uses support as a tiebreaker. Preceding the rules are the
numbers of item sets found for each support size considered. In this case
six item sets of four items were found to have the required minimum

Table8.7  Generic options for clustering schemes in Weka.

option function

-t <training file> Specify training file

-T <test file> Specify test file

-x <nunber of fol ds> Specify number of folds for cross-validation

-s <random nunber seed> Specify random number seed for cross-
validation

-l <input file> Specify input file for model

-d <output file> Specify output file for model

-p Only output predictions for test instances




8.3 PROCESSING DATASETS USING THE MACHINE LEARNING PROGRAMS 297

support.

By default, APRIORI tries to generate ten rules. It begins with a
minimum support of 100% of the data items and decreases this in steps of
5% until there are at least ten rules with the required minimum confidence,
or until the support has reached a lower bound of 10%, whichever occurs
first. The minimum confidence is set to 0.9 by default. As you can see
from the beginning of Figure 8.8, the minimum support decreased to 0.2,
or 20%, before the required number of rules could be generated; this
involved atotal of 17 iterations.

All of these parameters can be changed by setting the corresponding
options. As with other learning algorithms, if the program is invoked
without any command-line arguments, all applicable options are listed. The
principal ones are summarized in Table 8.6.

Clustering

Weka includes a package that contains clustering algorithms,
weka.clusterers. These operate in a similar way to the classification
methods in weka.classifiers. The command-line options are again split into
generic and scheme-specific options. The generic ones, summarized in
Table 8.7, are just the same as for classifiers except that a cross-validation
is not performed by default if the test file is missing.

It may seem strange that there is an option for providing test data
However, if clustering is accomplished by modeling the distribution of
instances probabilistically, it is possible to check how well the model fits
the data by computing the likelihood of a set of test data given the model.
Weka measures goodness-of-fit by the logarithm of the likelihood, or log-
likelihood: and the larger this quantity, the better the model fits the data.
Instead of using a single test set, it is also possible to compute a cross-
validation estimate of the log-likelihood using —x.

Weka also outputs how many instances are assigned to each cluster. For
clustering algorithms that do not model the instance distribution
probabilistically, these are the only statistics that Weka outputs. It’s easy to
find out which clusterers generate a probability distribution: they are
subclasses of weka. cl usterers. Di stributiond usterer.

There ae two clustering algorithms in  weka.clusterers:
weka. clusterers. EM and weka.clusterers. Cobweb. The former is an
implementation of the EM algorithm and the latter implements the
incremental clustering algorithm (both are described in Chapter 6, Section
6.6). They can handle both numeric and nominal attributes.

Like Naive Bayes, EM makes the assumption that the attributes are
independent random variables. The command line

java weka.clusterers.EM -t weather.arff -N 2
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results in the output shown in Figure 8.9. The —-N options forces EM to
generate two clusters. As you can see, the number of clustersis printed
first, followed by a description of each one: the cluster’s prior probability
and a probability distribution for all attributes in the dataset. For a nominal
attribute, the distribution is represented by the count associated with each
value (plus one); for a numeric attribute it is a standard normal
distribution. EM also outputs the number of training instances in each
cluster, and the log-likelihood of the training data with respect to the
clustering that it generates.

By default, EM selects the number of clusters automatically by
maximizing the logarithm of the likelihood of future data, estimated using
cross-validation. Beginning with one cluster, it continues to add clusters
until the estimated log-likelihood decreases. However, if you have access to
prior knowledge about the number of clustersin your data, it makes sense
to force EMto generate the desired number of clusters. Apart from —-N EM
recognizes two additional scheme-specific command-line options: -1 sets
the maximum number of iterations performed by the algorithm, and -s
sets the random number seed used to initialize the cluster membership
probabilities.

The cluster hierarchy generated by COBWEB is controlled by two
parameters: the acuity and the cutoff (see Chapter 6, page 216). They can
be set using the command-line options -A and -C, and are given as a
percentage. COBWEB' s output is very sensitive to these parameters, and it
pays to spend some time experimenting with them.

Embedded machine leaming

When invoking learning schemes and filter algorithms from the command
line, there is no need to know anything about programming in Java. In this
section we show how to access these algorithms from your own code. In
doing so, the advantages of using an object-oriented programming
language will become clear. From now on, we assume that you have at |east
some rudimentary knowledge of Java. In most practical applications of
data mining, the learning component is an integrated part of a far larger
software environment. If the environment is written in Java, you can use
Weka to solve the learning problem without writing any machine learning
code yourself.

A simple message classifier

We present a simple data mining application, automatic classification of
email messages, to illustrate how to access classifiers and filters. Because its
purposeis educational, the system has been kept as simple as possible, and
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Nunber of clusters: 2
Quster: O Prior probability: 0.2816
Attribute: outl ook

D screte Estimator. Counts = 2.96 2.98 1 (Total = 6.94)
Attribute: tenperature

Normal Distribution. Mean = 82.2692 StdDev =  2.2416
Attribute: humdity
Normal Distribution. Mean = 83.9788 StdDev = 6. 3642

Attribute: w ndy
D screte Estimator. Counts = 1.96 3.98 (Total = 5.94)
Attribute: play
D screte Estimator. Counts = 2.98 2.96 (Total = 5.94)

Quster: 1 Prior probability: 0.7184
Attribute: outl ook

D screte Estimator. Counts = 4.04 3.02 6 (Total = 13.06)
Attribute: tenperature

Normal Distribution. Mean = 70.1616 StdDev =  3.8093
Attribute: humdity

Normal Distribution. Mean = 80.7271 StdDev = 11.6349
Attribute: w ndy

D screte Estimator. Counts = 6.04 6.02 (Total = 12.06)
Attribute: play

D screte Estimator. Counts = 8.02 4.04 (Total = 12.06)

=== Qustering stats for training data ===
d uster Instances

0 4 (29 9

1 10 (71 %

Log |ikelihood: -9.01881

Figure 8.9 Output from the EM clustering scheme.
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it certainly doesn’'t perform at the state of the art. However, it will give you
an idea how to use Weka in your own application. Furthermore, it is
straightforward to extend the system to make it more sophisticated.

The first problem faced when trying to apply machine learning in a
practical setting is selecting attributes for the data at hand. Thisis probably
aso the most important problem: if you don’t choose meaningful
attributes—attributes which together convey sufficient information to make
learning tractable—any attempt to apply machine learning techniquesis
doomed to fail. In truth, the choice of alearning schemeis usually far less
important than coming up with a suitable set of attributes.

In the example application, we do not aspire to optimum performance,
sowe use rather simplistic attributes: they count the number of times
specific keywords appear in the message to be classified. We assume that
each message is stored in an individual file, and the program is called every
time a new message is to be processed. If the user provides a class label for
the message, the system will use the message for training; if not, it will try
to classify it. The instance-based classifier 1Bk is used for this example
application.

Figure 8.10 shows the source code for the application program,
implemented in a class called Messaged assifier. The main() method
accepts the following command-line arguments: the name of a message file
(given by -m), the name of a file holding an object of class
Messaged assifier (-t) and, optionally, the classification of the message
(-c). The message’'s class can be hit or niss. If the user provides a
classification using —c, the message will be added to the training data; if
not, the program will classify the message as either hit or niss.

Main()

The mai n() method reads the message into an array of characters and
checks whether the user has provided a classification for it. It then attempts
to read an existing Messaged assi fier object from the file given by —t. If
this file does not exist, a new object of class Messaged assifier will be
created. In either case the resulting object is called nessaged . After
checking for illegal command-line options, the given message is used to
either update nessaged by calling the method updat eMbdel () on it, or
classify it by calling cl assifyMessage(). Finadly, if messaged has been
updated, the object is saved back into the file. In the following, we first
discuss how a new Messaged assi fier object is created by the constructor
Messaged assi fi er (), and then explain how the two methods updat eModel ()
and cl assi f yMessage() work.

MessageClassifier()
Each time a new Messaged assi fi er is created, objects for holding a dataset,
afilter, and a classifier are generated automatically. The only nontrivial
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/**
* Java program for classifying short text nessages into two cl asses.
*/

i mport weka.core.*;

i mport weka.classifiers.*;
import weka.filters.*;

i mport java.io.*,;

import java.util.*;

public class MessageCl assifier inplenments Serializable {

/* Qur (rather arbitrary) set of keywords. */
private final String[] mKeywords = {“product”, “only”, “offer”, “great”,
“amazi ng”, “phantastic”, “opportunity”, “buy”, “now'};

/* The training data. */
private Instances mData = null;

/* The filter. */
private Filter mFilter = new DiscretizeFilter();

/* The classifier. */
private Classifier mCl assifier = new | Bk();

/**
* Constructs enpty training dataset.
*/
public MessageCl assifier() throws Exception {

String nameOf Dat aset = “MessageCl assi ficati onProbl ent;

/] Create nuneric attributes.
Fast Vector attributes = new FastVector(m Keywords.length + 1);
for (int i =0 ; i < mKeywords.length; i++) {

attributes. addEl ement (new Attri bute(m Keywords[i]));

}

/1 Add class attribute.

Fast Vect or cl assVal ues = new Fast Vector (2);

cl assVal ues. addEl enent (“mi ss”);

cl assVal ues. addEl enent (“hit");

attributes. addEl enent (new Attri bute(“Class”, classVal ues));

/1l Create dataset with initial capacity of 100, and set index of class.
m Data = new | nstances(nanmeCf Dat aset, attributes, 100);
m Dat a. set Cl assl ndex(m Data. numAttributes() - 1);
}
/**
* Updat es npdel using the given training nessage.
*/
public void updateModel (String nessage, String classVal ue)
t hrows Exception {

Figure 8.10 Source code for the message classifier.
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/'l Convert message string into instance.
I nstance instance = nakel nstance(cl eanupStri ng(nessage));

/1 Add class value to instance.
i nstance. set Cl assVal ue(cl assVal ue);

/]l Add instance to training data.
m_Dat a. add(i nst ance) ;

/1 Use filter.
m Filter.inputFormt(m Data);
Instances filteredData = Filter.useFilter(mData, mFilter);

/] Rebuild classifier.
m Cl assifier.buildClassifier(filteredData);

}
/**
* Classifies a given nmessage.
*/
public void classifyMessage(String message) throws Exception {

/] Check if classifier has been built.
if (m.Data.num nstances() == 0) {
throw new Exception(“No classifier available.”);

}

/'l Convert message string into instance.
I nstance instance = nmakel nstance(cl eanupStri ng(nessage));

/]l Filter instance.
m Filter.input(instance);
Instance filteredlnstance = mFilter.output();

/] Get index of predicted class val ue.
doubl e predicted = mClassifier.classifylnstance(filteredlnstance);

/1l Classify instance.
Systemerr.println(“Message classified as : “ +
m Dat a. cl assAttribute().value((int)predicted));
}

/**

* Method that converts a text nessage into an instance.
*/
private Instance makel nstance(String nmessageText) {

StringTokeni zer tokenizer = new StringTokeni zer (messageText);
I nstance instance = new I nstance(m Keywords.|length + 1);
String token;

/1l Initialize counts to zero.
for (int i =0; i < mKeywords.length; i++) {

Figure 8.10 (continued)
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i nstance. set Val ue(i, 0);

}

/] Conpute attribute val ues.
whi |l e (tokeni zer. hasMoreTokens()) {
token = tokenizer. next Token();

for (int i = 0; i < mKeywords.length; i++) {
if (token.equal s(mKeywords[i])) {
i nstance. setVal ue(i, instance.value(i) + 1.0);
br eak;
}
}

}

/! Gve instance access to attribute information fromthe dataset.
i nstance. set Dat aset (m_Dat a) ;

return instance;

}

| **

*
/
private String cleanupString(String nessageText) {

char[] result = new char[nmessageText.length()];
int position = 0;

for (int i = 0; i < messageText.length(); i++) {
if (Character.isLetter(nmessageText.charAt(i)) ||
Character.isWitespace(nmessageText.charAt(i))) {

}

return new String(result);
}
/**
* Main method.
*/
public static void main(String[] options) {

MessageCl assi fier messageC ;
byte[] charArray;

try {
/1l Read nessage file into string.
String messageFileString = Utils.getOption('m, options);
if (messageFileString.length() !'= 0) {

int nunChars = nessageFil e. avail abl e();

* Method that deletes all non-letters froma string, and | owercases it.

result[position++] = Character.toLowerCase(nessageText.charAt(i));

Fi | el nput Stream nessageFile = new Fil el nput Stream( nessageFil eString);

Figure 8.10 (continued)
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charArray = new byt e[ nunChars];
messageFi | e. read(char Array);
messageFil e. cl ose();
} else {
t hrow new Exception ("Name of nessage file not provided.");

}

/1 Check if class value is given.
String classValue = Utils.getOption('c', options);

/| Check for nodel file. If existent, read it, otherw se create new
/'l one.
String nodel FileString = Utils.getOption('t', options);
if (nodel FileString.length() !'= 0) {
try {
Fil el nput Stream nodel | nFile = new Fil el nput St reamnodel Fil eString);
Obj ect | nput Stream nodel | nObj ectFile =
new Obj ect | nput St reanm( nodel I nFil e);
nmessageCl = (MessageCl assifier) nodel | nObjectFile.readObject();
nmodel | nFi |l e. cl ose();
} catch (Fil eNot FoundException e) {
messageCl = new MessageCl assifier();

} else {
t hrow new Exception ("Name of data file not provided.");

}

/1 Check if there are any options |eft
Utils. checkFor Remai ni ngOpti ons(options);

/'l Process nmessage.
if (classVvalue.length() !'= 0)

messageCl . updat eModel (new String(charArray), classVal ue);
} else {

messageCl . cl assi fyMessage(new String(charArray));

}

/1 1f class has been given, updated nessage classifier nmust be saved
if (classValue.length() !'= 0) {
Fi | eQut put Stream nodel QutFile =
new Fi | eQut put St ream( nodel Fil eString);
Obj ect Qut put St ream nodel Qut Obj ectFile =
new Obj ect Qut put St ream nodel Qut Fi |l e);
nmodel Qut Cbj ectFile.witeObject(nessageC);
nodel Qut Obj ectFile. flush();
nodel Qut Fi |l e. cl ose();

catch (Exception e) {
e.printStackTrace();

Figure 8.10
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part of the process is creating a dataset, which is done by the constructor
Messaged assi fier (). First the dataset’s name is stored as a string. Then an
Attribute object is created for each of the attributes—one for each
keyword, and one for the class. These objects are stored in a dynamic
array of type Fast Vect or. (Fast Vect or is Weka' s own fast implementation
of the standard Java Vector class. Vector is implemented in a way that
allows parallel programs to synchronize access to them, which was very
dow in early Javaimplementations.)

Attributes are created by invoking one of the two constructors in the
classattribute. The first takes one parameter—the attribute’ s name—and
creates a numeric attribute. The second takes two parameters: the
attribute’ s name and a Fast Vect or holding the names of its values. This
latter constructor generates a nominal attribute. In Messaged assi fi er, the
attributes for the keywords are numeric, so only their names need be
passed to Attribute(). The keyword itself is used to name the attribute.
Only the class attribute is nominal, with two values: hit and mss. Hence,
Messaged assi fier() passesits name (“cl ass”) and the values—stored in a
Fast Vect or—tO Attri but e() .

Finally, to create a dataset from this attribute information,
Messaged assi fier () must create an object of the class I nst ances from the
core package. The constructor of I nstances used by Messaged assi fi er ()
takes three arguments: the dataset’s name, a FastVector containing the
attributes, and an integer indicating the dataset’ s initial capacity. We set the
initial capacity to 100; it is expanded automatically if more instances are
added to the dataset. After constructing the dataset, Messaged assi fi er ()
sets the index of the class attribute to be the index of the last attribute.

UpdateModel()

Now that you know how to create an empty dataset, consider how the
Messaged assi fier object actually incorporates a new training message.
The method updat emodel () does this job. It first calls cl eanupString() to
delete all nonletters and non-whitespace characters from the message. Then
it converts the message into atraining instance by calling makel nst ance() .
The latter method counts the number of times each of the keywords in
m Keywor ds appears in the message, and stores the result in an object of the
class|1 nst ance from the core package. The constructor of I nstance used in
makel nst ance() setsall the instance’s values to be missing, and its weight to
1. Therefore nakel nst ance() must set all attribute values other than the
classto O before it starts to calculate keyword frequencies.

Once the message has been processed, nakel nst ance() gives the newly
created instance access to the data’ s attribute information by passing it a
reference to the dataset. In Weka, an 1 nstance object does not store the
type of each attribute explicitly; instead it stores a reference to a dataset
with the corresponding attribute information.
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Returning to updat eMbdel (), once the new instance has been returned
from nakel nst ance() its class valueis set and it is added to the training
data. In the next step afilter is applied to this data. In our application the
DiscretizeFilter isused to discretize al numeric attributes. Because a
class index has been set for the dataset, the filter automatically uses
supervised discretization (otherwise equal-width discretization would be
used). Before the data can be transformed, we must first inform the filter of
its format. Thisis done by passing it a reference to the corresponding
input dataset viai nput For mat () . Every time this method is called, the filter
isinitialized—that is, all itsinternal settings are reset. In the next step, the
dataistransformed by useFilter (). This generic method from the Filter
class applies a given filter to a given dataset. In this case, because the
D scretizeFilter has just been initialized, it first computes discretization
intervals from the training dataset, then uses these intervals to discretize it.
After returning from useFil ter (), al thefilter'sinternal settings are fixed
until it is initialized by another call of inputFormat(). This makes it
possible to filter a test instance without updating the filter's internal
settings.

In the last step, updat eMbdel () rebuilds the classifier—in our program, an
instance-based 1Bk classifie—by passing the training data to its
buildd assifier() method. It is a convention in Weka that the
bui | dd assifier() method completely initializes the model’s internal
settings before generating a new classifier.

ClassifyMessage()

Now we consider how Messaged assifier processes a test message—a
message for which the class label is unknown. In cl assi f yMessage(), our
program first checks that a classifier has been constructed by seeing if any
training instances are available. It then uses the methods described
above—cl eanupString() and makel nst ance()—to transform the message
into atest instance. Because the classifier has been built from filtered
training data, the test instance must also be processed by the filter before it
can be classified. Thisisvery easy: the i nput () method enters the instance
into the filter object, and the transformed instance is obtained by calling
out put (). Then a prediction is produced by passing the instance to the
classifier's cl assi fyl nst ance() method. As you can see, the prediction is
coded as a doubl e value. This allows Weka' s evaluation module to treat
models for categorical and numeric prediction similarly. In the case of
categorical prediction, asin this example, the doubl e variable holds the
index of the predicted class vaue. In order to output the string
corresponding to this class value, the program calls the val ue() method of
the dataset’ s class attribute.
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85 Wiriting new leaming schemes

Suppose you need to implement a special-purpose learning algorithm that
is not included in Weka, or a filter that performs an unusua data
transformation. Or suppose you are engaged in machine learning research
and want to investigate a new learning scheme or data preprocessing
operation. Or suppose you just want to learn more about the inner
workings of an induction algorithm by actually programming it yourself.
This section shows how to make full use of Weka’s class hierarchy when
writing classifiers and filters, using a simple example of each.

Several elementary learning schemes, not mentioned above, are included
in Weka mainly for educational purposes: they are listed in Table 8.8.
None of them takes any scheme-specific command-line options. All these
implementations are useful for understanding the inner workings of a
classifier. Asan example, we discuss the weka. cl assifiers.1d3 scheme,
which implements the ID3 decision tree learner from Section 4.3.

An example classifier

Figure 8.11 gives the source code of weka. cl assi fi ers. | d3, which, as you
can see from the code, extends the Distributiond assifier class. This
means that in addition to the buildd assifier() and cl assi fyl nstance()
methods from the dassifier class it aso implements the
di stributi onFor I nst ance() method, which returns a predicted distribution
of class probabilities for an instance. We will study the implementation of
these three methods in turn.

BuildClassifier()

The bui | dd assi fi er () method constructs a classifier from a set of training
data. In our implementation it first checks the training data for a non-
nominal class, missing values, or any other attribute that is not nominal,
because the ID3 algorithm can’t handle these. It then makes a copy of the
training set (to avoid changing the original data) and calls a method from

Table 88  Simple learning schemes in Weka.

scheme description section
weka. cl assi fi ers. Nai veBayesSi npl e Probabilistic learner 42
weka. cl assifiers.d3 Decision tree learmner 4.3
weka. cl assifiers. Prism Rule leamer from 44

weka. cl assifiers. Bl Instance-based leamer 47
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i mport weka.classifiers.*;
i mport weka.core.*;

i mport java.io.*;

import java.util.*;

/**

* Class inplementing an 1d3 decision tree classifier.
*

/
public class 1d3 extends DistributionCl assifier {

/** The node's successors. */
private 1d3[] m Successors;

[** Attribute used for splitting. */
private Attribute mAttribute;

/** Class value if node is leaf. */
private doubl e m Cl assVal ue;

/** Class distribution if node is leaf. */
private double[] mUDistribution;

/** Class attribute of dataset. */
private Attribute mCl assAttribute;

| **

* Builds 1d3 decision tree classifier.
*/
public void buildC assifier(lnstances data) throws Exception {

if (!data.classAttribute().isNomnal()) {
throw new Exception(“1d3: nomi nal class, please.”);

Enuneration enumAtt = data.enunerateAttributes();
whil e (enumAtt. hasMor eEl enents())

Attribute attr = (Attribute) enumAtt. nextEl ement();
if (lattr.isNom nal())

t hrow new Exception(“1d3: only nominal attributes, please.”);
}
Enuner ati on enum = dat a. enumer at el nst ances();
whi l e (enum hasMoreEl ements()) {

if (((Instance) enum nextEl ement()).isMssing(attr)) {

throw new Exception(“1d3: no m ssing values, please.”);
}

}

data = new | nstances(data);
dat a. del et eW t hM ssi ngCl ass() ;
makeTr ee(dat a);

/**

* Method building 1d3 tree.

*/

private void makeTree(l nstances data) throws Exception {

/1 Check if no instances have reached this node.

Figure 8.11 Source code for the ID3 decision tree learner.
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if (data.num nstances() == 0) {
mAttribute = null;
m_Cl assVal ue = | nstance. m ssi ngVal ue();
m Di stribution = new doubl e[ dat a. nunCl asses()];
return;

/1 Conpute attribute with maxi mum information gain.
doubl e[] infoGains = new doubl e[data. numAttributes()];
Enumer ati on att Enum = data. enumerateAttributes();
whil e (attEnum hasMoreEl enents())
Attribute att = (Attribute) attEnum nextEl ement();
infoGains[att.index()] = conputelnfoGain(data, att);

}
mAttribute = data.attribute(Utils. maxlndex(infoGains));

Make leaf if information gain is zero.
Ot herwi se create successors.

Ut
At

I

/1

if ils.eq(infoGains[mAttribute.index()], 0)) {

tribute = null;

stribution = new doubl e[ data. nunCl asses()];
ration instEnum = data. enuneratel nstances();

e (instEnum hasMoreEl enents())

nstance inst = (lnstance) instEnum nextEl ement();

Distribution[(int) inst.classValue()]++;

(
m_
m_Di
Enume
whi |
|
m_
}
ils.normalize(mDistribution);
Cl assValue = Utils. maxl| ndex(m_Di stribution);
1 Cl assAttribute = data.classAttribute();
se {
stances[] splitDat
Su |

Ut

m_

m.

} el
I'n splitData(data, mAttribute);

m Attri bute. nunmval ues()];

i but e. nunval ues(); j++) {

3

1 Successors = new

for (int j :O; j < m
m Successors[j] = ne );
m Successors[j]. buil SS|f|er(spI|tData[J])
}

}

/**

* Classifies a given test instance using the decision tree.
*/

public double classifylnstance(lnstance instance) {

if (mAttribute == null) {
return m Cl assVal ue;
} else {
return m Successors[(int) instance.value(mAttribute)].
cl assi fylnstance(instance);
}
}

/**

* Conputes class distribution for instance using decision tree.
*/
public doubl e[] distributionForlnstance(lnstance instance) {

Figure 8.11 (continued)
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if (mAttribute == null) {
return mDistribution;
} else {
return m Successors[(int) instance.value(mAttribute)].
di stributionForlnstance(instance);
}

}

/**
* Prints the decision tree using the private toString method from bel ow.

*/

public String toString() {

return “1d3 classifier\n==============\n“ + toString(0);
/**

* Conmputes information gain for an attribute.

*/

private doubl e conputel nfoGain(lnstances data, Attribute att)
throws Exception {

doubl e i nfoGain = conput eEntropy(data);
Instances[] splitData = splitData(data, att);
for (int Jj =0; j < att.nunvalues(); j++) {
if (splitData[]].num nstances() > 0) {
infoGain -= ((double) splitData[j].num nstances() /

(doubl e) data.num nstances()) *
conput eEntropy(splitDatalj]);

return infoGain;

/**

* Computes the entropy of a dataset.

*/

private doubl e conput eEntropy(Instances data) throws Exception {

doubl e [] classCounts = new doubl e[ dat a. nunCl asses()];
Enuneration i nst Enum = dat a. enuner at el nst ances();
whi | e (inst Enum hasMoreEl ements())
Instance inst = (lnstance) instEnum nextEl enent();
classCounts[(int) inst.classValue()]++;

}
doubl e entropy = 0;

for (int j = 0; j < data.nunClasses(); j++) {
if (classCounts[j] > 0)
entropy -= classCounts[j] * Utils.log2(classCounts[j]);

entropy /= (doubl e) data.num nstances();
return entropy + Utils.log2(data.num nstances());

| **

* Splits a dataset according to the values of a nonminal attribute.

Figure 8.11 (continued)
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*/
private Instances[] splitData(lnstances data, Attribute att) {

Instances[] splitData = new I nstances[att.nunVal ues()];
for (int J =0; j < att.nunmValues(); | ++)
splitData[j] = new Instances(data, data.num nstances());

Enumer ati on i nst Enum = dat a. enunmer at el nst ances();
whil e (inst Enum hasMoreEl ements()) {
Instance inst = (Instance) instEnum nextEl ement();
splitData[(int) inst.value(att)].add(inst);

return splitData;

| **

:/Ojtputs a tree at a certain |evel.

private String toString(int level) {
StringBuffer text = new StringBuffer();
if (mAttribute == null)

{
if (Instance.isM ssingVal ue(m.ClassValue)) {
text.append(“: null™);

} else {
text.append(“: “+m.Cl assAttribute.value((int) mCl assVal ue));

} else {
for (int j =0; j < mAttribute.nunValues(); j++) {

text.append(“\n”);

for (int i =0; 1 < level; i++) {

text.append(“| “);
text.append(mAttribute.name() + “ = “ + mAttribute.value(j));
t ext.append(m Successors[j].toString(level + 1));

}

return text.toString();

/**

* Main met hod.

*/

public static void main(String[] args) {

try {
System out . println(Eval uation. eval uat eModel (new 1d3(), args));

} catch (Exception e)
System out. println(e.get Message());

Figure 8.11
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weka. core. I nstances t0 delete al instances with missing class values,
because these instances are useless in the training process. Finally it calls
makeTree(), which actually builds the decision tree by recursively
generating all subtrees attached to the root node.

MakeTree()

In makeTree(), the first step isto check whether the dataset is empty. If not,
a leaf is created by setting mAttribute to null. The class value
m A assVal ue assigned to this leaf is set to be missing, and the estimated
probability for each of the dataset’s classesin m D stribution isinitialized
to zero. If training instances are present, nmakeTree() finds the attribute that
yields the greatest information gain for them. It first creates a Java
Enurrer at i on Of the dataset’s attributes. If the index of the class attribute is
set—as it will be for this dataset—the class is automatically excluded from
the enumeration. Inside the enumeration, the information gain for each
attribute is computed by conput el nf 0Gai n() and stored in an array. We will
return to this method later. The i ndex() method from weka. core. Attribute
returns the attribute’ s index in the dataset, which is used to index the array.
Once the enumeration is complete, the attribute with greatest information
gainis stored in the class variable m Attri bute. The maxl ndex() method
from weka. core. Uil s returns the index of the greatest value in an array of
integers or doubles. (If there is more than one element with maximum
value, the first is returned.) The index of this attribute is passed to the
attribute() method from weka.core.lnstances, which returns the
corresponding attribute.

Y ou might wonder what happens to the array field corresponding to the
class attribute. We need not worry about this because Java automatically
initializes all elementsin an array of numbers to zero, and the information
gain is always greater than or equal to zero. If the maximum information
gainis zero, makeTree() createsaleaf. Inthat casemAttribute isset to null,
and nakeTree() computes both the distribution of class probabilities and
the class with greatest probability. (The nornmalize() method from
weka. core. Wils normalizes an array of doubles so that its sumis1.)

When it makes a leaf with a class value assigned to it, nakeTree() stores
the class attribute in m d assAttribute. Thisis because the method that
outputs the decision tree needs to access this in order to print the class
label.

If an attribute with nonzero information gain is found, makeTree() splits
the dataset according to the attribute’s values and recursively builds
subtrees for each of the new datasets. To make the split it calls the method
splitData(). Thisfirst creates as many empty datasets as there are attribute
values and stores them in an array (setting the initial capacity of each
dataset to the number of instances in the original dataset), then iterates
through all instances in the original dataset and allocates them to the new
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dataset that corresponds to the attribute’ s value. Returning to nakeTree(),
the resulting array of datasets is used for building subtrees. The method
creates an array of 1d3 objects, one for each attribute value, and calls
bui | dd assi fi er () on each by passing it the corresponding dataset.

ComputelnfoGain()

Returning to conputel nfoGain(), this caculates the information gain
associated with an attribute and a dataset using a straightforward
implementation of the method in Section 4.3 (pp. 92-94). First it
computes the entropy of the dataset. Then it uses splitData() to divideit
into subsets, and calls conput eEnt ropy() on each one. Finally it returns the
difference between the former entropy and the weighted sum of the latter
ones—the information gain. The method conput eEnt r opy() uses the I og2()
method from weka. core. Wi ls to compute the logarithm (to base 2) of a
number.

Classifylnstance()

Having seen how D3 constructs a decision tree, we now examine how it
uses the tree structure to predict class values and probabilities. Let’s first
look at classifylnstance(), which predicts a class value for a given
instance. In Weka, nominal class values—like the values of all nominal
attributes—are coded and stored in doubl e variables, representing the index
of the value's name in the attribute declaration. We chose this
representation in favor of a more elegant object-oriented approach to
increase speed of execution and reduce storage requirements. In our
implementation of 1D3, cl assi fyl nstance() recursively descends the tree,
guided by the instance’ s attribute values, until it reaches a leaf. Then it
returns the class value m dassval ue stored at this leaf. The method
di stributionFor I nstance() worksin exactly the same way, returning the
probability distribution stored in m D stri buti on.

Most machine learning models, and in particular decision trees, serve as
amore or less comprehensible explanation of the structure found in the
data. Accordingly each of Weka's classifiers, like many other Java objects,
implements atostri ng() method that produces a textual representation of
itself in the form of a string variable. ID3’s toString() method outputs a
decision tree in roughly the same format as J4.8 (Figure 8.2). It
recursively prints the tree structure into a Stri ng variable by accessing the
attribute information stored at the nodes. To obtain each attribute’s name
and values, it uses the name() and value() methods from
weka. core. Attribute.

Main()
The only method in 1d3 that hasn’t been described is mai n(), which is
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called whenever the class is executed from the command line. As you can
seg, it'ssimple: it basically just tells Weka' s Eval uat i on class to evaluate | d3
with the given command-line options, and prints the resulting string. The
one-line expression that does thisis enclosed in a try-catch statement,
which catches the various exceptions that can be thrown by Weka's
routines or other Java methods.

The eval uati on() method in weka. cl assi fi ers. Eval uati on interprets the
generic scheme-independent command-line options discussed in Section
8.3, and acts appropriately. For example, it takes the -t option, which gives
the name of the training file, and loads the corresponding dataset. If no test
fileis given, it performs a cross-validation by repeatedly creating classifier
objects and caling builddassifier(), classifylnstance(), and
di stributionFor I nstance() on different subsets of the training data. Unless
the user suppresses output of the model by setting the corresponding
command-line option, it also calls the tostring() method to output the
model built from the full training dataset.

What happens if the scheme needs to interpret a specific option such as a
pruning parameter? This is accomplished using the Oot i onHandl er interface
in weka. cl assifiers. A classifier that implements this interface contains
three methods, |i st Options(), set ptions(), and get Opti ons(), which can
be used to list all the classifier’s scheme-specific options, to set some of
them, and to get the options that are currently set. The eval uation()
method in Eval uati on automatically calls these methods if the classifier
implements the QptionHandl er interface. Once the scheme-independent
options have been processed, it calls set Opti ons() to process the remaining
options before using bui | dd assi fier() to generate a new classifier. When
it outputs the classifier, it uses get pti ons() to output alist of the options
that are currently set. For a simple example of how to implement these
methods, look at the source code for weka. cl assi fiers. neR.

Some classifiers are incremental, that is, they can be incrementally
updated as new training instances arrive and don’t have to process all the
data in one batch. In Weka incremental classifiers implement the
Wpdat eabl ed assifier interface in weka.classifiers. This interface
declares only one method, namely updated assifier(), which takes a
single training instance as its argument. For an example of how to use this
interface, ook at the source code for weka. cl assi fiers. | Bk.

If a classifier is able to make use of instance weights, it should
implement the Wi ghtedl nstancesHandl er () interface from weka.core.
Then other algorithms, such as the boosting algorithms, can make use of
this property.

Conventions for implementing classifiers

There are some conventions that you must obey when implementing
classifiers in Weka. If you do not, things will go awry—for example,
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Weka's evaluation module might not compute the classifier's statistics
properly when evaluating it.

The first convention has already been mentioned: each time a
classifier's bui 1 dQ assi fi er() method is called, it must reset the model.
The theckd assi fier class described in Section 8.3 performs appropriate
tests to ensure that thisis the case. When buil dd assifier() iscalled on a
dataset, the same result must always be obtained, regardless of how often
the classifier has been applied before to other datasets. However,
buildd assifier() must not reset class variables that correspond to
scheme-specific options, because these settings must persist through
multiple calls of bui | dQ assifier(). Also, acall of buil dd assifier() must
never change the input data.

The second convention is that when the learning scheme can’t make a
prediction, the classifier's classifylnstance() method must return
I nst ance. ni ssi ngVal ue() and its di stri buti onFor I nstance() method must
return zero probabilities for all classes. The ID3 implementation in Figure
8.11 does this.

The third convention concerns classifiers for numeric prediction. If a
dassifier isused for numeric prediction, cl assifyl nstance() just returns
the numeric value that it predicts. In some cases, however, a classifier might
be able to predict nominal classes and their class probabilities, as well as
numeric class values—weka. cl assi fiers. 1Bk isan example. In that case,
the classifier is a Distributiondassifier and implements the
distributionForinstance() method. What should distributionFor
Instance() return if the class is numeric? Weka's convention is that it
returns an array of size one whose only element contains the predicted
numeric value.

Another convention—not absolutely essential, but very useful
nonetheless—is that every classifier implementsatostring() method that
outputs a textual description of itself.

Writing filters

There are two kinds of filter algorithms in Weka, depending on whether,
like D screti zeFil ter, they must accumulate statistics from the whole input
dataset before processing any instances, or, like AttributeFil ter, they can
process each instance immediately. We present an implementation of the
first kind, and point out the main differences from the second kind, which
issimpler.

The Filter superclass contains several generic methods for filter
construction, listed in Table 8.9, that are automatically inherited by its
subclasses. Writing a new filter essentially involves overriding some of
these. Filter also documents the purpose of these methods, and how they
need to be changed for particular types of filter algorithm.
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Table 8.9 Public methods in the Filter class.

method description

bool ean i nput For mat (| nst ances) Set input format of data, retuming true if output
format can be collected immediately

| nst ances out put For mat () Retum output format of data

bool ean i nput (1 nst ance) Input instance into filter, returning t r ue if instance
can be output immediately

bool ean bat chFi ni shed() Inform filter that all training data has been input,
retumning t r ue if instances are pending output

I nstance out put () Output instance from the filter

I nstance out put Peek() Output instance without removing it from output
queue

i nt nunPendi ngQut put () Return number of instances waiting for output

bool ean i sQut put For mat Def i ned() Retumtt r ue if output format can be collected

The first step in using afilter is to inform it of the input data format,
accomplished by the method i nput For mat (). This takes an object of class
Instances and uses its attribute information to interpret future input
instances. The filter’s output data format can be determined by calling
out put For mat () —also stored as an object of class I nst ances. For filters that
process instances at once, the output format is determined as soon as the
input format has been specified. However, for those that must see the whole
dataset before processing any individual instance, the situation depends on
the particular filter algorithm. For example, D screti zeFi | ter needs to see
all training instances before determining the output format, because the
number of discretization intervals is determined by the data. Consequently
the method inputFormat() returns true if the output format can be
determined as soon as the input format has been specified, and fal se
otherwise. Another way of checking whether the output format existsisto
call i sQut put For mat Def i ned() .

Two methods are used for piping instances through the filter: i nput ()
and output (). Asits name implies, the former gets an instance into the
filter; it returnstrue if the processed instance is available immediately and
f al se otherwise. The latter outputs an instance from the filter and removes
it from its output queue. The out put Peek() method outputs a filtered
instance without removing it from the output queue, and the number of
instances in the queue can be obtained with nunPendi ngQut put () .

Filters that must see the whole dataset before processing instances need
to be notified when all training instances have been input. Thisis done by
calling bat chFi ni shed(), which tells the filter that the statistics obtained
from the input data gathered so far—the training data—should not be



8.4 EMBEDDED MACHINE LEARNING 317

updated when further data is received. For all filter algorithms, once
bat chFi ni shed() has been called, the output format can be read and the
filtered training instances are ready for output. The first time input() is
called after bat chFi ni shed(), the output queue is reset—that is, all training
instances are removed from it. If there are training instances awaiting
output, bat chFi ni shed() returnstrue, otherwisef al se.

An example filter

It’s time for an example. The Repl aceM ssi ngval uesFi | ter takes a dataset
and replaces missing values with a constant. For numeric attributes, the
constant is the attribute’s mean value; for nominal ones, its mode. This
filter must see all the training data before any output can be determined,
and once these statistics have been computed. they must remain fixed when
future test data is filtered. Figure 8.12 shows the source code.

InputFormat()

Repl aceM ssi ngVval uesFi | t er overwrites three of the methods defined in
Filter: inputFormat(),input(),and batchFinished(). In i nputFormat (), as
you can see from Figure 8.12, a dataset m | nput For mat is created with the
required input format and capacity zero; this will hold incoming instances.
The method set Qut put For mat (), which is a protected method in Filter, is
caled to set the output format. Then the variable b_NewBat ch, which
indicates whether the next incoming instance belongs to a new batch of
data, is set to true because a new dataset is to be processed; and
m MvdesAndMeans, which will hold the filter's datistics, is initialized. The
variables b_NewBat ch and m | nput For mat are the only fields declared in the
superclass Fil ter that are visible in Repl aceM ssi ngVal uesFi | ter, and they
must be dealt with appropriately. As you can see from Figure 8.12, the
method i nput Format () returns true because the output format can be
collected immediately—replacing missing values doesn't change the
dataset’ s attribute information.

Input()

An exception isthrown ini nput () if the input format is not set. Otherwise,
if b_NewBat ch istrue—that is, if a new batch of datais to be processed—the
filter’s output queue isinitialized, causing all instances awaiting output to
be deleted, and the flag b_NewBat ch iS Set to f al se, because a new instance is
about to be processed. Then, if statistics have not yet been accumulated
from the training data (that is, if m MvdesAndmveans is null), the new instance
is added to m I nput Format and i nput () returnsfal se because the instance is
not yet available for output. Otherwise, the instance is converted using
convertlnstance(), and true isreturned. The method convert | nstance()
transforms an instance to the output format by replacing missing values
with the modes and means, and appends it to the output queue by calling
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push(), a protected method defined in Filter. Instances in the filter's
output queue are ready for collection by out put () .

BatchFinished()

In bat chFi ni shed(), the filter first checks whether the input format is
defined. Then, if no statistics have been stored in m MdesAndveans by a
previous cal, the modes and means are computed and the training
instances are converted using convert | nstance() . Finally, regardless of the
status of m MbdesAndMeans, b_NewBat ch iS Set to true to indicate that the last
batch has been processed, and true isreturned if instances are available in
the output queue.

Main()

The mai n() method evaluates the command-line options and applies the
filter. It does so by calling two methods from Filter: batchFilterFile()
andfilterFile(). Theformeriscalledif atest fileisprovided aswell asa
training file (using the —b command-line option); otherwise the latter is
called. Both methods interpret the command-line options. If the filter
implements the pt i onHandl er interface, itsset Qpti ons(), get Opt i ons(), and
l'i st ptions() methods are called to deal with any filter-specific options,
just asin the case of classifiers.

In general, asin this particular example of Repl aceM ssi ngVval uesFi | ter,
only the three routines i nput For mat (), i nput (), and bat chFi ni shed() heed
be changed in order to implement a filter with new functionality. The
method out put For mat () from Filter isactually declared final and can’t
be overwritten anyway. Moreover, if the filter can process each instance
immediately, batchFinished() need not be atered—the default
implementation will do the job. A simple (but not very useful) example of
such afilter is weka. filters. Al Filter, which passes al instances through
unchanged.

Conventions for writing filters

By now, most of the requirements for implementing filters should be clear.
However, some deserve explicit mention. First, filters must never change
the input data, nor add instances to the dataset used to provide the input
format. Repl aceM ssingVal uesFilter() avoids this by storing an empty
copy of the dataset in m | nput For mat . Second, calling i nput For mat () should
initialize the filter’ s internal state, but not alter any variables corresponding
to user-provided command-line options. Third, instances input to the filter
should never be pushed directly on to the output queue: they must be
replaced by brand new objects of class I nst ance. Otherwise, anomalies will
appear if the input instances are changed outside the filter later on. For
example, Al Fil ter callsthe copy() method in I nstance to create a copy of
each instance before pushing it on to the output queue.
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import weka.filters.*;

i mport weka.core.*;

import java.io.*;

/**

* Replaces all mssing values for nominal and nunmeric attributes in a
* dataset with the nodes and neans from the training data.

*/

public class ReplaceM ssingVal uesFilter extends Filter {

/** The npbdes and nmeans */
private double[] m MbdesAndMeans = null;

/**
* Sets the format of the input instances.
*/
publ i c bool ean i nput Format (|1 nstances instancel nf o)
throws Exception {

m | nput Format = new | nstances(i nstancel nfo, 0);
set Qut put For mat (m_| nput For mat) ;

b_NewBat ch = true;

m _ModesAndMeans = nul | ;

return true;

/**
* |Input an instance for filtering. Filter requires all
* training instances be read before producing output.
*/
public bool ean input(lnstance instance) throws Exception {

if (m.InputFormat == null)
throw new Exception(“No input instance format defined”);

}

if (b_NewBatch) ({
reset Queue();
b_NewBat ch = fal se;

}

i f (m_ MdesAndMeans == null) {
m_| nput For mat . add(i nst ance) ;
return false;

} else {
convertlnstance(instance);
return true;

}

}

/**

* Signify that this batch of input to the filter is finished.
*/

publ i c bool ean bat chFi ni shed() throws Exception {

if (mInputFormat == null) {
throw new Exception(“No input instance format defined”);

Figure 8.11 Source code for the ID3 decision tree learner.
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if (m_ MdesAndMeans == null) {

/1 Conpute nodes and means
m _ModesAndMeans = new doubl e[ m_| nput For mat . numAttri butes()];
for (int i =0; i < mlnputFormat.numAttributes(); i++) {
if (mInputFormat.attribute(i).isNomnal() ||
m_ | nput Format . attribute(i).isNuneric()) {
m ModesAndMeans[i] = m_I nput For mat . meanOr Mode(i);

}
}
/1 Convert pending input instances
for(int i = 0; i < mlnputFormat.nunm nstances(); i++) {

Instance current = m.|nputFormat.instance(i);
convertlnstance(current);

}

b_NewBat ch = true;
return (numPendi ngQut put () != 0);

| **

* Convert a single instance over. The converted instance is
* added to the end of the output queue.

*/

private void convertlnstance(lnstance instance) throws Exception {
I nstance newi nstance = new | nstance(instance);

for(int j =0; j < mlnputFormat.numAttributes(); j++){
if (instance.isMssing(j) &&
(m_I nput Format . attribute(j).isNom nal () ||
m_ | nput Format . attribute(j).isNuneric())) {
newl nst ance. set Val ue(j, m MdesAndMeans[]]);

}
push(newl nst ance);

/**
* Mai n et hod.
*/
public static void main(String [] argv) {
try {
if (Uils.getFlag('b', argv)) {
Filter batchF||terF||e(new Repl aceM ssi ngVval uesFilter(),argv);
} else {
Filter.filterFil e(new Repl aceM ssingVal uesFilter(),argv);

} catch (Exception ex)
System out . println(ex. get Message());

Figure 8.11
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