328

Chapter 10. Knowledge Representation

COUNT NOUNS
MASS NCUNS

INTRINSIC

EXTRINSIC

distinguish between count nouns, such as aardvarks, holes, and theorems, and mass nouns,
such as butter, water, and energy. Several competing ontologies claim to handle this distinc-
tion. We will describe just one; the others are covered 1n the historical notes section.

To represent stuff properly, we begin with the obvious. We will need to have as objects
in our ontology at least the gross “lumps” of stuff we interact with. For example, we might
recognize a lump of butter as the same butter that was left on the table the night before;
we might pick it up, weigh it, sell it, or whatever. In these senses, it 1s an object just like
the aardvark. Let us call it Butters. We will also define the category Butter. Informally,
its elements will be all those things of which one might say “It’s butter,” including Butters.
With some caveats about very small parts that we will omit for now, any part of a butter-object
is also a butter-object:

x € Butter A PartOf (y,x) = y € Butter .

Y7 .

We can now say that butter melts at around 30 degrees centigrade:
x € Butter = MeltingPoint(z, Centfigrade(30)) .

We could go on to say that butter is yellow, is less dense than water, is soft at room tempera-
ture, has a high fat content, and so on. On the other hand, butter has no particular size, shape,
or weight. We can define more specialized categories of butter such as Unsalted Butter,
which is also a kind of stuff. On the other hand, the category PoundOfButter, which in-
cludes as members all butter-objects weighing one pound, is not a substance! If we cut a
pound of butter in half, we do not, alas, get two pounds of butter.

What is actually going on is this: there are some properties that are intrinsic: they
belong to the very substance of the object, rather than to the object as a whole. When you
cut a substance in half, the two pieces retain the same set of intrinsic properties—things
like density, boiling point, flavor, color, ownership, and so on. On the other hand, extrinsic
properties are the opposite: properties such as weight, length, shape, function, and so on are
not retained under subdivision.

A class of objects that includes in its definition only intrinsic properties is then a sub-
stance, or mass noun; a class that includes any extrinsic properties in its definition is a count
noun. The category Stuff is the most general substance category, specifying no intrinsic
properties. The category Thing is the most general discrete object category, specifying no
extrinsic properties. All physical objects belong to both categories, so the categories are
coextensive—they refer to the same entities.

4x7y

o"mf T _RT A BT 1_‘ TIAT
S, DITUATIONS, AND &EVENTS

Reasoning about the results of actions is central to the operation of a knowledge-based
agent. Chapter 7 gave examples of propositional sentences describing how actions affect
the wumpus world—for example, Equation (7.3) on page 227 states how the agent’s location
1s changed by forward motion. One drawback of propositional logic is the need to have a dif-
ferent copy of the action description for each time at which the action might be executed. This
section describes a representation method that uses first-order logic to avoid that problem.

Section 10.3.

Actions, Situations, and Events 329

SITUATION
CALCULUS

SITUATIONS

FLUENTS

The ontology of situation calculus

One obvious way to avoid multiple copies of axioms is simply to quantify over time—to
say, “V£, such-and-such is the result at t + 1 of doing the action at ¢t.” Instead of dealing
with explicit times like ¢ + 1, we will concentrate in this section on situations, which denote
the states resulting from executing actions. This approach is called situation calculus and
involves the following ontology:

e Asin Chapter 8, actions are logical terms such as Forward and Turn(Right). For now,
we will assume that the environment contains only one agent. (If there is more than
one, an additional argument can be inserted to say which agent is doing the action.)

e Situations are logical terms consisting of the initial situation (usually called Sy) and
all situations that are generated by applying an action to a situation. The function
Result(a, s) (sometimes called Do) names the situation that results when action a is
executed in situation s. Figure 10.2 illustrates this idea.

¢ Fluents are functions and predicates that vary from one situation to the next, such as
the location of the agent or the aliveness of the wumpus. The dictionary says a fluent
1s something that flows, like a liquid. In this use, it means flowing or changing across
situations. By convention, the situation is always the last argument of a fluent. For
example, ~Holding(G1, So) says that the agent is not holding the gold (G1 in the initial
situation Sp. Age(Wumpus, Sp) refers to the wumpus’s age in Sp.

e Atemporal or eternal predicates and functions are also allowed. Examples include the
predicate Gold(G1) and the function LeftLegOf (Wumpus).

N\
e~ \\
[T [~
@ \\ a S~ \\
2% a
S ﬁ [\\

S [~ .
| \\\ Resul(Turn{Right),
@ N & P~ Result(Forward, Sy))

y \\\ a \
\% h \\ Turn(Right)
[~~~ Result{ Forward, Sy)
ﬁ ~
\\ a ~—_
N\ Forward
So

Figure 10.2 In situation calculus, each situation (except Sp) is the result of an actjon.

330

Chapter 10. Knowledge Representation

PROJECTION
PLANNING

POSSIBILITY AXIOM
EFFECT AXIOM

In addition to single actions, it is also helpful to reason about action sequences. We can
define the results of sequences in terms of the results of individual actions. First, we say that
executing an empty sequence leaves the situation unchanged:

Result([],s) = s.

Executing a nonempty sequence is the same as executing the first action and then executing
the rest in the resulting situation:

Result([a|seq], s) = Result(seq, Result(a, s)) .

A situation calculus agent should be able to deduce the outcome of a given sequence of
actions; this is the projection task. With a suitable constructive inference algorithm, it should
also be able to find a sequence that achieves a desired effect; this is the planning task.

We will use an example from a modified version of the wumpus world where we do
not worry about the agent’s orientation and where the agent can G'o from one location to an
adjacent one. Suppose the agentis at [1, 1] and the gold is at [1, 2]. The aim is to have the gold
in [1, 1]. The fluent predicates are At(o,x, s) and Holding(o, s). Then the initial knowledge

base might include the following description:
At(Agent,[1,1], So) A At(G1,[1,2], S0) .

This is not quite enough, however, because it doesn’t say what what isn’t true in Sp. (See
page 355 for further discussion of this point.) The complete description is as follows:

W/ (Y AM_H 510Y
pVvio=tir Az=|1,2})}.

£ [l A

+{ A (n— Annm
\UJ/ JJU} ~7 [K — Z1YyCrL

ﬂHoldmg(o, S0) -
We also need to state that (G is gold and that [1, 1] and [1, 2] are adjacent:
Gold(G1) A Adjacent([1, 1], [1,2]) A Adjacent([1,2],[1,1]).

One would like to be able to prove that the agent achieves its aim by going to [1, 2], grabbing
the gold, and returning to [1, 1]. That is,

At(G1,[1,1}, Result([Go([1,1],[1,2]), Grab(G1), Go([1,2], [1,1])], So)) .

More interesting is the possibility of constructing a plan to get the gold, which is achieved by
answering the query “what sequence of actions results in the gold being at [1,1]?”

Jseq At(G,[1,1], Result(seq, So)) .

Let us see what has to go into the knowledge base for these queries to be answered.

[u——

o 1
VU=

Describing actions in situation calculus

In the simplest version of situation calculus, each action is described by two axioms: a possi-
bility axiom that says when it is possible to execute the action, and an effect axiom that says
what happens when a possible action is executed. We will use Poss(a, s) to mean that it is
possible to execute action a 1n situation s. The axioms have the following form:

POSSIBILITY AXIOM: Preconditions = Poss(a, s) .
EFFECT AXIOM: Poss(a,s) = Changes that result from taking action.

Section 10.3.

Actions, Situations, and Events 331

FRAME PROBLEM

FRAME AXIOM

REPRESENTATIONAL
FRAME PROBLEM

INFERENTIAL FRAME
PROBLEM

QUALIFICATION
PROBLEM

We will present these axioms for the modified wumpus world. To shorten our sentences, we
will omit universal quantifiers whose scope is the entire sentence. We assume that the variable
s ranges over situations, a ranges over actions, o over objects (including agents), g over gold,
and z and y over locations.

The possibility axioms for this world state that an agent ca

M inna AF anlAd “-. tha Anreant lanat:i~ anAd ralancon S0

n go between adjacent loca-

timnme agralh a - wan anld that ¢ 30 lhal i~
L1ULLD, 51 U a PIU\.«U Ul EU U 111 LIC vUullivliit IU\.«aLIUll anda LUlCAddaC dULLIV EUIU Liidal IL 1> 1HUIUL 15.
At(Agent, z, s) A Adjacent(z, y) = Poss(Go(z,y),s)
ﬂnI,J{,.\ A A4l Ancant o oY A Adla 4 2) — Dmnal tlnhiaY o}
uuuw\y}/\ ﬂb\ﬂyclb .b 0} AN ﬂbky’.b,e)} — F UDD\UIUJU\y}’D}
Holding(g, s) = Poss(Release(g), s)
Tun affart avinme ctate that if an antinn 1ic nnccihla than cartain nranartiag (Anante) will hald
WOLIALL OdALVERLLD JOLd LW I.llClL’ 11 Ul awlivil 19 PUOOIUL\J’ LIINHL AL LI IJLUP\JL LivD \11u\.«1u.o) YV 111 11V
in the situation that results from executing the action. Going from z to y results in being at y,

grabbing the gold results in holding the gold, and releasing the gold results in not holding it:

Poss(Go(z,y), s) = At(Agent,y, Result(Go(x,y),s)) .
Poss(Grab(g), s) = Holding(g, Result(Grab(g), s)) .
Poss(Helease(g),s) = —Holding(g, Result(felease(y),s)) .

Having stated these axioms, can we prove that our little plan achieves the goal? Unfortunately
not! At first, everything works fine; Go([1, 1], [1,2]) is indeed possible in Sy and the effect
axiom for Go allows us to conclude that the agent reaches [1,2]:

At(Agent, [1,2], Result(Go([1,1],[1,2]), Sp)) -

Now we consider the Grab((G;) action. We have to show that it is possible in the new
situation—that is,

At(G1,[1, 2], Result(Go([1,1], 1, 2]), So)) .
Alas, nothing in the knowledge base justifies such a conclusion. Intuitively, we understand
that the agent’s GGo action should have no effect on the gold’s location, so it should still be at
[1,2], where it was in Sy. The problem is that the effect axioms say what changes, but don’t
say what stays the same.

Representing all the things that stay the same is called the frame problem. We must
find an efficient solution to the frame problem because, in the real world, almost everything
stays the same almost all the time. Each action affects only a tiny fraction of all fluents.

One approach is to write explicit frame axioms that do say what stays the same. For
example, the agent’s movements leave other objects stationary unless they are held:

At(o,x,5) A (0 # Agent) A ~Holding(o,s) = At(o,z, Result(Go(y, z),s)) .

If there are F' fluent predicates and A actions, then we will need O(AF’) frame axioms. On
the other hand, if each action has at most F effects, where F is typically much less than F,
then we should be able to represent what happens with a much smaller knowledge base of
size O(AE). This 1s the representational frame problem. The closely related inferential
frame problem is to project the results of a ¢-step sequence of actions in time O(Et), rather
than time O(F't) or O(AEt). We will address each problem in turn. Even then, another
problem remains—that of ensuring that al/ necessary conditions for an action’s success have
been specified. For example, Go fails if the agent dies en route. This is the qualification
problem, for which there is no complete solution.

332

Chapter 10. Knowledge Representation

SUCCESSOR-STATE
AXIOM

IMPLICIT EFFECT

RAMIFICATION
PROBLEM

Solving the representational frame problem

The solution to the representational frame problem involves just a slight change in viewpoint
on how to write the axioms. Instead of writing out the effects of each action, we consider
how each fluent predicate evolves over time.> The axioms we use are called successor-state
axioms. They have the following form:

SUCCESSOR-STATE AXIOM:
Action is possible =
(Fluent is true in result state <> Action’s effect made it true
V It was true before and action left it alone) .

After the qualification that we are not considering impossible actions, notice that this defini-
tion uses <>, not =-. This means that the axiom says that the fluent will be true if and only if
the right-hand side holds. Put another way, we are specifying the truth value of each fluent in
the next state as a function of the action and the truth value in the current state. This means
that the next state is completely specified from the current state and hence that there are no
additional frame axioms needed.

The successor-state axiom for the agent’s location says that the agent is at y after exe-
cuting an action either if the action 1s possible and consists of moving to y or if the agent was
already at y and the action is not a move to somewhere else:

Poss(a,s) =
(At(Agent,y, Result(a,s)) & a=Go(z,y)
V (At(Agent,y, s) A a # Go(y, z))) .

The axiom for Holding says that the agent is holding g after executing an action if the action
was a grab of g and the grab is possible or if the agent was already holding g, and the action
1§ not releasing it:

Poss(a,s) =
(Holding(g, Result(a,s)) < a= Grab(g)
V (Holding(g, s) A a # Release(g))) .

Successor-state axioms solve the representational frame problem because the total size of the
axioms i1s O(AE) literals: each of the E effects of each of the A actions is mentioned exactly
once. The literals are spread over F different axioms, so the axioms have average size AE/F.

The astute reader will have noticed that these axioms handle the A¢ fluent for the agent,
but not for the gold; thus, we still cannot prove that the three-step plan achieves the goal of
having the gold in [1, 1]. We need to say that an implicit effect of an agent moving from
to y 1s that any gold it is carrying will move too (as will any ants on the gold, any bacteria
on the ants, etc.). Dealing with implicit effects is called the ramification problem. We will
discuss the problem in general later, but for this specific domain, it can be solved by writing
a more general successor-state axiom for A¢. The new axiom, which subsumes the previous

version, says that an object o is at y if the agent went to y and o is the agent or something the

3 This is essentially the approach we took in building the Boolean circuit-based agent in Chapter 7. Indeed,
axioms such as Equation (7.4) and Equation (7.5) can be viewed as successor-state axioms.

Section 10.3.

Actions, Situations, and Events 333

UNIQUE NAMES
AXIOM

UNIQUE ACTION
AXIOMS

agent was holding; or if o0 was already at y and the agent didn’t go elsewhere, with o being
the agent or something the agent was holding.

Poss(a,s) =
At(o,y, Result(a,s)) << (a= Go(z,y) A (o= AgentV Holding(o, s)))
V (At(o,y,s) A=(Tz y# zANa= Goly,z) A
(o= Agent v Holding(o, s)))) .

There 18 one more techmcality: an inference process that uses these axioms must be able to
prove nonidentities. The simplest kind of nonidentity is between constants—for example,
Agent # (G1. The general semantics of first-order logic allows distinct constants to refer to
the same object, so the knowledge base must include an axiom to prevent this. The unique
names axiom states a disequality for every pair of constants in the knowledge base. When
this 1s assumed by the theorem prover, rather than written down in the knowledge base, it

is called a unique names assumption. We also need to state disequalities between action
terms: Gofl[1.11.11.2]) 18 a different action from Go([1.2]. 11 ﬂ\ or Grab((J, \ First. we

SLLERRS. ATV [t L) |ty E) e SRLAAVARIL QLARL RARERR TV [y “y [y e A d N § A LD,

say that each type of action is distinct—that no Go action is a Grab action. For each pair of
action names A and B, we would have

Alz1,....2m) # By, -, Yn) -

Next, we say that two action terms with the same action name refer to the same action only if
they involve all the same objects:

Alzl,. ., zm) =Ay1, .. .y Um) © T1=NA ... NTZm =Ym -

These are called, collectively, the unique action axioms. The combination of initial state
description, successor-state axioms, unique name axiom, and unique action axioms suffices
to prove that the proposed plan achieves the goal.

Solving the inferential frame problem

Successor-state axioms solve the representational frame problem, but not the inferential frame
problem. Consider a {-step plan p such that S; = Result(p, So). To decide which fluents are
true in S;, we need to consider each of the I’ frame axioms on each of the ¢ time steps.
Because the axioms have average size AE/F, this gives us O(AEt) inferential work. Most
of the work 1nvolves copying fluents unchanged from one situation to the next.

To solve the inferential frame problem, we have two possibilities. First, we could dis-
card situation calculus and invent a new formalism for writing axioms. This has been done
with formalisms such as the fluent calculus. Second, we could alter the inference mechanism
to handle frame axioms more efficiently. A hint that this should be possible 1s that the simple
approach is O(AEt); why should it depend on the number of actions, A, when we know

m mattoar
exactly which one action is executed at each time step? To see how to improve matter

first look at the format of the frame axioms:

Paceln o) —

lUOO\M,O}‘*“f

Fi(Result(a,s)) & (a=A1Va=A4y...)
VEF(s)N(a# Az) N (a# Ag) ...

/7 / =7

334

Chapter 10. Knowledge Representation

EVENT CALCULUS

That 1s, each axiom mentions several actions that can make the fluent true and several actions
that can make 1t false. We can formalize this by introducing the predicate PosEffect(a, F3),
meaning that action a causes F; to become true, and NegEffect(a, F;) meaning that a causes
I’ to become false. Then we can rewrite the foregoing axiom schema as:

Poss(a,s) =
Fi(Result(a,s)) < PosEffect(a, F;) V [Fi(s) A = NegEffect(a, F}))
PosEffect(Ay, F;)
POSEﬁBCt(AQ, Fz)
NegEffect(Az, F;)
NegEffect(Ay, F;) .

Whether this can be done automatically depends on the exact format of the frame axioms. To
make an efficient inference procedure using axioms like this, we need to do three things:

1. Index the PosEffect and NegEffect predicates by their first argument so that when we
are given an action that occurs at time ¢, we can find its effects in O(1) time.

2. Index the axioms so that once you know that F; is an effect of an action, you can find
the axiom for F; in O(1) time. Then you need not even consider the axioms for fluents
that are not an effect of the action.

3. Represent each situation as a previous situation plus a delta. Thus, if nothing changes
from one step to the next, we need do no work at all. In the old approach, we would
need to do O(F') work in generating an assertion for each fluent F;(Result(a, s)) from
the preceding F;(s) assertions.

Thus at each time step, we look at the current action, fetch its effects, and update the set of
true fluents. Each time step will have an average of E of these updates, for a total complexity
of O(FEt). This constitutes a solution to the inferential frame problem.

Time and event calculus

Situation calculus works well when there 1s a single agent performing instantaneous, dis-
crete actions. When actions have duration and can overlap with each other, situation calculus
becomes somewhat awkward. Therefore, we will cover those topics with an alternative for-
malism known as event calculus, which is based on points in time rather than on situations.
(The terms “event” and “action” may be used interchangeably. Informally, “event” connotes
a wider class of actions, including ones with no explicit agent. These are easier to handle in
event calculus than in situation calculus.)

In event calculus, fluents hold at points in time rather than at situations, and the calculus
is designed to allow reasoning over intervals of time. The event calculus axiom says that a
fluent is true at a point 1n time if the fluent was imitiated by an event at some time 1n the past
and was not terminated by an intervening event The Initiates and Terminates relations

play a role similar to the Result relation in

atinn ralrnlng. Trnnfanfno(n £ #) meanc that
Udilull Ldiblius, iTiuliteCsi e, J, 0y means mat

=
wn
Juirgy

the occurrence of event e at time ¢ causes fluent [to become true, while Terminates(w, f,t)
means that f ceases to be true. We use Happens(e,t) to mean that event e happens at time ¢,

