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ABSTRACT 
Suppose one is given a description of a system, together with an observation of the system's 
behaviour which conflicts with the way the system is meant to behave. The diagnostic problem is to 
determine those components of the system which, when assumed to be functioning abnormally, will 
explain the discrepancy between the observed and correct system behaviour. 

We propose a general theory for this problem. The theory requires only that the system be 
described in a suitable logic. Moreover, there are many such suitable logics, e.g. first-order, 
temporal, dynamic, etc. As a result, the theory accommodates diagnostic reasoning in a wide variety 
of practical settings, including digital and analogue circuits, medicine, and database updates. The 
theory leads to an algorithm for computing all diagnoses, and to various results concerning principles 
of measurement for discriminating among competing diagnoses. Finally, the theory reveals close 
connections between diagnostic reasoning and nonmonotonic reasoning. 

I. Introduction 

In the theory and design of diagnostic reasoning systems there appear to be 
two quite different approaches in the literature. 

In the first approach, often referred to as diagnosis from first principles, one 
begins with a description of some system--a physical device or real world 
setting of interest, say--together with an observation of the system's be- 
haviour. If this observation conflicts with the way the system is meant to 
behave, one is confronted with a diagnostic problem, namely, to determine 
those system components which, when assumed to be functioning abnormally, 
will explain the discrepancy between the observed and correct system be- 
haviour. For solving this diagnostic problem from first principles, the only 
available information is the system description, i.e. its design or structure, 
together with the observation(s) of the system behaviour. In particular, no 
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heuristic information about system failures is available, for example, of the 
kind "When the system exhibits such and such aberrant behaviour, then in 
90% of these cases, such and such components have failed." Notable examples 
of approaches to diagnostic reasoning from first principles are [4-7, 15, 16]. 

Under the second approach to diagnostic reasoning, which might be de- 
scribed as the experiential approach, heuristic information plays a dominant 
role. The corresponding diagnostic reasoning systems attempt to codify the 
rules of thumb, statistical intuitions, and past experience of human diagnosti- 
cians considered experts in some particular task domain. The structure or 
design of the corresponding real world system being diagnosed is only weakly 
represented, if at all. Successful diagnoses stem from the codified experience of 
the human expert being modeled, rather than from what is often referred to as 
"deep" knowledge of the system being diagnosed. A notable example of such 
an approach to diagnosis from experience is the MYCIN system [3]. 

As one will gather from its title, the current paper deals exclusively with the 
problem of diagnosis from first principles. Without in any way denying the 
importance of expert experience in diagnostic reasoning, we believe that a 
precise theoretical foundation for diagnosis from first principles will be a 
necessary ingredient in any general theory of diagnostic reasoning. The pur- 
pose of this paper is to provide such a theoretical foundation for diagnosis from 
first principles. Our theory primarily builds upon, and generalizes, the work of 
de Kleer [5] and Genesereth [7]. 

We begin by abstractly defining the concept of a system of interacting 
components. Initially, we choose first-order logic as a language for representing 
such systems, but as we shall eventually see, many different logics will lead to 
the same theory of diagnosis presented in this paper. Whatever one's choice of 
representation logic, the description within it of a system will specify how that 
system normally behaves on the assumption that all its components are 
functioning correctly. If we have available an observation of the system's actual 
behaviour and if this observation conflicts with (i.e. is logically inconsistent 
with) the way the system is meant to behave, then we have a diagnostic 
problem. The problem is to determine those system components which, when 
assumed to be functioning abnormally, will explain the discrepancy between 
the observed and correct system behaviour. These intuitions, coupled with our 
appeal to a logical system representation language, will allow us in Section 2 to 
formally define the concept of a diagnosis, including multiple fault diagnoses. 
Diagnoses need not be unique; there may be several competing explanations 
for the same faulty system. 

The computational problem, then, is to determine all possible diagnoses for 
a given faulty system. After proving some preliminary results in Section 3, we 
derive an "algorithm ''~ in Section 4 for computing all diagnoses for a given 

1 The reason for the scare quotes will become evident later. 
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faulty system• This algorithm has a number  of virtues, not the least of which is 
its relative independence of the particular logic representing the system being 
diagnosed• By "relative independence"  here we mean that the algorithm 
assumes the availability of a sound and complete theorem prover  for the logic 
being used, but in all other respects is unconcerned with the underlying logic• 
A nice consequence of this decomposit ion is that special purpose theorem 
provers can be designed for particular diagnostic applications, for example,  
Boolean equation solvers for switching circuits• Such a special purpose theorem 
prover  can then "hook  into" the general purpose algorithm to yield a domain 
specific diagnostic algorithm• 

As we remarked  above,  multiple, competing diagnoses can arise for a given 
faulty system• The normal  approach to discriminating among competing diag- 
noses is to make system measurements ,  for example inserting probes  into a 
circuit, or performing laboratory tests on a patient. In Section 5 we prove a 
variety of results about  the conclusions which can legitimately be drawn from 
the results of certain system measurements•  

Diagnostic reasoning turns out to be a form of nonmonotonic  reasoning• In 
Section 6 we explore this connection, and show how the theory of diagnosis of 
this paper  is related to default logic [17]. 

In Section 7 we consider the relationship of our theory of diagnosis to other 
research in this area. Finally, we summarize what we take to be the principal 
contributions of this work in Section 8. 

2. Problem Formulation 

2.1. Systems 

We seek a very general theory of diagnosis, one which will account for 
diagnostic reasoning in a wide variety of task domains such as medicine, digital 
and analogue circuits, etc. To achieve the necessary generality, we appeal to 
first-order logic with equality as a language for representing task specific 
• • 2 reformation. Also in the interest of generality, we define the domain-indepen- 
dent concept of a system which is designed to formalize as abstractly as 
possible the concept of a component ,  and the concept of a collection of 
interacting components .  

Definition 2.1. A system is a pair (SD, COMPONENTS) where: 
(1) so,  the system description, is a set of first-order sentences; 
(2) COMPONENTS, the system components, is a finite set of constants. 

2 Actually, all of the results of this paper continue to hold for a wide variety of logics, not just 
first-order. However, in order to provide a concrete development of the theory, we shall initially 
appeal only to first-order logic. In Section 6.1, we shall indicate how the results so obtained 
generalize to other logics. 
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In all intended applications, the system description will mention a distin- 
guished unary predicate AB('), interpreted to mean "abnormal."  

Example 2.2. Figure 1 depicts the binary full adder used extensively by 
Genesereth [7] as an example. This adder may be represented by a system with 
components ( A 1 ,  A2,  g l ,  g 2 ,  O1} and the following system description: 

ANDG(X) A -nAB(X) D out(x) = and(inl(x),  in2(x)) , 

XORG(X) /x -nAB(X) D out(x) = xor(inl(x), in2(x)) , 

ORG(X) A ~AB(X) D out(x) = or(inl(x), in2(x)) , 

ANDG(A 1), ANDG(A2) , 

XORG(X 1 ) ,  XORG(X 2 ) ORG(OI ) ,  

out(X1 ) = in2(A 2), 

out(X,) = inl(X2),  

out(A2) = i n l ( O , ) ,  

inl(A2) = in2(X2) , 

inl(X, ) = in l (A,  ) ,  

in2(X,) = in2(A 1), 

out(A ,) = in2(O, ) .  

In addition, the system description contains axioms specifying that the circuit 
inputs are binary valued: 

FIG. 1. A full adder. A, and A 2 are and gates; X L and X 2 are exclusive-or gates; O, is an or gate. 
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inl(X1) = 0 v inl(X~) = 1 ,  

in2(X 1) = 0 v in2(X~) = 1,  

i n l ( A l )  = 0 v in l (A~)  = 1. 

Finally there are axioms for a Boolean algebra over  {0, 1}, which we do not 
specify here. 

Typically, a system description describes how the system components  nor- 
mally behave by appealing to the distinguished predicate AB whose intended 
meaning is " abnorma l . "  Thus,  the first axiom in the example system descrip- 
tion states that a normal (i.e. not ABnormal) and gate 's  output is the Boolean 
and function of its two inputs. Many other kinds of component  descriptions are 
possible, e.g. "Normal ly  an adult human 's  heart  rate is between 70 and 90 
beats per minute ."  

ADULT(X) A HEART--OF(X, h) ^ --lAB(h) ~ rate(h)  >~ 70 A rate(h)  ~< 90. 

"Normal ly ,  if the voltage across a zener diode is positive and less than its 
breakdown voltage, the current through it must be zero ."  

ZENER--DIODE(Z) A 'TAB(Z) A 

voltage(z) > 0 ^ voltage(z) < b reak-vo l tage(z )  

D current(z)  = 0 .  

We can represent  the fact that a fault in component  c I will cause a fault in 
component  c 2: 

AB(CI)~AB(C2). 

If we know all the ways components  of a certain type can be faulted, we can 
express this by an axiom of the form: 

TYPE(X) A AB(X) ~ FAULT I(X) V " ' "  V FAULTn(X ) . 

By introducing several kinds of AB predicates,  we can represent more  general 
component  propert ies,  e.g. "Normal ly ,  a faulty resistor is either open or 
shor ted."  

RESISTOR(r) A AB(r) A -aAB'(r) 

D OPEN(r) v SHORTED(r). 
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The use of an AB predicate for system descriptions is borrowed from 
McCarthy [11] who exploits such a predicate in conjunction with his formaliza- 
tion of circumscription to account for various patterns of nonmonotonic 
common-sense reasoning. As we shall see in Section 6.2, this seemingly 
tenuous connection with nonmonotonic reasoning is in fact fundamental. 
Diagnosis provides an important example of nonmonotonic reasoning. 

2.2. Observations of systems 

Real world diagnostic settings involve observations. Without observations, we 
have no way of determining whether something is wrong and hence whether a 
diagnosis is called for. 

Definition 2.3. An observation of a system is a finite set of first-order sentences. 
We shall write (so, COMPONENTS, OBS) for a system (SD, COMPONENTS) with 
observation OBS. 

Example 2.2 (continued). Suppose a physical full adder is given the inputs 1, 0, 
1 and it outputs 1, 0 in response. Then this observation can be represented by: 

inl(X1) = 1 , 

in2(X 1) = 0 ,  

inl(A2) = 1 , 

out(X2) = 1,  

o u t ( O ~ )  = O. 

Notice that this observation indicates that the physical circuit is faulty; both 
circuit outputs are wrong for the given inputs. 

Notice also that distinguished inputs and outputs are features of digital 
circuits (and many man-made artifacts) not of the general theory we are 
proposing. 

2.3. Diagnoses 

Suppose we have determined that a system (SD, {c~ . . . . .  c ,})  is faulty, by 
which we mean informally that we have made an observation oBs which 
conflicts with what the system description predicts should happen if all its 
components were behaving correctly. Now {-TAB(C1),. . . ,  -1AB(C,)} repre- 
sents the assumption that all system components are behaving correctly, so that 
so LJ {-aAB(C t ) , .  . . , ~AB(C,)} represents the system behaviour on the assump- 
tion that all its components are working properly. Hence the fact that the 
observation OBS conflicts with what the system should do were all its compo- 
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nents behaving correctly can be formalized by: 

SD I,.J { '- ' IAB(Cl) . . . . .  --qAB(¢n) } [-J OBS (2.1) 

is inconsistent. 
Intuitively, a diagnosis is a conjecture that certain of the components are 

faulty (ABnormal) and the rest normal. The problem is to specify which 
components we conjecture to be faulty. Now our objective is to explain the 
inconsistency (2.1), an inconsistency which stems from the assumptions 
--IAB(Cl) . . . .  , - ' ]AB(Cn) , i.e. that all components are behaving correctly. The 
natural way to explain this inconsistency is to retract enough of the assump- 
tions -nAB(Cl),...,-nAB(Cn), SO as to restore consistency to (2.1). But we 
should not be overzealous in this; retracting all of -nAB(C~) . . . . .  -ngB(Cn) will 
restore consistency to (2.1), corresponding to the diagnosis that all components 
are faulty. We should appeal to: 

The Principle of Parsimony. A diagnosis is a conjecture that some minimal set 
of components are faulty. 

This leads us to the following: 

Definition 2.4. A diagnosis for (SD, COMPONENTS, OBS) is a minimal set A _C 
COMPONENTS s u c h  that 

SD I,.J OBS [.J {AB(C) t C E A} ~.J {--lAB(C) I C E COMPONENTS -- A} 

is consistent. 

In other words, a diagnosis is determined by a smallest set of components 
with the following property: The assumption that each of these components is 
faulty (ABnormal), together with the assumption that all other components are 
behaving correctly (not ABnormal), is consistent with the system description 
and the observation. 

Example 2.2 (continued). For the full adder, there are three diagnoses: {X1}, 
{X:, O1}, {)(2, A2}. 

2.4. Computing diagnoses: Decidability 

The definition of a diagnosis appeals to a consistency test for arbitrary 
first-order formulae. Since there is no decision procedure for determining the 
consistency of first-order formulae, we cannot hope to compute diagnoses in 
the most general case. Nevertheless, there are many practical settings where 
consistency is decidable, hence diagnoses are computable. 
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For example, in the case of switching circuits like that of the full adder, it is 
sufficient, for the purpose of computing diagnoses, to determine whether a 
system of Boolean equations is consistent, i.e. has a solution, and this is 
decidable. Similarly, in the case of linear electronic circuits, we need only have 
the capacity to determine whether a system of linear equations has a solution. 
As we shall see in Section 7, at least one established model for medical 
diagnosis leads to a computable theory. The point is: we should not allow the 
undecidability of the general problem to prevent us from developing a theory 
of diagnosis because there are many practical settings in which the theory does 
provide effective computations. 

This means that for any given application it will be necessary first to establish 
decidability of its diagnostic problem. If the problem turns out to be undecid- 
able, heuristic techniques will be necessary. It is an interesting question to 
characterize classes of systems whose diagnostic problems are decidable, but 
we shall not pursue that question in this paper. 

3. Some Consequences of the Definition 

The first two results are simple consequences of the definition of a diagnosis 
(Definition 2.4); we omit their proofs. 

Proposition 3.1. A diagnosis exists for (SD, COMPONENTS, OBS) iff  SD U OBS is 
consistent. 

Proposition 3.2. { } is a diagnosis (and the only diagnosis) for (so, COMPO- 
NENTS, OBS) iff  

SD U OBS U {--qAB(C) I C E COMPONENTS} 

is consistent, i.e. iff the observation does not conflict with what the system 
should do if all its components were behaving correctly. 

This is as it should be; we observe nothing wrong, so there is no reason to 
conjecture a faulty component.  

Proposition 3.3. I f  A is a diagnosis for  (SD, COMPONENTS, OBS), then for each 
c i C A ,  

SD U OBS U {~AB(C) I C ~ COMPONENTS -- A} ~ AB(Ci). 

Proof. If A is the empty set, then the result is true vacuously. Suppose then 
that A = {c 1 . . . . .  ck}, and that the proposition is false, so that 
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SD U OBS U {--lAB(C) I C E COMPONENTS -- A} 

U (mAB(CI) V " ' "  V mAB(Ck) } 

is consistent .  N o w  mAB(C~) v " "  V mAa(Ck) is logically equivalent  to 

V [ A B ( C I )  il A ' ' "  A AB(Ck) ik] 

where  the dis junct ion is ove r  all i l , . . . ,  i k E {0, 1) such tha t  at least  one  ij = 0, 
and where  

AB(Cj) , i f i j = l ,  
AB(Cj)i] - ~  mAB(Cj) , if i t = 0 .  

SO we have  that  

SD U OBS U {m'IAB(C) I C E COMPONENTS -- A} 

u ( V [ A B ( c , ) "  ^ • • • ^ A B ( C k Y * ] }  

is consis tent ,  in which case,  for  some  choice of  i l , . . . ,  i k E {0, 1} with at least  
one  i t = 0, we have  tha t  

SD U OBS U (--lAB(C) I ¢ E COMPONENTS -- A} 

U (AB(Cl)  il ^ ' ' "  A AB(Ck) ik} 

is consistent .  But  this says tha t  A has a strict subset  A' with the p rope r ty  that  

SD U OBS U {--lAB(C) ] C ~ COMPONENTS -- A} 

u I c a}  

is consis tent ,  contradic t ing the fact that  za is a diagnosis  for  (so,  COMPONENTS, 
OBS). []  

Propos i t ion  3.3 is ra ther  interest ing.  It  says that  the faulty c o m p o n e n t s  A are 
logically d e t e r m i n e d  by the no rma l  c o m p o n e n t s  COMPONENTS -- A. 

T h e  next  result  p rovides  a s impler  charac ter iza t ion  of  a diagnosis than  does  
the original  Def ini t ion 2.4. 

Proposition 3.4. A C_ COMPONENTS is a diagnosis  f o r  (SD, COMPONENTS, OBS) i f f  A 
is a m i n i m a l  set  such  that 
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SD U OBS U {--lAB(C) J c ~ COMPONENTS -- A} 

is consistent. 

Proof.  ( ~ )  since A is a diagnosis, 

SD U OBS U {AB(C) I C ~ A} 

U {--qAB(C) ] C E COMPONENTS -- A} 

is consistent,  so that  

SD U OBS U (--lAB(C) I C E COMPONENTS -- A} 

is consistent.  Moreover ,  by Proposi t ion 3.3, for each c i E A 

SD U OBS U {-'lAB(C) I C E COMPONENTS -- A} U (-'lAB(C/)} 

is inconsistent.  The  result now follows. 
( ~ ) By the minimali ty of  ~1, we must  have,  for  each c i E ~1, that  

SO U OBS U {"-lAB(C) J C E COMPONENTS -- A} U (--IAa(ci) } 

is inconsistent,  i.e. for each c~ E A, 

SD U OBS U {--lAB(C) I c E COMPONENTS -- A} ~ AB(C/) . 

Moreover ,  by hypothesis ,  

SD U OBS U (--qAB(C) I c E COMPONENTS -- A} 

is consistent.  Hence  

so  U OBS U {An(C) J C E A} 

U { ~ A B ( ¢ )  I e E COMPONENTS --  A} 

is consistent.  It remains only to show that  A is a minimal set with this p roper ty  
in order  to establish that  A is a diagnosis. But  this is easy, for if A had a strict 
subset A'  with this p roper ty ,  then 

SD U OBS U {-'lAB(e) I C E COMPONENTS -- A'} 

would be consistent,  contradict ing the hypothesis  of  this proposi t ion.  [] 
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4. Computing Diagnoses 

Our objective in this section is to show how to determine all diagnoses for (SO, 
COMPONENTS, OBS). There is a direct generate-and-test mechanism based upon 
Proposition 3.4: Systematically generate subsets A of COMPONENTS, generating 
As with minimal cardinality first, and test the consistency of 

SD [.JOBS [.J (--lAB(C) I C • COMPONENTS -- A} . 

The obvious problem with this approach is that it is too inefficient for systems 
with large numbers of components.  Instead, we propose a method based upon 
a suitable formalization of the concept of a conflict set, a concept due originally 
to de Kleer [5]. 

4.1. Conflict sets and diagnoses 

Definition 4.1. A conflict set for (SD, COMPONENTS, OUS) is a set {c I . . . . .  ck} C_ 
COMPONENTS such  that 

SD I..) OBS I) (--IAB(Cl) . . . . .  -"IAB(Ck) } 

is inconsistent. 
A conflict set for (SD, COMPONENTS, OBS) is minimal iff no proper  subset of it 

is a conflict set for (SD, COMPONENTS, OBS). 

Proposition 3.4 can be reformulated in terms of conflict sets as follows: 

Proposition 4.2. A C_ COMPONENTS is a diagnosis for (SD, COMPONENTS, OBS) i f f  Z~ 
is a minimal set such that COMPONENTS- A is not a conflict set for (SD, 
COMPONENTS, OBS). 

Definition 4.3. Suppose C is a collection of sets. A hitting set for C is a set 
HC_ U s ~ c  S such that H A S ~ {  } for each S E C .  A hitting set for C i s  
minimal iff no proper  subset of it is a hitting set for C. 

The following is our principal characterization of diagnoses, and will provide 
the basis for computing diagnoses: 

Theorem 4.4. A C_ COMPONENTS is a diagnosis for (SD, COMPONENTS, OBS) iff  A is 
a minimal hitting set for the collection of  conflict sets for (SD, COMPONENTS, OBS). 

Proof. ( ~ ) By Proposition 4.2, COMPONENTS -- A is not a conflict set for (so, 
COMPONENTS, OBS). Hence,  every conflict set contains an element of A, so that A 
is a hitting set for the collection of conflict sets for (SO, COMPONENTS, OBS). We 
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must  p rove  A is a minimal  such hitt ing set. Now by Propos i t ion  4.2, zi is a 
minimal  set such that  COMPONENTS -- Zl is not  a conflict set. This means  for  each 
c E A that  {c} U (COMPONENTS -- Zl) is a conflict set. F r o m  this it follows that  A 
is a minimal  hitting set for  the conflict sets for  (SD, COMPONENTS, OBS). 

( ~ )  We use Propos i t ion  4.2 to p rove  that  zi is a diagnosis for  (SD, 
COMPONENTS, OBS) by showing that:  

(1) COMPONENTS -- A is not a conflict set for  (SD, COMPONENTS, OBS), 
(2) Zl is a minimal  set with p rope r ty  (1) by proving,  for  each c E A, that  

{c} U (COMPONENTS -- Zi) is a conflict set for  (SD, COMPONENTS, OBS). 
Proof of  (1): If, on the cont rary ,  COMPONENTS -- A were  a conflict set,  then  A 

would not  hit it, contradict ing the fact that  A is a hitt ing set for  all conflict sets. 
Proof of (2): Eve ry  conflict set has the fo rm zl' U K where  A' C_ ,:1 and 

K C_ COMPONENTS -- A. M o r e o v e r ,  for each c E Zi, some conflict set must  contain 
c, for o therwise  A would not  be  a minimal  hitting set. We prove  that  some  
conflict set containing c is of  the form {c} U K. For  if not ,  then every  conflict 
set containing c must  have the fo rm {c ,c ' , . . . }  LJ K where  c '  ~ A and c '  ~ c. 
But  then  Z i -  {c} is a smaller  hitt ing set than zl, a contradict ion.  Hence ,  for  
each c E A there  is a conflict set of  the fo rm {c} U K where  K C_ COMPONENTS -- 
A. But  then {c} 13 (COMPONENTS -- A) is also a conflict set. [] 

Not ice  that  every  superse t  of  a conflict set for  (SD, COMPONENTS, OBS) is also a 
conflict set. Because  of this, we can easily p rove  the following: 

H is a minimal  hitt ing set for  the collection of all conflict sets for  
(SD, COMPONENTS, OBS) iff H is a minimal  hitting set for the 
collection of  all minimal  conflict sets for  (SD, COMPONENTS, OBS). 

Combin ing  this result with T h e o r e m  4.4 we obtain  an al ternat ive character iza-  
t ion of  diagnoses:  

Corol la ry  4.5. A C COMPONENXS is a diagnosis for (SD, COMPONENTS, OBS) iff Zl is 
a minimal hitting set for the collection of  minimal conflict sets for (SD, 
COMPONENTS, OBS). 

Example  2.2 ( c o n t i n u e d )  The  full adder  has two minimal  conflict sets {X~, X2} 
and {X 1, A 2, O1) cor responding ,  respect ively,  to the inconsistency of  

and 
SD [,.) OBS U (--IAB(XI), "-lAB(X2) ) 

SD [,.JOBS (.,J ( ' - l A B ( X 1 )  , ~ A B ( A 2 )  , " I A B ( O I )  ) . 

There  are three  diagnoses ,  given by the min imal  hitt ing sets for  {X I, )(2} and 
{X, ,  A 2, O,} :  {X,} ,  (X2, A2) ,  (X2, O1}. 
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De Kleer and Williams [6] have independently proposed a characterization 
of diagnoses which corresponds to our Corollary 4.5. However,  the major 
difference between their result and ours is that, while theirs derives from sound 
intuitions, it is based upon an unformalized approach to diagnosis, while our 
results have been derived from initial formal definitions. 

4.2. Computing hitting sets 

Our approach to computing diagnoses is based upon Theorem 4.4 and there- 
fore requires computing all minimal hitting sets for the collection of conflict 
sets for (so, COMPONENXS, OBS). Accordingly, in this section, we focus on 
computing the minimal hitting sets for an arbitrary collection of sets. The 
approach we shall propose will be particularly appropriate in a diagnostic 
setting. 

Definition 4.6. Suppose F is a collection of sets. An edge-labeled and node- 
labeled tree T is an HS-tree for F iff it is a smallest tree with the following 
properties: 

(1) Its root is labeled by "X/'' if F is empty. Otherwise, its root is labeled by 
a set of F. 

(2) If n is a node of T, define H(n) to be the set of edge labels on the path in 
T from the root node to n. If n is labeled by ~/, it has no successor nodes in T. 
If n is labeled by a set ~ of F, then for each o" @ ~, n has a successor node n~ 
joined to n by an edge labeled by or. The label for n~ is a set S E F such that 
S fq H(n~) = { } if such a set S exists. Otherwise, n~ is labeled by ~/. 

Example 4.7. Figure 2 is an HS-tree for F =  {{2,4,5},  {1 ,2 ,3} ,  {1 ,3 ,5} ,  
{2, 4, 6}, {2,4}, {2, 3 ,5},  {1,6}}. 

The following results are obvious for any HS-tree for a collection F of sets: 
(1) If n is a node of the tree labeled by ~/, then H(n) is a hitting set for F. 
(2) Each minimal hitting set for F is H(n) for some node n of the tree 

labeled by X/. 
Notice that the sets of the form H(n) for nodes labeled by X/do not include 

all hitting sets for F. The important point for our purpose is that they do 
include all minimal hitting sets for F. Our objective is to determine various tree 
pruning techniques to allow us to generate as small a subtree of an HS-tree as 
is possible, while preserving the property that the subtree so generated will 
give us all minimal hitting sets for F. In addition, we wish to minimize the 
number of accesses to F required to generate this subtree, where by an access 
to F we mean the computation required to determine the label of a node in this 
subtree. Such a computation of a label for node n is determined (at least 
conceptually) by searching F for a set S such that S fq H(n) = { }. If such an S 
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is found, node n is labeled by S, else it is labeled by ~/. For our purposes,  this 
computat ion requiring an access to F must be t reated as extremely expensive. 
This is so because for us, F will be the set of all conflict sets for (so, 
COMPONENTS, OBS). Moreover ,  F will not be explicitly available, but will instead 
be implicitly defined. An access to F will be the computat ion of a conflict set, 
and this will require a call to a theorem prover.  Clearly, we will want as few 
such accesses to F as possible. 

The natural way to reduce accesses to F in generating an HS-t ree  is to reuse 
node labels which have already been computed.  For example,  if the HS-tree  of 
Fig. 2 was generated breadth-first,  generating nodes at any fixed level in the 
tree in left-to-right order,  then node n 2 could have been assigned the same 
label as n 1, namely,  {1 ,3 ,5} ,  since H ( n 2 ) A  {1,3, 5} = { }. For the same 
reason, all of the nodes labeled {1, 6} other  than node n 4 require no access to 
F; their labels can be determined from the tree itself as the previously 
computed label for n 4. 

Next,  we consider three tree pruning devices for HS-trees  which preserve the 
proper ty  that the resulting pruned HS- t ree  will include all minimal hitting sets 
for F. 

(1) Notice that in Fig. 2 H(n6) = H(ns) .  Moreover ,  we could have reused 
the label of  t'l 6 for n 8. This means that the subtrees rooted at t/6 and n 8 
respectively could be identically generated had we chosen the reused label for 
n 8. Thus,  n8's subtree is redundant ,  and we can close node n 8. Similarly, 
H(n7) = H(ns) so we can close node n 7. 

(2) In Fig. 2, H(n3) = {1, 2} is a hitting set for F. Therefore ,  any other node 
n of the tree for which H(n3) C_ H(n) cannot possibly define a smaller hitting 
set than H(n3).  Since we are only interested in minimal hitting sets, such a 
node n can be closed. In Fig. 2, node rt 9 is an example of such a node which we 
can close. The computat ional  advantage of recognizing that node n 9 can be 
closed is that we need not access F to determine that n9'S label is ~/. 

(3) The following is a simple result about  minimal hitting sets: If F is a 
collection of sets, and if S E F and S'  E F with S a proper  subset of S', then 
F -  {S'} has the same minimal hitting sets as F. 

We can use this result to prune the HS- t ree  of Fig. 2. Notice that the label 
{2, 4} of node nl0 is a proper  subset of {2, 4, 5}, the label of the previously 
generated node n 0. This means that, in generating the label of nl0 we have 
discovered that F contains a strict subset {2, 4} of {2, 4, 5}, another  set of F. 
Thus,  in generating the HS-tree ,  we could have labeled n o by the smaller set 
{2, 4}, instead of {2, 4, 5}. In other words, the edge f rom n o labeled 5 and the 
entire subtree beneath this edge are redundant;  they can be removed  from the 
tree while preserving the proper ty  that the resulting pruned tree will yield all 
minimal hitting sets. 

Notice that this tree pruning device appears  unnecessarily clumsy. We waited 
until node nl0 was generated and labeled by {2,4} before noticing that F 
therefore contains a set {2, 4} which is a proper  subset of another  set {2, 4, 5} 
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of F. Why not simply prescan F, remove from F all supersets of sets in F, and 
use the resulting tr immed F to generate an HS-tree? In the example of Fig. 2 
we could first have removed {2, 4, 5} and {2, 4, 6} from F before generating its 
HS-tree. The reason we did not do this is, as we have already remarked,  for 
our purposes F will be implicitly defined as the set of all conflict sets for (SD, 
COMPONENTS, OBS). Since we will not have available an explicit enumeration of 
these conflict sets, we cannot perform a preliminary subset test on them. 

We summarize our method for generating a pruned HS-tree for F as follows: 

(1) Generate  the HS-tree breadth-first, generating nodes at any fixed level 
in the tree in left-to-right order. 

(2) Reusing node labels: If node n is labeled by the set S E F, and if n '  is a 
node such that H(n') fq S = { }, label n'  by S. (We indicate that the label of n '  
is a reused label by underlining it in the tree.) Such a node n '  requires no 
access to F. 

(3) Tree pruning: 
(i) If node n is labeled by ~ /and  node n '  is such that H(n) C H(n'), close n', 

i.e. do not compute a label for n ' ;  do not generate any successors of n'. 
(ii) If node n has been generated and node n '  is such that H(n' )= H(n), 

then close n'. (We indicate a closed node in the tree by marking it with " × " . )  
(iii) If nodes n and n '  have been respectively labeled by sets S and S' of F, 

and if S' is a proper  subset of S, then for each ct ~ S - S' mark as redundant 
the edge from node n labeled by a. A redundant edge, together with the 
subtree beneath it, may be removed from the HS-tree while preserving the 
property that the resulting pruned HS-tree will yield all minimal hitting sets for 
F. (We indicate a redundant edge in a pruned HS-tree by cutting it with " ) ( " . )  

Figure 3 depicts such a pruned HS-tree for the example of Fig. 2. 
In view of the preceding discussion, the following result should be clear: 

Theorem 4.8. Let F be a collection of sets, and T a pruned HS-tree for F, as 
previously described. Then {H(n) [ n is a node of  T labeled by ~}  is the 
collection of minimal hitting sets for F. 

Example 4.7 (continued). For the set F of Fig. 3, the minimal hitting sets are: 

{1 ,2} ,  {2, 3 , 6 } ,  {2, 5 , 6 } ,  { 4 , 1 , 3 } ,  { 4 , 1 , 5 } ,  {4, 3, 6}.  

The computation of these hitting sets required 13 accesses to F. 

4.3. Computing all diagnoses 

A conceptually simple approach to computing diagnoses can be based upon 
Theorems 4.4 and 4.8 as follows: First compute the collection F of all conflict 
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sets for (SD, COMPONENTS, OBS), then use the method of pruned HS-trees to 
compute the minimal hitting sets for F. These minimal hitting sets will be the 
diagnoses. 

The problem, then, is to systematically compute all conflict sets for 
(SD, COMPONENTS, OBS). Recall that {c, . . . . .  ck} C COMPONENTS is a conflict 
set iff SD U oas U {TAB(CI) . . . . .  -]AB(Ck) } is inconsistent. Now if so U OBS U 
{'TAB(C1) . . . . .  7AB(Ck) } is inconsistent, so is SDUoRsU{-TAR(C) ICE 
COMPONENTS}. So, using a sound and complete theorem prover, compute all 
refutations of SD U OBS U {TAB(C) I C E COMPONENTS} and for each such refuta- 
tion, record the AR instances entering into the refutation. If 
{--qAR(C,) . . . . .  ~AR(Ck) } is the set of AB instances used in such a refutation, 
then {c~ . . . . .  c,} is a conflict set. 

For example, Fig. 4 gives a stylized resolution style refutation tree for 
SD U ORS U { ~ A B ( ¢ )  I C ~ COMPONENTS} in which the AB instances entering into 
the refutation arc explicitly indicated. This refutation yields the conflict set 
{c,, c5, c7} 

Therefore,  one approach to computing all conflict sets for (SD, COMPONENTS, 
ORS) is to invoke a sound and complete theorem prover which computes all 
refutations of so U ORS U {TAR(C) I c E COMPONENTS}, and which, for each such 
refutation, records the AR instances entering into the refutation in order to 
determine the corresponding conflict set. 

Unfortunately,  there is a serious problem with this approach: the conflict sets 
do not stand in a 1-1 relationship with the refutations of SDUOBSU 
{~AB(C) I C E COMPONENTS}. There will be refutations which are inessential 
variants of each other. Figure 5 illustrates two resolution refutations which, 
although different refutations, involve the same AR instances. A refutation- 
based approach to the computation of conflict sets ought not compute such 

-I AB (c I ) -~ AB (e I ) 

--, AB ( 

Fla. 4. Resolution style refutation tree for so U oBs U {TAB(C) I C C COMPONENTS}. 
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p v Q v AB(c I) ",AB(c I) 

P v O  P v - , Q  

-P v -,Q v AB(c 2)_ P 

-,Q v AB(c2) -,AB(c2) 

-~P vQ -,Q 

~P P 

2 

p v Q v AB(Cl) -dkB(Cl) 

pv Q pv-~Q 

P 

Fro. 5. Two resolution refutations involving the same AB instances. 

-,p v Q ..~p v .-,Q v AB(c2) 

..tAB (C2) 
-,P v ~  

~P 

inessential variants. If we were relying on a resolution theorem prover for 
computing refutations, then fixing on some particular resolution strategy (e.g. 
linear resolution, resolution with literal ordering, etc.) might help with this 
problem. Depending upon a particular style of theorem prover would not be a 
good idea, however. We should not restrict the underlying theorem proving 
system since particular applications might benefit from special purpose theorem 
provers, e.g. constraint propagation techniques for diagnosis, as used by Davis 
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[4] and de Kleer and Williams [6], or specialized Boolean equation solvers. So 
our problem is to prevent  the computat ion of inessential variants of refuta- 
tions, without imposing any constraints on the nature of the underlying 
theorem proving system. As we shall see, our algorithm for computing minimal 
hitting sets handles this problem very nicely. In fact, the underlying theorem 
prover is relieved of all responsibility for the systematic generation of all 
conflict sets; this responsibility for determining the order in which conflict sets 
are computed,  and when they have all been determined,  is assumed by our 
algorithm for computing minimal hitting sets. The role of the theorem prover is 
simply to return a suitable conflict set when so requested by the algorithm for 
generating pruned/- /S- t rees .  

We now develop our "algori thm ''3 for computing all diagnoses for (so, 
COMPONENTS, OBS). Our  approach is based upon Theorem 4.4 and therefore 
requires all minimal hitting sets for the collection F of conflict sets for (SD, 
COMPONENTS, OBS). The minimal hitting set calculation will involve generating a 
pruned HS-tree for F, as per Theorem 4.8, but with one significant difference: 
F will not be given explicitly. Instead, suitable elements of F will be computed,  
as required, while the HS-tree is being generated. 

Recall that in generating a pruned HS-tree for a collection, F, of sets, a node 
n of the tree can be assigned a label in one of two ways: 

(1) By reusing a label S previously determined for some other node n '  
whenever H(n) f-I S = { }; in this case, no access to F is required since n 's  label 
is obtained from that part  of the pruned HS-tree  generated thus far. 

(2) By searching F for a set S such that H(n) f-I S = ( }. If such a set S can 
be found in F, n is labeled by S, otherwise by X/. In this case the set F must be 
accessed; n 's  label cannot be determined without F. 

Now it should be clear that the set F need not be given explicitly. The only 
time that F is needed is in case (2) above. Therefore ,  to generate a pruned 
HS-tree  for F, we only require a function which, when given H(n), returns a 
set S such that H(n) A S = { } if such a set S exists in F, and ~/otherwise.  We 
now exhibit such a function when F is the collection of conflict sets for (SD, 
COMPONENTS, OBS). Let TP(SD COMPONENTS, OBS) be a function with the property 
that whenever (so, COMPONENTS) is a system and oBs an observation for that 
system, TP(SD, COMPONENTS, OBS) returns a conflict set for (SD, COMPONENTS, 
OBS) if one exists, i.e. if so tO OBS tO {~AB(C) [ C ~ COMPONENTS} is inconsistent, 
and returns X/ otherwise. It is easy to see that any such function TP has the 
following property:  If C C COMPONENTS, then TP(SD, COMPONENTS--C, oBs) 
returns a conflict set S for (so, COMPONENTS, OBS) such that C (q S = { ) if such 
a set S exists, and ~/ otherwise. It follows that we can generate a pruned 
HS-tree for F, the collection of conflict sets for (so, COMPONENTS, OBS) as 
described in Section 4.2 except that whenever a node n of this tree needs an 

The scare quotes serve as a reminder that the general problem is undecidable. 
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access to F to compute its label, we label n by TP(SD, COMPONENTS -- H(n) ,  oBs). 
From this pruned HS-tree T we can extract the set of all minimal hitting sets 
for F, namely (H(n) I n is a node of T labeled by X/}. By Theorem 4.4, this is 
the set of diagnoses for (sD, COMPONENTS, OBS). 

We have proved the correctness of the following "algorithm": 

Algorithm. DIAGNOSE(SD, COMPONENTS, OBS). 
{COMMENT: (SD, COMPONENTS) is a system and OBS is an observation of the 

system. TP is any function with the property that TP(SD, COMPONENTS, OBS) 
returns a conflict set for (SD, COMPONENTS, OBS) if one exists, i.e. if so GOBS tJ 
{--IAB(C)[CECOMPONENTS) is inconsistent, and returns X/ otherwise. DIAG- 
NOSE(SD, COMPONENTS, OBS) returns the set of all diagnoses for (SD, COMPO- 
NENTS, oBs).} 

Step 1. Generate  a pruned HS-tree T for the collection F of conflict sets for 
(SD, COMPONENTS, OBS) as described in Section 4.2 except that whenever,  in the 
process of generating T a node n of T needs an access to F to compute its label, 
label that node by TP(SD, COMPONENTS -- H(n), OBS). 

Step 2. Return {H(n) l n is a node of T labeled by ~/}. 

Example 2.2 (continued). The full adder. Figure 6 shows a possible pruned 
HS-tree for the full adder example, as computed by DIAGNOSE(SD, 
(X  1, )(2, A 1, A2, O1}, OBS) where so and oBs are the system description and 
observation described earlier for the full adder. Recall that 
{X1, )(2, A1, A2, Ol} are the components of this system. The root node of 
Fig. 6 is labeled by a call to TP(SD, {X1, X2, A1, A2, O1) , OBS) which we are 
supposing returns {X~,)(2}. Node n 1 is labeled by a call to TP(SI), (X2, 
A l, A 2, O1}, OBS). Since SD GOBS G {~AB(X2),-7AB(A 1), --7AB(A2) , -'qga(O1) } 
is consistent, this call returns ~/. Node t/2 is labeled by a call to TP(SD, {X~, A~, 
A 2, O1}, OBS) which we are supposing returns {X~, A2, O1}. Node n 3 is 
marked closed by an HS-tree pruning rule. Node n 4 is labeled by a call to 
TP(SD, { X I , A I , 0 1 }  , oBs) which returns X/ since SDI,.JOBSI,_J{--'IAB(XI) , 

{XI,X2} 

{XI,A2,01} 

x 

FIc. 6. Computing all diagnoses for the full adder. 
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--qAB(AI) , -'IAB(OI) } is consistent. Similarly, node n 5 is labeled V by a call to 
TP(SD, {X1, A t ,  Az}, oBs). The set of all diagnoses can now be read from the 
tree of Fig. 6: {{X1), (X2, A2}, {X2, O1} }. Five calls to TP were required. 
Figure 6 is, of course, not the only possible computat ion of the diagnoses for 
the full adder. The particular trees one obtains depend upon what the function 
TP returns. Figure 7 shows a different possible pruned HS-tree for the full 
adder, corresponding to a different function TP. Notice that in this case the root 
node is labeled by a nonminimal conflict set returned by TP(SD, 
{X I, X 2, A 1, A2, 01} , OBS). Notice also that the HS-tree  pruning algorithm 
marks one of the edges (labeled A 1) redundant  after xP returns a strict subset 
{X1, A2, 01) of the roots node's  label. Six calls to TP were required for this 
example.  

We make several remarks  about algorithm DIAGNOSE: 
(1) No two calls by DIAGNOSE to TP will ever return the same conflict set. 

This a simple consequence of the way node labels are determined in generating 
a pruned HS-tree.  As a result, the theorem prover  underlying TP need not 
compute the same conflict set in two inessentially different ways, as was the 
case for example in Fig. 5. Moreover ,  for any two calls by DIAGNOSE to TP, the 
later call will never  return a superset of the earlier call. A consequence of this 
is that normally DIAGNOSE will explicitly compute only a small subset of all 
possible conflict sets for (so, COMPONENTS, OBS). For example,  in Fig. 6, 
DIAGNOSE computes only two of the possible 12 conflict sets, while in Fig. 7 it 
computes three. This is important  because the computat ion of a conflict set 
requires an expensive call to a theorem prover.  

(2) The function TP may be realized computationally in many different ways. 
One way, as we remarked earlier, is to use a complete refutation based 
theorem prover which records the AB instances entering into the refutations it 
computes.  Another  way to compute  a conflict set is to use a theorem prover to 
directly derive, f rom SD t3 oas as premises, a disjunction of AB instances, i.e. a 

{XI,AI,A2,01] 

/ x.~} {XI,X2} 

× {XI,A2, O1] × / × / 

FIG. 7. A different computation of diagnoses for the full adder. 
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f o r m u l a  o f  t he  f o r m  AB(Cl) V - - "  v AB(Ck) , f o r  t h e n ,  s ince  SD [30BS I--AB(CI) V 

• "" v AB(Ck), we have SDt3OBSLJ {TAB(Cl) , . . .  ,"aAB(Ck) } inconsistent, 
whence { C l , . . .  ,ck} is a conflict set. This appears to be the basis for 
computing suspects used by Genesereth 's  DART program [7]. 

In particular applications TP might profitably be realized by special purpose 
theorem provers, e.g. constraint propagation techniques for solving systems of 
equations, as used by Davis [4] and de Kleer and Williams [6]. 

Whatever  the theorem proving techniques used by TP, it should probably be 
implemented in such a way that intermediate computations obtained while 
computing a conflict set are cached for possible use in subsequent calls to TP. 

(3) If the function TP can be realized so that it returns only minimal conflict 
sets, then in the generation of a pruned HS-tree,  no edge will ever be marked 
redundant so that in this circumstance we can simplify the tree generation 
algorithm. 

(4) Because pruned HS-trees are generated breadth-first, diagnoses are 
computed in order of increasing cardinality. Thus, all of the diagnoses involv- 
ing just a single component  are determined by those nodes labeled by ~/ at 
level 14 in the tree, and these are computed before the level-2 nodes which 
determine the diagnoses involving two components,  etc. If, for some reason, 
we believe that diagnoses of cardinality greater than k are highly improbable, 
or if we are interested only in diagnoses of cardinality k or less, then DIAGNOSE 
can stop growing the HS-tree at level k. 

Example 4.9. Figure 8 illustrates a device first introduced by Davis [4], and 
subsequently extensively analyzed by de Kleer and Williams [6]. The device 
has 5 components,  M 1, M2, M3, A1, and A 2. The observation is given by: 

in l (M,)  = 3 ,  in2(M, ) = 2 ,  

inl(M3) = 3 ,  in2(M3) = 2 ,  

inl(M2) = 3 ,  in2(Mz) = 2 ,  

out(A1) = 10, out(A2) = 12. 

I 
A1 I 10_ 

2 ~ M2 
-I -[ A2 12 

2 I - -1  
FIG. 8. A device with observed inputs and outputs. M~, M2, and M 3 a re  multipliers; A~ and A 2 a re  

adders. 

4 The root node is at level 0. 
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We omit a full specification of the system description; it will involve axioms 
specifying how the components normally behave, together with axioms about 
addition and multiplication of integers. 

For example, the normal behaviour of a multiplier will be specified by: 

MULTIPLIER(m) A --]AB(m) ~ out(m) = inl(m) * in2(m) . 

The system description will also contain axioms describing how the components 
are interconnected, e.g. 

out(M1) = inl(A1) , out(M2) = in2(A 1) , 

out(M2) = i n l ( A : ) ,  etc. 

{m.,~,A1} 

/ "  
{M3 ,A2,MI,AI} / 

FIG. 9. A pruned HS-tree for Example 4.9. 

{i't3 ,A2,M1 ,A1 } 

{MI,M2,AI,A2 / 
{MI,M2,AI} V 

/ × 

FIG. 10. A pruned HS-tree for Example 4.9. 

x~ / x 
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Since the observation out (A1)= 10 conflicts with the predicted value 
out(A 1)--12 the device is faulty. Figures 9 and 10 give two possible pruned 
HS-trees which algorithm DIAGNOSE might compute. From either of these we 
obtain the four diagnoses for this device: {M1}, {A1}, (M 2, M3}, (A2,  M2}. 

4.4. Single fault diagnoses 

A diagnosis is a single fault diagnosis iff it is a singleton. If it contains two or 
more components, it is a multiple fault diagnosis. For the full adder example, 
there is one single fault diagnosis, {X 1 }, and two multiple fault diagnoses, {X2, 
A2} and (X2, O1}. 

Single fault diagnoses are of particular interest, primarily because one 
normally expects components to fail independently of each another. As a 
result, single fault diagnoses are judged more likely to be correct than any of 
their companion multiple fault diagnoses. Thus, in the case of the full adder, 
the single fault diagnosis (XI} is to be preferred over the other two multiple 
fault diagnoses. 

Theorem 4.4 (Corollary 4.5) provides the following characterization of single 
fault diagnoses: 

Corollary 4.10. {c} is a single fault diagnosis for (SD, COMPONENTS, OBS) iff  C is 
an element o f  every (minimal) conflict set for (SD, COMPONENTS, OBS). 

If our concern is only to compute all single fault diagnoses, we can do so by 
allowing algorithm DIAGNOSE to generate a pruned HS-tree only to level 1 of 
the tree, returning H(n)  for each level-1 node labeled by X/. In fact, the 
following result is a simple consequence of the correctness of algorithm 
DIAGNOSE. 

Theorem 4.11 (Determining all single fault diagnoses from one conflict set). 
Suppose C is a conflict set for  (SD, COMPONENTS, OBS). Then {c} is a diagnosis for 
(SD, COMPONENTS, OBS) iff  c E C and SD I.J OBS [,.J {-3Aa(k) I k ~ COMPONENTS -- 
(c}} is consistent. 

Theorem 4.11 generalizes in the natural way to the case where we have 
several, but not necessarily all, conflict sets. 

Theorem 4.12 (Determining all single fault diagnoses from several conflict 
sets). Suppose for  n >i 1 that C1, C2 , . .  , C~ are conflict sets for (SD, COMPO- 
NENTS, OBS), and that C = 0 in=l C i. Then {c} is a diagnosis for (SD, COMPO- 
NENTS, OBS) i f f  c ~ C and SD I..J OBS [_1 ("qAB(k) I k E COMPONENTS -- (C}} /S c o n -  

s i s t e n t .  
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Proof. ( ~ )  By Corollary 4.10, c E C. The rest follows by Proposition 3.4. 
( ~ )  Since (SD, COMPONENTS, OBS) has a conflict set, then SD U OBS U 

{-TAB(k) I k ~ COMPONENTS} is inconsistent. Since SD U OBS U {~AB(k) [ k E 
COMPONENTS -- {C}} is consistent, then by Proposition 3.4, {c} is a diagnosis for 
(SD, COMPONENTS, OBS). [] 

Theorem 4.12 is a generalization of the candidate generation procedure of 
Davis [4], and provides a formal justification for Davis' procedure. Davis' 
concern was the determination of single fault diagnoses for digital circuits 
represented by constraint networks. His candidate generation procedure com- 
putes some (not necessarily all) conflict sets, intersects these to obtain a set C 
of possible single fault candidates, then for each c E C performs a candidate 
consistency test by suspending (turning off) the constraint modeling c's be- 
haviour. This consistency test via the suspension of c's constraint corresponds 
to the consistency test, called for by Theorem 4.12, of SDUoBsU 
(--lAB(k)] k E COMPONENTS -- {C}}. The exclusion of c from COMPONENTS 
amounts to "turning off" component  c while performing the consistency test. 

5. Measurements 

Suppose that (SD, COMPONENTS, OBS) has more than one diagnosis. Without 
further information about the system, one cannot conjecture a unique diag- 
nosis. One way to obtain further information about a system is to perform 
measurements of some kind e.g. insert a probe into a circuit, or perform a 
laboratory test on a patient. In this section, we study how such measurements 
can affect diagnoses. Specifically, we shall define a measurement MEAS to be an 
additional observation (and therefore a finite set of first-order sentences), and 
we shall consider the following question: What is the relationship between the 
diagnoses for (SD, COMPONENTS, OBS) and (SD, COMPONENTS, OBS U MEAS). 9 

Typically, oBs will be an initial observation of the system (so, COMPONENTS), 
leading to multiple diagnoses, and MEAS will be a measurement (an additional 
observation) of the system taken in an attempt to discriminate among the 
original multiple diagnoses. 

Definition 5.1. A diagnosis A for (SD, COMPONENTS, OBS) predicts I I  (a first- 
order sentence) iff 

SD U OBS U {AB(C) I c ~ A} 

U {--qAB(C) I C E COMPONENTS -- A} ~ H, 

i.e. on the assumption that the components of A are all faulty, and the 
remaining components are all functioning normally, system behaviour H must 
hold. 
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Example 5.2. For the device of Fig. 8 (Example 4.9), diagnosis {M1} predicts 
out(M2) =6  and out(M1)=4; diagnosis {M 2, M3} predicts out(M2)=4 and 
out(M3) = 8. 

Proposition 3.3 immediately provides a simpler version of Definition 5.1. 

Proposition 5.3. A diagnosis A for (SD, COMPONENTS, OBS) predicts H iff 

SO [.J OBS [.J (--lAB(C) I C E COMPONENTS -- A} I== H .  

The following two results are immediate consequences of Definition 2.4. 

Proposition 5.4. I f  no diagnosis for (SD, COMPONENTS, OBS) predicts --11I, then 
(SD, COMPONENTS, OBS U { H } )  has the same diagnoses as (SD, COMPONENTS, OBS). 

In other words, a measurement which disconfirms no diagnosis provides no 
new information. 

Proposition 5.5. 
(1) Every diagnosis for (SD, COMPONENTS, OBS) which predicts II is a diag- 

nosis for (SO, COMPONENTS, OBS [..J {/-/}), i.e. diagnoses are preserved under 
confirming measurements. 

(2) No diagnosis for (SD, COMPONENTS, OBS} which predicts -111 is a diagnosis 
for (SO, COMPONENTS, OBSI,..I {//}), i.e. a measurement rejects the diagnoses 
which it disconfirms. 

A simple consequence of Proposition 5.5 is that whenever each diagnosis for 
(SD, COMPONENTS, OBS) predicts one of H, ~H,  then measuring H retains all 
diagnoses predicting H, and rejects all diagnoses predicting ~H. It is therefore 
tempting to conjecture that whenever every diagnosis predicts H or ~H,  then 
the diagnoses which remain after measuring H are precisely those which 
predicted H i.e. that the diagnoses for (SD, COMPONENTS, oBsU {//}) are 
precisely those for (SD, COMPONENTS, OBS) which predict H. Unfortunately, as 
the next example shows, this conjecture is false. 

Example 5.6. Consider the device of Fig. 8, with the indicated inputs and 
outputs. Recall that this had four diagnoses: {M1}, {Al}, {M2, M3}, 
( A  2, M3}. 

(Ml} predicts out(M2) = 6, 

(A~} predicts out(M2) = 6, 

{M2, M3) predicts out(M2) = 4, 

{M2, A2} predicts out(M2) = 4. 
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Suppose we now measure out(M2) and obtain out(Mz) = 5. All four diagnoses 
predict out(M2) ¢ 5, so that if the above conjecture were correct, this measure- 
ment should reject all four diagnoses, and no new diagnoses should arise. But 
in fact the four old diagnoses are replaced by four new ones: {M~, M 2, M3}, 
{M~, M2, A2}, {M2, M3, A,} ,  {M2, Al ,  A2}. 

Notice that each new diagnosis resulting from the measurement out(M2) = 5 
is a strict superset of some old diagnosis predicting out (M2)~ 5. This is no 
accident, as the following result shows: 

Theorem 5.7. Suppose every diagnosis for (SD, COMPONENTS, OBS) predicts one 
of  17, -nIL Then: 

(1) Every diagnosis for (so, COMPONENTS, OBS) which predicts 17 is a diagnosis 
for (SD, COMPONENTS, OBS I.I / / } ) .  

(2) No diagnosis for (so, COMPONENTS, OBS) which predicts 7 I I  is a diagnosis 
for (SD, COMPONENTS, OBS [_J ( / / } ) .  

(3) Any diagnosis for (so, COMPONENTS, OBS U {H}) which is not a diagnosis 
for (SD, COMPONENTS, OBS) is a strict superset of  some diagnosis for (SD, 
COMPONENTS, OBS) which predicts ~H.  In other words, any new diagnosis 
resulting from the new measurement 17 will be a strict superset of  some old 
diagnosis which predicted -717. 

Proof. Claims (1) and (2) are simply Proposition 5.5. To prove claim (3) 
suppose that A n is a diagnosis satisfying the hypothesis of this claim. Because 
A n is a diagnosis for (SD, COMPONENTS, OBS tO {H}), 

S D U  OBSU { H }  

U {--qAB(C)[ c E COMPONENTS -- gl//} 

is consistent. Therefore 

SD (.) OBS I_J (--lAB(C) I C E COMPONENTS -- Ail} 

is consistent. Let A be a minimal subset of A n such that 

SD I...I OBS [_J {'-qAB(C) ] C E COMPONENTS -- A} 

is consistent. By Proposition 3.4, A is a diagnosis for (SD, COMPONENTS, OBS). 
Since, by the hypothesis of claim (3), A n is not a diagnosis for (so, COMPO- 
NENTS, OBS), A must be a strict subset of An. It remains only to prove that A 
predicts -7H. By hypothesis of the theorem, A predicts one of H, -TH, so 
assume to the contrary that A predicts H, i.e. that 

SD [_.10BS [..J {--7AB(C) ] C • COMPONENTS -- A} ~ / / .  
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Therefore 

SD L.J OBS l_J ( H }  I...I (-lAB(C) I C E COMPONENTS -- A} 

is consistent. But by Proposition 3.4, this together with the fact that A is a 
proper subset of A n implies that A n cannot be a diagnosis for (SD, COMPONENTS, 
OBS U {/-/}), contradiction. [] 

In general, Theorem 5.7 precludes a divide-and-conquer approach to dis- 
criminating among competing diagnoses on the basis of additional system 
measurements. While it is true that measuring H preserves the old diagnoses 
predicting H, and rejects the old diagnoses predicting ~H,  new diagnoses can 
arise. 

Corollary 5.8. Suppose that { ) is not a diagnosis for (SD, COMPONENTS, OBS). 
Then under the assumptions of Theorem 5.7, any new diagnosis arising from the 
new measurement II  will be a multiple fault diagnosis. 

Thus, in the nontrivial case where the system is truly faulty, the new 
diagnoses (if any) resulting from a new measurement will be multiple fault 
diagnoses. This provides the following characterization of the single fault 
diagnoses which survive a new measurement: 

Corollary 5.9. Suppose that ( } is not a diagnosis for (SD, COMPONENT, OBS). 
Then under the assumptions of  Theorem 5.7, the single fault diagnoses for (SD, 
COMPONENTS, OBS k.){H}) are precisely those of (SD, COMPONENTS, OBS) which 
predict H. 

Corollary 5.9 justifies a divide-and-conquer strategy for discriminating 
among competing single fault diagnoses on the basis of system measurements. 

Example 5.10. Consider the device of Fig. 8, with the indicated inputs and 
outputs. Recall that this had two single fault diagnoses: {M1} and {A1}. We 
can discriminate between these single fault diagnoses by measuring out(M1) 
because { M 1 } predicts out(M l) = 4 while { A 1} predicts out(M 1 ) = 6. Suppose 
we measure out(M~) and obtain out(M~)= 6. Then by Corollary 5.9, we now 
know that { A 1} is the only possible single fault diagnosis. Of course, there may 
still be other remaining multiple fault diagnoses, including new multiple fault 
diagnoses. In fact, no new diagnoses arise, and the remaining diagnoses after 
the measurement are: {A1} , (M2, M3} , and {M2, A2}.  

Many interesting problems remain to be explored for a theory of measure- 



86 R. REITER 

ment. Can we characterize situations in which measurements do not lead to 
new diagnoses but simply filter old ones? When new diagnoses do arise as a 
result of system measurements,  can we determine these new diagnoses in a 
reasonable way from the pruned HS-tree already computed in determining the 
old diagnoses? Genesereth [8] describes a method for automatically generating 
certain system measurements. Are there other approaches to this test genera- 
tion problem? 

6. Generalizations and Relationship to Nonmonotonic 
Reasoning 

Thus far our development of a theory of diagnosis has relied upon first-order 
logic as the underlying representation language for system descriptions. A close 
inspection of the preceding definitions, theorems, and proofs reveals that very 
few special features of first-order logic were actually required in developing the 
theory, so that the logical representation language may be generalized. In this 
section, we shall consider such generalizations. We shall also observe that 
diagnostic reasoning is nonmonotonic,  and relate the theory of this paper to 
default logic [17]. 

6.1. Beyond first-order logic 

In order to provide a concrete development of a theory of diagnoses, we have 
been assuming first-order logic with equality as the underlying representation 
language. In actual fact, Definition 2.4 of a diagnosis, the subsequent results of 
Section 3 leading to the algorithm DIAGNOSE of Section 4, and the results of 
Section 5 on measurements require very weak assumptions on the nature of the 
logic used. Specifically, suppose that L is any logic with the following prop- 
erties: 

(1) Its semantics is binary i.e. every sentence of L has value true or false in 
a given structure. 

(2) L has {^ ,  v , -7}  among its logical connectives, and these have their 
usual interpretations. 

Then we can generalize the concept of a system so that a system description 
and its observation can be any set of sentences of L. The definition of a 
diagnosis remains the same in this generalized setting as in Definition 2.4. It is 
a simple matter  to inspect the proofs of all results in Section 3 to see that they 
continue to hold, provided ~ is understood to denote the semantic entailment 
relation for the logic L. The "algori thm" DIAGNOSE of Section 4.3 for comput- 
ing all diagnoses for a system remains the same and is correct for L. Of course, 
for DIAGNOSE really to be an algorithm, we need a sound, complete and 
decidable theorem prover for L at the core of the function TP which DIAGNOSE 
calls. It is also easy to see that our results of Section 4.4 on single fault 
diagnoses remain the same when L is the underlying logic. Finally, inspection 
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of the proofs of Section 5 reveals that all of our results on measurements  
continue to hold for L. 

Since our theory of diagnosis imposes such weak constraints on the system 
representat ion logic, the theory can accomodate  a wide range of diagnostic 
tasks. For example,  t ime varying digital hardware have natural representat ions 
in a temporal  logic [12] and this might form the basis for a diagnostic reasoning 
system for such devices. Similarly, t ime varying physiological propert ies are 
central to certain kinds of medical diagnosis tasks [18]. Database  logic has been 
proposed for representing many forms of databases [9] so that  violation of 
database integrity constraints might profitably be viewed as a diagnostic 
reasoning problem with database logic providing the system description lan- 
guage. 

These examples,  and others like them, require a proper  investigation with 
respect to problems of representat ion and computat ion.  The fact that they all 
conform to a common theory of diagnosis is an encouraging and unifying 
observation.  

6.2. Diagnosis and default logic 5 

As we have seen in Section 5, diagnostic reasoning is nonmonotonic  in the 
sense that it can happen that none of a system's diagnoses survive a new 
observation of that system. In fact, as we now show, there is an intimate 
connection between diagnostic reasoning when the underlying logic is first- 
order  and default logic [17]. 

To show the connection, we consider a system (SD, COMPONENTS) under 
observation OBS, and the corresponding default theory D whose first-order 
axioms are SD U OBS, and whose default rules are 

{:--IAB(C)~ I ¢ C  COMPONENTS) 6 

The following theorem shows that there is a 1-1 correspondence between the 
diagnoses for (SD, COMPONENTS, OBS) and the extensions for the above default 
theory,  and that these extensions are precisely the sentences predicted by the 
corresponding diagnoses. 

Theorem 6.1. Consider a system (SD, COMPONENTS) under observation OBS 
where so and OBS are sets o f  first-order sentences. Then E is an extension for  the 

5 This section assumes that the reader is familiar with the literature on nonmonotonic reasoning 
(e.g, [1]), and specifically with default logic as described in [17]. 

6 In [17] the notation a:Mt8/y was used for default rules.The "M" was an unfortunate choice of 
notation meant to suggest "consistent" although it is in no way a sentential operator. As a piece of 
notation it was entirely spurious and we omit it from this paper. 
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default theory 

OT = - AB(c) 

iff for some diagnosis A for (SD, COMPONENTS, OBS), E = { / / I A  predicts II}.  

Proof. The proof  relies upon the following proposition which follows easily 
from the results of [17]: 

Proposition. Suppose R is a set o f  default rules, each o f  the form : a /a  for a a 
first-order sentence. Then E is an extension for the default theory (R, W )  iff 
E = Th(W U {fl ] :~/fl E D}) 7 where D is a maximal subset o f  R such that 
W U { fl I :fl/fl @ D } is consistent. 

We now proceed with the proof  of the main theorem. 
( ~ )  Suppose E is an extension for DT. By the above proposition, 

where D is a maximal subset of the default rules of DT such that 

SD U OBS U -qAB(C) I ~ ~ D is consistent.  (6.2) 

Let 

Then 

} A = C [CE COMPONENTS and ~AB(C~-~- ~ D . 

} --lAB(C) I ~ ~ D = (~AB(C) ICE COMPONENTS -- A} , (6.3) 

by (6.2), SD U OBS U {TAB(C) ICE COMPONENTS -- A} is consistent. so that 
Moreover,  A is a minimal subset of COMPONENTS with this property because D is 
a maximal subset of the default rules of DT with property (6.2). Hence,  by 
Proposition 3.4, A is a diagnosis for (so, COMPONENTS, OBS). Finally, by (6.1) 
and (6.3), 

E = Th(sD U OBS U {--qAB(C) ICE COMPONENTS -- A}) ,  

so that by Proposition 5.3, E = { H I A  predicts H}.  

7 If S is a set of first-order sentences, Th(S) denotes the logical closure of S. 
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( ~ )  Suppose A is a diagnosis for (SD, COMPONENTS, OBS) and let E = (HI A 
predicts /7}.  By Proposition 5.3, 

E = Th(sD L) OBS 1..) {'-lAB(C) ]C • COMPONENTS -- A } ) .  (6.4) 

Since A is a diagnosis, then by Proposition 3.4 it is a minimal subset of 
COMPONENTS such that 

Let 

SD [..JOBS [..J (--lAB(C) ]C • COMPONENTS -- A} 

is consistent.  

D : {  :-nAB(c)~ I c ~ A } .  

by (6.4), 

• :~AB(C) 

Then (6.3) holds. Hence, 

E = Th(sD t_J oas t..J 

and by (6.5), 

SD [..J OBS (.J /-'lAB(C) ( 
:--lAB(C) D} • 

m o}) 

(6.5) 

is consistent. Finally, D is a maximal subset of the default rules of DT with this 
consistency property since A is a minimal subset of COMPONENTS with property 
(6.5). Hence, by the above proposition, E is an extension for DT. [] 

7. Relationship to Other Research 

The primary influences on this paper have been the work of de Kleer [5] and 
Genesereth [7]. 

De Kleer's research, while restricted to troubleshooting electronic circuits, 
appears to be among the earliest approaches in the literature to diagnosis from 
first principles. In his 1976 paper, de Kleer introduces the important concept of 
a conflict set, a concept which we have appropriated for our diagnostic 
algorithm. De Kleer's LOCAL system provided the diagnostic component for the 
SOPHIE m electronic computer aided instruction system [2]. In a recent paper de 
Kleer and Williams [6] have independently proposed a characterization of 
diagnoses, including multiple fault diagnoses, which corresponds to our 
Theorem 4.4. Their work differs from ours, however, in lacking a formalization 
of their diagnostic theory. On the other hand, de Kleer and Williams go 
beyond our theory of diagnosis by providing a method for computing the 
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probabilities of the different diagnoses that arise in a given setting, and for 
using these probabilities to identify appropriate system measurements to make 
next. 

One of the first uses of logic as a representation language for diagnosis from 
first principles is due to Genesereth [7], who uses first-order logic for represent- 
ing systems, and a resolution style theorem prover for computing candidate 
faults as well as for generating tests to discriminate among competing diag- 
noses. Our work extends and generalizes some of his results in a number of 
ways, the most fundamental of which are: 

(1) Our theory applies equally well to a wide variety of logics, not just 
first-order. 

(2) We provide a formal analysis of multiple fault diagnoses. 
(3) We give an algorithm for computing all diagnoses, including multiple 

fault diagnoses. 
(4) We prove various results about the effects of system measurements on 

diagnoses. 
Davis [4] has proposed an approach to diagnosis from first principles, but 

oriented towards devices simulatable by constraint propogation techniques. 
Moreover, he addresses single fault diagnoses only. Unfortunately, Davis does 
not formalize his approach, so that comparisons between our theory and his 
are difficult to make. Nevertheless, Davis does describe a "Candidate Genera- 
tion Procedure" for computing potential single fault diagnoses. As we remar- 
ked in Section 4.4, our Theorem 4.12 can be interpreted as a formal justifica- 
tion for Davis' procedure. On the other hand, his analysis of bridge faults in 
digital circuits is beyond the capabilities of our theory because our theory 
requires a fixed, a priori enumeration of the system components which might 
fail. 

There are two other approaches to diagnosis from first principles, similar in 
spirit to ours in that they are logically based. One, by David Poole and his 
colleagues [10, 13] has independently observed the connection of diagnostic 
reasoning with default logic. Both references describe how a default logic 
theorem prover can be used to compute diagnoses, but the focus of these 
papers is on mechanisms for such computations, and hence is quite different 
than ours. The other logically based approach to diagnosis is by Ginsberg [8], 
who adopts a logic of counterfactual implication as a foundation for diagnostic 
reasoning. Following Genesereth [7] Ginsberg assumes a first-order representa- 
tion of the system being diagnosed. His departure from Genesereth is to define 
diagnoses in terms of counterfactual consequences of the system observation. 
As an illustration of Ginsberg's theory, consider the full adder of Example 2.2. 
Recall that the diagnoses of this adder under the observation that it outputs 1, 
0 in response to inputs 1,0, 1 are {X1}, {X 2, O1}, {X2, A2}. If we denote by 
SD and OBS the adder's system description and observation, then the following 
formula is a counterfactual consequence of oBs with respect to the theory 
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SD L.I (-lAB(X1) , "qAB(X2) , "-IAB(A 1) , "TAB(A 2) , -TAB(OI)}: 8 

AB(X1) V AB(X2) A AB(O1) V AB(X2) A AB(A2) 

This, of course, represents the above three diagnoses for the adder. Obviously 
there is a close relationship between our consistency based definition of a 
diagnosis, and Ginsberg's counterfactual based definition. In fact, it is a simple 
matter  to show that in the case of first-order logic there is a 1-1 correspondence 
between the diagnoses, in our sense, of (SD, COMPONENTS, OBS), and Ginsberg's 
possible worlds for OBS in SD I..J (-'lAB(C) I ¢ E COMPONENTS), provided all form- 
ulae in so are protected. From this it follows that our two definitions of a 
diagnosis are essentially equivalent in the first-order case. 

7.1. The GSC diagnostic model 

A recent theory of diagnosis is the GSC (generalized set covering) model of 
Reggia, Nau and Wang [15, 16]. This provides a formal model of what they call 
"abductive diagnostic inference" and has been applied to problems of medical 
diagnosis [15]. In this section we describe the Gsc model, show how it may be 
represented within our formalism, and using our formalism derive a characteri- 
zation of its diagnoses which conforms (almost) to that defined by Reggia et al. 
A nice side effect of our logical reconstruction of the Gsc model is the scope for 
generalizing the model which the logical representation provides. 

In the 6sc model,  a diagnostic problem (D, M, C, M +) is defined by four 
sets: 

D- - a  finite set of disorders (e.g. in a medical setting D might represent all 
the known diseases). 

M- -a  finite set of manifestations (e.g. in a medical setting M might represent 
all possible symptoms, laboratory results, etc. that can be caused by diseases in 
D).  

C C_ D × M. The relation C is meant to capture the notion of causation: 
(d, m) E C means " d  can cause m."  

M + C_ M. M ÷ is the set of manifestations which have been observed to occur 
in the current diagnostic setting. 

Within our formalism, we interpret a GSC model 's diagnostic problem 
(D, M, C, M ÷) as follows: 

(1) Define a system (so, D)  whose components are the disorders of D, and 
whose system description so is given by the following: 

(i) For  each disorder d E D, so contains the axiom DISORDER(d). 
(ii) For each m E M, if (d 1, m) . . . . .  (dn, m) are all the elements of C with 

second component  m, then SD contains the axiom 

8 Assuming that all the formulae of SD are protected. See [8] for details. 
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OBSERVED(m) ~ PRESENT(d l) V " ' "  V PRESENT(d n) .  (7.1) 

This says that an observed  manifestat ion m must  be "caused"  by the 

presence of  at least one  of  the disorders d I . . . . .  d,,. 
(iii) SD contains the axiom 

(Vd).DISORDER(d) A -3AB(d) 3 --1PRESENT(d) , 

i.e. normally,  a disorder  is not  present.  
(2) The  observat ion of  the above  system is given by an axiom OBSERVED(m) 

for each m ~ M+. 
This completes  our  logical reconstruct ion of  the GSC diagnostic problem.  We 

consider  next the definition of  a diagnosis (called an explanat ion by Reggia  et 
al.) in the GSC model .  If  (D, M, C, M +) is a diagnostic problem,  then E C_ D is 

a cover of  M + iff for each m E M + there exists d E E such that  (d, m) E C. E is 

a m in imum cardinality cover  9 of  M + iff IEI Ie'l for every cover E '  of  M +. E 

is a minimal  cover  1° of  M + iff no proper  subset of  E is a cover of  M +. 

Accord ing  to Reggia  et al., an explanation for a diagnostic p roblem (D, M, C, 

M +) is defined to be a min imum cardinality cover  for M +. As we shall now 
see, it is the min imum cardinality p roper ty  of  an explanat ion,  as distinct f rom 
the proper ty  of  being minimal with respect  to set inclusion, which will 
distinguish the concept  of  an explanat ion in the c sc  model  f rom the concept  of  
a diagnosis in our  logical reconstruct ion of  the ~sc model .  

Theorem 7.1. Suppose (D, M, C, M +) is a diagnostic problem in the GSC 
model ,  and (so, D,  OBS) is the logical representation o f  this diagnostic problem 
as described above. Then A is a diagnosis for  (so, D,  OBS) i f f  A is a minimal  
cover o f  M +. 

Proof. Suppose M + = { m  1 . . . . .  m~}, so that  all the axioms of  SD of the form 

(7.1) are: 

OBSERVED(m 1 ) ~ PRESENT(d(11)) V ' ' "  V PRESENT(d(n11)) , 

OBSERVED(m k) ~ PRESENT(d(1 k)) V ' ' "  V PRESENT(d~)) . 

It is easy to see that each o f  {d(l 1) d(1)~ {d] k), (k) , ' ' ' ,  nl , . . . . . . . . .  dn~ } is a conflict 

9 Note that what we here call a minimum cardinality cover, Reggia et al. call a minimal cover. 
~0 Not to be confused with what Reggia et al. call a minimal cover. See Footnote 9. 
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set for (SD, D, oas) since clearly, for i = 1 , . . . ,  k, SD U OBS to 
(--lAB(d(1 i)) . . . . .  -1AB(d(~i])} is inconsistent. We shall prove that any minimal 
conflict set for (so, D, oBs) is one of the sets {d~ i), d (0} To that end let K 

• . . , 7 l  i " 

be a minimal conflict set for (so, D, oBs), and suppose on the contrary that K is 
not one of the sets {d(1 i) (i) . . . . .  dni }. Since K is a minimal conflict set and since 
each {d(l/), (i) . . . .  dni } is a conflict set, K cannot be a superset of 
{ d(li), (i) . . . .  dn, }. Hence,  for i =  1 . . . . .  k, each set {d(l i) , . . .  , d(//)} contains an 
element,  say d(1 ° ,  not contained in K. We shall show how to construct a model 
M of SD U OBS U {~gB(d) I d E K}. From this it will follow that K cannot be a 
conflict set for (SD, D, OBs)--a contradiction. 

To construct M, take M U D as its domain. Take DISORDER(d) to be true for 
each d E D, false otherwise. Let OBSERVED(m) be true for each m ~ M*, false 
otherwise. Finally, let Aa(d) and PRESENT(d) both be false for each d ~ K, true 
otherwise. Notice that PRESENT(d~ °)  is true in M for i =  1 . . . . .  k, since 
d~ i) ~ K. It follows that M is a model of SD tO OBS tO {~ga(d)  I d E K}. 

To sum up, we have proved that every set of {{d~ 1) (1) . . . . .  an, } , . . . ,  
{d(1 k) . . . . .  d~)}} is a conflict set for (so, D, OBS) and that every minimal 
conflict set for (SD, D, OBS) is contained in {d(11) (1) , . . . , a n ,  } , . . . ,  
(d(l k) (k) . . . .  , d , ,  }}. 

Now it is simple to prove that zl C_ D is a minimal cover of M + iff A is a 
minimal hitting set for {{d(l I) (1) dnx } {d] k) d(k)}}. Since every 

, . . . ~  , . . . ,  , . . . ,  n k 

member  of this last set is a conflict set for (SD, D, OBS) and since every minimal 
conflict set for (SD, D, OBS) is a member  of this last set, the theorem now 
follows by Corollary 4.5. [] 

Theorem 7.1 allows us to compare our concept of a diagnosis for the 6sc 
model with the concept of an explanation of Reggia et al. For us, a diagnosis is 
a minimal cover of M*, while for Reggia et al. it is a minimum Cardinality 
cover of M +. Now every minimum cardinality cover of M + is also a minimal 
cover of M+, but not conversely. Thus every explanation as defined by Reggia 
et al. will be a diagnosis according to our theory, but not conversely. In fact, it 
is easy to see that the explanations for a GSC diagnostic problem are precisely 
the minimum cardinality diagnoses for our logical version of the diagnostic 
problem. This suggests that the concept of an explanation as a minimum 
cardinality cover of M + is inappropriate,  that the appropriate concept should 
be based upon minimal covers as we have done. 

In general, a theory of diagnosis could be based on minimal cardinality 
principles, as in the GSC model,  but in our opinion such a theory would lead to 
unintuitive results. For example, in the case of the full adder, it would correctly 
yield the single fault diagnosis {X 1 }, but overlook the two intuitively plausible 
double faults {X2, A2} and {X 2, O1}. Recently, Reggia and his colleagues 
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have i n d e p e n d e n t l y  a d o p t e d  this po in t  of  view, and the i r  cur ren t  inves t iga t ions  
of  the  c s c  m o d e l  and  its ex tens ions  are  based  upon  min ima l  covers  of  M +, 
r a the r  than  min ima l  ca rd ina l i ty  covers  [14]. 

8. Summary 

We summar i ze  wha t  we t ake  to be the  main  con t r ibu t ions  of  this p a p e r  to a 
theo ry  of  d iagnos is  f rom first pr inciples :  

(1) The  def ini t ion of  the  concep t  of  a d iagnosis ,  inc luding  mul t ip le  fault  
d iagnoses ,  ba sed  upon  the  p r e se rva t i on  of  the  cons is tency  of  the  sys tem 
desc r ip t ion  and its obse rva t ion .  

(2)  The  explici t  use of  the  AB p red i ca t e  for  r ep resen t ing  faults  and  poss ib le  
re la t ionsh ips  be tween  faults .  

(3) The  abi l i ty  of  the  theo ry  to a c c o m m o d a t e  a wide var ie ty  of  logics. 
(4) The  a lgor i thm OIACNOSE for compu t ing  all d iagnoses .  
(5)  Cha rac t e r i za t ions  of  single fault  d iagnoses  and the i r  c ompu ta t i on .  
(6)  Var ious  resul ts  abou t  the  affects of  sys tem m e a s u r e m e n t s  on d iagnoses .  
(7)  The  n o n m o n o t o n i c  cha rac t e r  of  d iagnos is ,  specif ical ly its r e l a t ionsh ip  to 

defaul t  logic. 
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