Attribute-proving for Smart Cards

progress made over the past two years

ir. Pim Vullers
p.vullers@cs.ru.nl

Institute for Computing and Information Sciences – Digital Security
Radboud University Nijmegen

5th October 2011
Outline

Self-blindable certificates

U-Prove

Idemix

Conclusion
Self-blindable certificates (Verheul, Radboud University)

- Main ingredient: Attribute certificate
 - Single attribute
 - Issuer’s signature
 - Prover’s public key
- Issuance
 - Issuer learns the public key
 - Strongly identifying
- Attribute proving
 - Fresh blinding of certificate and public key for each session
 - Untraceable

Performance
Keep smart card implementation in mind while designing.
Self-blindable certificates (Verheul, Radboud University)

Results

- Good performance:
 - Batina et al. (2010): 1.5 seconds (for 1 attribute)
 - Hoepman, Jacobs and Vullers (2010): 0.6 seconds (for 1)
- Anonymous credentials on smart cards are becoming possible

Issues

- This protocol proves only a single attribute (efficiency)
- Attributes do not have values
- Revocation is not supported by the current protocol
- Major bottleneck is the limited access to the cryptographic coprocessor of the Java Card smart card
Outline

Self-blindable certificates

U-Prove

Idemix

Conclusion
U-Prove (Brands, Microsoft)

- Main ingredient: U-Prove token
 - Multiple attributes
 - Token’s public key
 - Issuer’s signature
- Blind issuance
 - Issuer does not learn the public key, only the attribute values
 - Issuer unlinkability
- Selective disclosure
 - Prover can decide which (properties of) attributes to show
 - Data minimisation

Traceability

Public key and signature can be used as a pseudonym.
U-Prove (Brands, Microsoft)

Results

- Previous Java Card implementation: Tews and Jacobs (2009)
 - 5 seconds (for 2 attributes), 8 seconds (for 4)
- Previous MULTOS implementation:
 - 2.9 seconds (for 2 out of 5 attributes), 9 seconds (issuing 5)
- Efficient MULTOS impl.: Mostowski and Vullers (2011)
 - 0.5 seconds (for 2), 0.8 seconds (for 5)
- Compatible with U-Prove SDK (only smart card limitations)
U-Prove (Brands, Microsoft)

Figure: U-Prove token issuance times (●: computation, □: overhead).
Figure: Attribute proving times (碇: computation, 颌: overhead).
U-Prove (Brands, Microsoft)

Results

- Previous Java Card implementation: Tews and Jacobs (2009)
 - 5 seconds (for 2 attributes), 8 seconds (for 4)
- Efficient MULTOS impl.: Mostowski and Vullers (2011)
 - 0.5 seconds (for 2), 0.8 seconds (for 5)
- Compatible with U-Prove SDK (only smart card limitations)

Issues

- The token serves as a pseudonym (multi-show linkability)
- Microsoft pursues a different smart card approach
- Advanced features (derived attributes) are costly
- Our MULTOS cards have little RAM and limited cryptography
Outline

Self-blindable certificates

U-Prove

Idemix

Conclusion
Idemix (Camenisch & Lysyanskaya, IBM Research Zürich)

Components
- Pseudonyms
- Camenisch-Lysyanskaya signatures
 - blind signature scheme
 - self-blindable signatures
- Zero-knowledge proofs

Features
- Both issuer and multi-show unlinkability
- Efficient attributes encoding

Complexity
The many zero-knowledge proofs make it hard to understand and lead to a high computational complexity.
Results

- Direct Anonymous Attestation
 - Commercial use of anonymous credentials
 - Anonymous authentication of a TPM
 - No attributes
- Java Card implementations (of DAA):
 - Bichsel et al. (2009): 7.5 seconds
 - Sterckx et al. (2009): 3 seconds

Issues

- Complexity (steep learning curve)
- Only smart card implementations for DAA
- Memory management seems to be the biggest problem
Outline

Self-blindable certificates

U-Prove

Idemix

Conclusion
Conclusion

- Anonymous credentials on smart cards are becoming possible
- Our results are in line with previous work
- Major bottleneck:
 - Java Cards: limited access to the cryptographic coprocessor
 - MULTOS: little RAM and limited cryptography (RSA > 1024, ECC) support

Challenges for future research

- Implementing Idemix on MULTOS
- Study of other schemes (German ID card, French scheme)
- Dealing with smart card platform shortcomings
- Adoption (ongoing project with Novay)