Attributes on Smart Cards

Efficient Selective Disclosure with Idemix

Pim Vullers Gergely Alpár

Institute for Computing and Information Sciences – Digital Security
Radboud University Nijmegen

ICT.OPEN 2012: Sentinels - Security and Privacy
22nd October 2012
Privacy issues

- Smart cards are “Big Brother’s little helper” (Stefan Brands)
- With OV-chipcard / Oyster / Charlie / . . . , you tell who you are when you get on a bus, metro, train, . . .
- Identity-based solutions violate their users’ privacy (and increase identity-fraud risk)

Attribute-based credentials

- Attribute-based authorisation: only provide the information which the system needs
- Example of attribute-based credentials (electronic wietpas):
 - card only says “I’m a Dutch citizen, and my age is above 18”
Outline

Introduction

Idemix Credentials

Results

IRMA – I Reveal My Attributes
The ideas

- Attributes
- Selective disclosure / Data minimalisation
- Zero-knowledge / Randomisation

Idemix credential

- Attributes
- Master secret
- Issuer’s signature
Uses of a Credential

1. Issuance
 - *Blind issuing* of a credential
 - Issuer unlinkability

2. Presentation
 - *Selective disclosure* of the credential’s attributes
 - Randomisation of the Issuer’s signature

3. Verification
 - *Zero-knowledge proof* using the Issuer’s public key
 - Multi-show unlinkability
Uses of a Credential

1 Issuance
 - Blind issuing of a credential
 - Issuer unlinkability

2 Presentation
 - Selective disclosure of the credential’s attributes
 - Randomisation of the Issuer’s signature

3 Verification
 - Zero-knowledge proof using the Issuer’s public key
 - Multi-show unlinkability
Uses of a Credential

1. **Issuance**
 - *Blind issuing* of a credential
 - Issuer unlinkability

2. **Presentation**
 - *Selective disclosure* of the credential’s attributes
 - Randomisation of the Issuer’s signature

3. **Verification**
 - *Zero-knowledge proof* using the Issuer’s public key
 - Multi-show unlinkability
Design of the System

- CardService translates Idemix commands and data types into APDU commands for smart card communication.
- MULTOS implementation, limited by smart card characteristics, is 90-95% compatible with Idemix Library.
Outline

Introduction

Idemix Credentials

Results

IRMA – I Reveal My Attributes
Related Work on Smart Cards

Related work

- Bichsel et al. (IBM Research, 2009), ± 7.5 sec
 Camenisch & Lysyanskaya anonymous credential system
- Sterckx et al. (KU Leuven, 2009), ± 3 sec
 Direct anonymous attestation

Our previous results

- Batina et al. (RU Nijmegen, 2010), ± 1.5 sec
 Self-blindable certificates of Verheul
- Hoepman et al. (RU Nijmegen, 2010), ± 0.6 sec
 Optimised self-blindable certificates
- Mostowski and Vullers (RU, 2011), ± 0.5 - 0.9 sec
 U-Prove selective disclosure (2-5 attributes)
Presentation Performance

Figure: Attribute proving times (■: computation, □: overhead).
Benefits:

- Low-level access to the cryptographic co-processor
- Proper cryptographic/mathematical API
- Very flexible memory management

Drawbacks

- Low-level language causes a steep learning curve.
 - Tool-support could help (auto-complete, API documentation)
- Limited amount of RAM available
Conclusion

- **Efficient MULTOS implementation** of the Idemix technology
- **Multi-show unlinkability** of the credentials on the smart card
- Attribute-base credentials on smart cards are possible
- Major improvement over IBM’s DAA implementation

Next steps:
- Studying other technologies
- Practicing with other platforms
- Making anonymous credentials *usable*
Attributes on smart cards in practice

- Pilot project with Kerckhoffs students
- Uses Idemix smart card implementation
- Verification using NFC-enabled Android devices
- Issuing and verification using web interface

Project partners

Radboud University Nijmegen
Questions