
Learning Driving Behavior by
Timed Syntactic Pattern Recognition

Sicco Verwer

Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001

Leuven, Belgium
sicco.verwer@cs.kuleuven.be

Mathijs de Weerdt and Cees Witteveen

Delft University of Technology
Mekelweg 4, 2628 CD
Delft, the Netherlands

m.m.deweerdt@tudelft.nl, c.witteveen@tudelft.nl

Abstract

We advocate the use of an explicit time representa-
tion in syntactic pattern recognition because it can
result in more succinct models and easier learning
problems. We apply this approach to the real-world
problem of learning models for the driving behav-
ior of truck drivers. We discretize the values of
onboard sensors into simple events. Instead of the
common syntactic pattern recognition approach of
sampling the signal values at a fixed rate, we model
the time constraints using timed models. We learn
these models using the RTI+ algorithm from gram-
matical inference, and show how to use compu-
tational mechanics and a form of semi-supervised
classification to construct a real-time automaton
classifier for driving behavior. Promising results
are shown using this new approach.

1 Introduction

Processes often contain constraints on the timing of events
(such as deadlines). When learning a model for such a
process using for instance syntactic pattern recognition [Fu,
1974] or hidden Markov models (HMMs) [Rabiner, 1989],
these time constraints are modeled implicitly by sampling the
signal values at a fixed rate, resulting in a blowup of both
models and events. Using explicit state duration models such
as hidden semi-Markov models (HSMMs) [Yu, 2010] avoids
this blowup but does not model the time constraints directly.
Recently, the idea of learning real-time automata has been
proposed [Verwer et al., 2010]. Since probabilistic automata
can model only a strict subset of the distributions of HMMs,
these real-time automata are less powerful than traditional
HSMMs. However, the advantage of such models is that
they do allow their structure including time constraints to
be learned efficiently [Verwer et al., 2009]. To the best of
our knowledge, learning real-time automata has never actu-
ally been applied to real data. By learning these models for
driving behavior, we show in this paper that this results in
useful models for use in practical applications. In addition,
we develop the necessary preprocessing and postprocessing
methods. Our approach can be considered a first attempt at
timed syntactic pattern recognition.

The data at our disposal consists of onboard sensor mea-
surements that have been collected from truck round-trips.
By applying a simple discretization method, we obtain se-
quences of timed events. The behavior that is displayed in
these sequences is unknown. From this data, we want to learn
a model that we can use to monitor the driving behavior in
new data, i.e., to use it as a classifier. Our approach is to first
learn a timed model from the unlabeled sequences using the
RTI+ algorithm [Verwer et al., 2010]. Subsequently, we cre-
ate a small number of labeled examples by displaying some
typical behaviors during a test lap. We use these to label some
states of the learned model. The labels of these states are used
to classify new data. This is a novel method to perform classi-
fication when many unlabeled and few labeled examples are
available; the setting of semi-supervised classification [Zhu
and Goldberg, 2009]. This setting occurs in many practical
applications because it is often too time-consuming to assign
labels to the observed examples.

In addition to there being mostly unlabeled data, there is
an additional restrictive property in our application domain:
the process under observation is continuous, i.e., it never
stops producing events. Consequently, we need to be able to
learn a model from a single but very long unlabeled event se-
quence. We use the theory of computational mechanics [Shal-
izi and Crutchfield, 2001] to show why sampling random sub-
sequences from this single example provides sufficient infor-
mation to learn a useful model, the so-called causal structure
of the process. This model can be learned by RTI+ by pro-
viding the random subsequences as input.

We apply our approach to a test case of detecting bad driv-
ing behavior when accelerating after a complete stop. After
learning a timed model and labeling some of the states using
23 labeled accelerations, we constructed a simple decision
rule based on the number of times the labeled states are vis-
ited. We also implemented a simple decision rule based on
expert knowledge. These two decision rules agree in 79%
of all acceleration cases in the original unlabeled data. This
surprisingly accurate result serves as a proof-of-concept for
timed syntactic pattern recognition.

This paper is structured as follows. We first describe the
background of our application, its goals, and why we choose
timed syntactic pattern recognition in order to achieve these
goals in Section 2. Afterwards, in Section 3.1, we briefly
introduce the RTI+ algorithm, and show how to use it in order

1529

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



1 43
slowdown speedup, 

[0, 50]
constant, 
[0, 20]

2
constant

slowdown, 
[0, 300]

5

Figure 1: The harmonica driving behavior modeled as a
DRTA. The intervals on the state transitions are bounds on
the amount of time (in tenths of a second) the behavior can
remain in the current state directly before firing the transition.

to learn a classifier for driving behavior. Our results using this
approach on truck acceleration are discussed in Section 4. We
end this paper with a general discussion and some ideas for
future research in Section 5.

2 Motivation

We are interested in methods that learn models for the be-
havior of a system (process). A well-known model for char-
acterizing systems is the deterministic finite state automaton
(DFA, see, e.g. [Sipser, 1997]). An advantage of an automa-
ton model is that it is easy to interpret. In contrast, many
other well-known models that are commonly used to learn
the behavior of a system are quite difficult to interpret, for
example neural networks or support vector machines, see,
e.g., [Bishop, 2006]. Since a DFA is a language model, its
learning (or identification) problem has been well studied in
the grammatical inference field [de la Higuera, 2005]. Hence,
we would like to apply an established method in order to learn
a DFA from observations of the system. However, when ob-
serving a system there often is more information than just the
sequence of symbols: the time at which these symbols occur
is also available. A straightforward way to make use of this
timed information is to sample the timed data. For instance,
a symbol that occurs 3 seconds after the previous event can
be modeled as 3 consecutive event symbols. This technique
is commonly used when applying syntactic pattern recogni-
tion [Fu, 1974] or hidden Markov models [Rabiner, 1989] to
signal processing. However, since this technique models time
implicitly, i.e., using additional states, it can lead to an expo-
nential blowup (requiring n states instead of log(n) bits) of
both the input data and the resulting model.

We use of a different method that uses the time information
directly in order to produce a timed model. A common model
for real-time systems is the timed automaton (TA) [Alur and
Dill, 1994]. Unfortunately, there exists no learning algorithm
for TAs in general. We therefore use a restricted type of TA
known as a deterministic real-time-automata (DRTAs) [Dima,
2001] for which an efficient learning algorithm exists [Ver-
wer et al., 2010]. A DRTA contains constraints on the time
between two consecutive events. Using these constraints, the
language of a DRTA does not only depend on the types of
events occurring, but also on their time values relative to pre-
vious event occurrences. We clarify this using an example
from our application domain of constructing models for truck
driver behavior:

Example 1 Figure 1 shows an example DRTA that models a

specific driving behavior known as ‘harmonica driving’. This
often occurs when a truck is driving at a somewhat higher
speed than the vehicle directly in front of it (no time con-
straint). The driver slows down a bit (no time constraint),
waits until there is enough distance between him and the ve-
hicle in front (takes at most 50 seconds), and then speeds
up again and closes in on the vehicle (for at most 20 sec-
onds). This whole process often repeats itself a couple of
times (within 5 minutes) before the driver finally adjusts the
speed of the truck to match the vehicle in front of him. The
result of this whole process is unnecessary fuel consumption.

The example clearly shows the importance of time in-
formation for modeling driving behavior. Time constraints
model the dependence on this time information explicitly, i.e.,
using numbers. Because this uses a binary representation
of time, it can result in exponentially more compact mod-
els than an implicit representation. Consequently, also the
time, space, and data required to learn DRTAs can be expo-
nentially smaller than the time, space, and data required to
learn DFAs [Verwer et al., 2009]. This efficiency argument
is our main reason for using DRTA models. In the next sec-
tion, we briefly describe the algorithm we use to learn these
DRTA models, and show how to use it in the practical setting
of learning driving behavior.

3 Learning DRTAs

The RTI+ algorithm for learning DRTAs [Verwer et al., 2010]
is a kind of model selection technique. It requires as in-
put a set S+ of timed strings (time-stamped event sequences)
that have been generated by a process (system), and returns
a DRTA model M that is consistent with S+. Intuitively, a
model M is consistent if all timed strings S that reach the
same state in M do not have significantly different futures
in S+. In other words, M is a DRTA that satisfies a Markov
property. This property is tested using likelihood ratio tests on
S+. The goal of RTI+ is to find the smallest consistent model
M∗. Unfortunately, finding M∗ is very difficult (NP-hard).
RTI+ is a greedy method that finds good solutions efficiently.

We apply RTI+ to the problem of automatically construct-
ing model that can detect different driving behaviors from
sensor measurements. As can be seen in Example 1, DRTAs
provide succinct and insightful models for such behavior. We
now describe the challenges that need to be overcome in order
to learn such models based on data from onboard sensors.

3.1 Data discretization

We first need to discretize the sensor measurements into basic
events (symbols). The data we obtained from the trucks were
15 complete round trips. One round trip typically takes two
full days. These trips were driven on different dates, with
different weather conditions, and with different drivers. We
focus our attention on three sensor values that were recorded
during these trips: speed, engine rotations per minute (RPM),
and fuel usage. These measurements were recorded at a rate
of one per second. Figure 2 shows one hour of these sensor
measurements.

Ideally, we would like to transform these measurements
into driving actions/events such as: speed-ups, slow-downs,

1530



Figure 2: The values of three sensors installed on trucks. The
first graph shows the fuel rate in liters per hour. The second
shows the vehicle speed in kilometers per hour. The third
shows the engine speed in rotations per minute.

f

e

d

c

b

a

(e,0) (d,80)(c,15)(b,12) (c,150) (d,20)(e,24)

Figure 3: The discretization routine used by our algorithm.
Whenever the sensor value exceeds a predetermined bound,
plus or minus a small additional region (in this case an ad-
ditional 2 km/h), an event is generated corresponding to the
region the value has entered. The time value of the event is
the time that has elapsed since the previous event.

a turn left/right, a bump in the road, etc. However, since find-
ing patterns in the sensor values that are indicative of these
kinds of events is far from trivial (see, e.g., [Roddick and
Spiliopoulou, 2002]), we discretize the data in a much sim-
pler way. We divide the range of a sensor value into different
regions, and whenever the value enters a region, we treat it as
the occurrence of an event associated with that region. The
time value of the occurrence is the time that has elapsed since
the previous event occurrence. We use expert knowledge to
create an intuitive division of the sensor values into such re-
gions. The discretization process for the speed sensor is de-
picted in Figure 3. The additional region of 2km/h ensures
that the event occurrence does not change constantly when
the sensor value is near a region boundary.

Using the discretization procedure, we obtain from every
round-trip of a truck, and for every sensor, a very long se-
quence of timed symbols. RTI+ requires a data set S+ of
preferably many not too long timed strings. We transform the
discretized data to such a set S+ using theory from computa-
tional mechanics.

3.2 Selecting subsequences

Computational mechanics [Shalizi and Crutchfield, 2001]
models a process as an bi-infinite sequence of random vari-
ables (observations). The goal of computational mechanics
is to predict the (infinite) future of a process based only on

1 b

a

2

a [0, 5]
b

a [5, 10]

1 b

a [0, 5]

2

a [0, 5]
b

3

a [5, 10]

a

b
a [5, 10]

Figure 4: A deterministic real-time automaton A (left) and its
causal states A′ (right). States 1 and 2 of the original model
correspond respectively to states 3 and 2 of the causal model.

a finite observation sequence, i.e., a single long sequence of
events. Learning a predictive model requires a set of pos-
itive example strings S+. This set is created by selecting
(random or all) subsequences of the observed sequence. In
order to generalize (learn) over such arbitrary subsequences,
we have to make the assumption that the process is stationary.
This assumption seems restrictive, but it is necessary since
the subsequences in S+ are allowed to start and stop at arbi-
trary points in time. Consequently, important information for
a non-stationary process (regarding event occurrences before
the starting event) is unavailable. Although driving behavior
is not a typical example of a stationary process, this assump-
tion does allow us to learn useful models.

The subsequences in S+ can be used to learn what are
called the causal states in computational mechanics. Essen-
tially, the causal states form a DRTA that represents behav-
ior (a probability distribution over timed strings) identical to
a non-deterministic version of the original DRTA. This non-
deterministic version has an identical structure as the origi-
nal DRTA, but has the complete set of states as possible start
states. We illustrate this concept for the problem of learning
a DRTA using an example.

Example 2 In Figure 4, a DRTA is depicted along with its
causal states. The causal states also form a DRTA. The
causal start state corresponds to all (or any) of the states of
the original DRTA. In other words, we do not know whether
the original DRTA is in state 1 or in state 2. The occurrences
of events can be used to determine the state of the original
DRTA. For example, the occurrence of a b event ensures that
the next state is state 2, since all transitions with b as label
have state 2 as their target. Similarly, the occurrence of an
a event with a time value greater than 5 ensures that the next
state is state 1. When an a event occurs with a time value less
than 4, we do not know whether 1 or 2 is the next state. Thus,
in this case, the target state in the causal DRTA is the state
that corresponds to both state 1 and 2, i.e., the start state.

Since the causal states are the deterministic equivalent of
a non-deterministic automaton, it is possible that the blow-
up in the number of states is exponential. This is the price
we have to pay for learning the causal states instead of the
original automaton. We have no choice, however, because the
original DRTA can only be learned from timed strings that are
guaranteed to start in the start state.

Combining all the data we have available, we obtain for
the speed sensor about 50, 000 symbol occurrences in to-

1531



Many unlabeled
examples S+

few unlabeled
examples (S+, S-)

PDRTA Predictor PDRTA Classifier

Compute runs of 
S+ and S-

Figure 5: Constructing a classifier based on a PDRTA. We
use the runs of a few labeled examples to assign labels to the
states of the PDRTA. The result is a classifier.

tal. For the engine and fuel sensor we obtain about twice
this amount. From this data, we took 10, 000 random subse-
quences of length 20. We now explain how we use this data
in order to construct a classifier for driving behavior.

3.3 Learning a DRTA classifier

The result of running RTI+ on an unlabeled data set is a prob-
abilistic DRTA (PDRTA). This automaton does not contain
any final states and hence can initially not be used to classify
new data. However, the PDRTA model does describe the be-
havior that is displayed in the unlabeled data set. If learned
correctly, two timed strings only reach the same states if their
possible futures are identically distributed. Intuitively, these
two timed strings display the same behavior, and hence their
labels should also be the same. Consequently, we can use the
label of a single labeled string to label a state of the PDRTA.
This process is depicted in Figure 5.

Since RTI+ learns the causal states instead of the actual
states of the PDRTA, the states that are visited by good be-
havior b and bad behavior b′ can overlap. After some events
however, different behaviors will display different future dis-
tributions and hence the visited states will be different. Let
Qb and Qb′ denote the sets of states that are reached by the
timed strings that display behavior b and b′ respectively. We
use these sets of states to build our classifier as follows:

• assign the label b to the states in Qb \Qb′ , i.e., the states
reached by b but not by b′;

• assign the label b′ to the states in Qb′ \Qb, i.e., the states
reached by b′ but not by b.

When a new timed string reaches a state labeled with b, we
conclude that it is displaying behavior b, and not b′. In ad-
dition to classifying new timed strings, the labels assigned
to states can also be used to analyze the old unlabeled data
set, for instance, in order to determine how often good or bad
driving occurred in the past.

In this way, RTI+ learns one classifier for every sensor.
However, since we model the causal states of the process, it
is unclear what part of a new timed string to use in order to
determine the classification. We could use the whole timed
string, i.e., simply compute the complete run and determine
the label at every index. But this only works if the learned
model is completely correct. When we make some small error
during learning, the run of the new timed string can diverge
from its actual run and from that point on many classifications
will be incorrect. Thus, the run of a shorter sequence will be

size AIC AIC single state model
speed 2, 305 871, 550 1, 472, 840
fuel 960 842, 536 1, 102, 270
engine 1, 009 697, 190 1, 076, 750

Figure 6: The sizes and AIC scores of the PDRTAs (lower is
better) learned by our algorithm for every sensor.

more correct since it is based on more data (larger future dis-
tributions) during learning, and the run of a longer sequence
will be less correct but better at distinguishing the different
types of behavior. We decided to use all sequences of length
1 to 10 and combine their classifications using a simple deci-
sion rule based on the amount of reached good and bad states:

value(i, j) =

⎧⎨
⎩
1 if label(s, i, j) = good

−1 if label(s, i, j) = bad

0 otherwise

score(i) = score(i− 1) +
∑

0≤j≤10

value(i, j)

where label(s, i, j) is a function that returns the label of the
subsequence from index i− j to index i of a new sequence s,
and score(0) = 0. By summing these score values over all
sensors we obtain a classifier that can be used to determine the
type of driving behavior at every index i of a new sequence
of driving events.

4 Results

We applied the RTI+ algorithm to the discretized data and
learned one PDRTA model for each of the three sensors. The
performance of each of these models is measured using their
sizes and their Akaike information criterion (AIC) [Akaike,
1974] values. These measure a trade-off between model size
and likelihood (lower is better). The sizes and AIC scores
of each of these models and a trivial single state model are
displayed in Figure 6. From the AIC scores, we can conclude
that the models perform a lot better than the trivial single state
model. Other than that, the AIC scores by themselves do not
say much about the quality of the learned PDRTA models.
However, the sizes of the learned models allow us to draw
some conclusions regarding this quality.

Unfortunately, these sizes are quite large. From results us-
ing RTI+ described in [Verwer et al., 2010], we know that
it is capable of correctly inferring a PDRTA with about size
40 from a data set of size 2, 000. From the truck data, we
obtained PDRTAs that are much bigger. Hence, it is very
unlikely that the learned PDRTAs are completely correct. Al-
though we did learn these PDRTAs using 10, 000 instead of
2, 000 examples, this increase in data does not explain the
large size of the learned models. The first 50 states of the
PDRTAs (in distance from the start state) however are learned
using a lot of data. Because of cycles in the transitions of the
PDRTAs, most of these states are reached by around 5, 000
timed strings. Since 2, 000 timed strings is sufficient to cor-
rectly learn the start state of a size 40 PDRTA, these first states
are very likely to be correct. We therefore use these first 50
states of the PDRTAs as classifiers.

1532



accelerating too fast normal acceleration
(a, 42)(b, 80)(c, 12)(d, 10)(c, 7) (a, 10)(b, 14)(c, 21)(b, 42)
(a, 13)(b, 65)(c, 6)(d, 8) (a, 11)(b, 34)(c, 13)(b, 18)
(a, 6)(b, 39)(c, 10)(d, 10) (a, 8)(b, 10)(c, 14)(b, 45)
(a, 7)(b, 15)(c, 8)(d, 7) (a, 25)(b, 5)(c, 18)(b, 27)
(a, 7)(b, 2)(c, 7)(d, 7) (a, 11)(b, 6)(c, 20)(b, 14)
(c, 22)(b, 4)(c, 12)(d, 7)(c, 8) (a, 12)(b, 18)(c, 15)(b, 20)
(a, 7)(b, 11)(c, 6)(d, 7)(c, 16) (a, 8)(b, 35)(c, 24)(b, 20)
(a, 8)(b, 29)(c, 7)(d, 8)(c, 8) (a, 12)(b, 32)(c, 18)(d, 13)
(a, 11)(b, 28)(c, 7)(b, 12) (a, 7)(b, 62)(c, 21)(b, 28)
(a, 10)(b, 320)(c, 12)(d, 7)(c, 34) (a, 12)(b, 8)(c, 17)
(a, 10)(b, 8)(c, 8)(d, 8)(c, 31) (a, 10)(b, 27)(c, 19)(d, 16)
(a, 8)(b, 24)(c, 9)(d, 8)(c, 12)

Figure 7: Events obtained from the speed sensor during a
test-lap with both too quick and normal accelerations.

4.1 The labeled examples

For the detection of truck driver behavior, we tested our ap-
proach on a simple type of behavior that results in unnec-
essary fuel usage: accelerating too quickly. This behavior
serves as an example of how to construct a classifier out of
the learned PDRTAs using only a few labeled examples. Us-
ing the same techniques, the learned PDRTAs can be used to
classify many other interesting driving behaviors.

In order to classify accelerations, we require some labeled
examples. The labeled examples were obtained by driving a
short test lap with many traffic lights. After a full stop, the
truck driver accelerated too fast about half of the time, and
the other half he accelerated normally. We labeled the timed
events that occurred during 11/2 minute from the start of the
acceleration, Figure 7 shows these events for the speed sensor.
We used the same time span in order to obtain examples for
the fuel and engine sensors.

All but one of the timed strings in Figure 7 start with an
a symbol. This means that the truck came to a full stop (or
at least a speed less than 5 km/hour). In one timed string the
initial symbol is a c symbol. In this case, the driver actually
did not slow down completely, but accelerated too fast from
driving around 20 km/hour (the next event is a b event). In
every timed string, the second symbol is a b symbol, which
indicates a speed-up of the truck. The time until this symbol
occurs is the number of seconds the truck remained stationary
at the traffic light. The third symbol is a c event, indicating a
further speed-up. It should be possible to use the time value
of this event in order to classify the two different acceleration
behaviors: a small time value indicates a fast acceleration, a
large value indicates a slow acceleration. This can be clearly
seen in the examples. The next event of the examples is either
a b or a d event, depending on whether the speed of the truck
exceeded 50 km/hour or not. A small number combined with
a d event indicates that the driver is accelerating too quickly.
A b event indicates that the driver is slowing down again, for
instance in order to stop for the next traffic light.

Having collected these labeled examples, all we need to
do is to run the learned PDRTAs on these examples, and dis-
cover which states are reached when accelerating too quickly,
and which when accelerating normally. Figure 8 shows these

state4

a [0,320] 11

state2

c [0,320] 1

state1

b [0,80] 10

state23

b [142,320] 1

state13

b [0,5] 1

state16

d [0,9] 3

state3

d [10,31] 2

c [8,72] 5

state27

c [0,7] 5

state75

b [6,33] 1

state755

d [0,7] 3

state154

d [8,9] 2

c [0,16] 1

state57

c [0,29] 1

state232

c [30,34] 1

state7

c [0,84] 1

state117

c [0,18] 1

state243

d [0,11] 1

c [0,320] 2 d [0,320] 1

state161

c [0,16] 1

state376

c [34,38] 1

normal too fast

state4

a [0,62] 11

state1

b [0,62] 11

state2

c [8,62] 11

state5

b [7,62] 8

state3

d [10,31] 2

Figure 8: Parts of the learned PDRTA for the speed sensor
that are reached by the timed strings from Figure 7. A labels,
time constraint, and the number of reaching strings are shown
for each transition.

states and the traversed transitions for the speed sensor ex-
amples. We used these PDRTA parts to identify some states
that are only reached when the driver accelerates too quickly
and some when he accelerates normally. In Figure 8, state 5
is reached by 8 of the 11 normal examples, and none of the
12 fast examples. An example of a state that is only reached
by the fast examples is state 27; 6 of the fast examples reach
this state. Note that the transition to this state has c as symbol
and [0, 7] as clock guard. Thus, it is only reached by timed
strings that contain a c event within 7 seconds after the first
b. A c event with more than 7 seconds goes to state 2, which
is also the state that is reached by all the normal accelera-
tion examples. Thus, the learned PDRTA model for the speed
sensor does distinguish between the two behaviors of accel-
erating too fast and accelerating normally, exactly in the way
we expected based on the timed strings of Figure 7.

This shows that the models learned by RTI+ can be used to
distinguish different types of behavior, even if we beforehand
do not know what behavior to distinguish (the PDRTAs are
learned from unlabeled data). In this way, timed syntactic
pattern recognition can be used to give more insight into the
different kinds of behavior of a system/process.

For all PDRTAs, we identified and labeled all states that
were reached by at least 4 example strings in one case, and
by none in the other case. Thus, for the speed sensor state 27
and 16 are labeled in the too-fast speed PDRTA, and state 5 is
labeled in the normal speed PDRTA. We did the same for the
fuel sensor and engine sensor PDRTAs.

4.2 Classifier performance

We tested the obtained classifiers on the historical data that
we have available. This is the unlabeled data that we initially
used to learn the PDRTAs. From this data, we extracted all

1533



acceleration instances and used this data to first determine
the correlation of our classifiers with the truck speedup. The
truck speedup is the speed increase between two consecutive
measurements of the speed sensor. In our tests, the correla-
tion between these speedups and our classifiers turns out to
be high only for the fuel sensor. This is surprising since only
4 of the approximately 200 states in this classifier are labeled.

We would like to determine the quality of the fuel classi-
fier. Unfortunately, we do not exactly know which of the un-
labeled accelerations are too fast, and which are not. Instead
of determining the exact values, we therefore implemented
a simple method that is currently used by domain experts to
determine a driver’s profile to approximate these values:

• Over 30 seconds, count the number of times that the ac-
celeration was normal n (less than 0.8m/s2) and the num-
ber of times it was too quick q (greater than 1.2m/s2).

• If the n is less or equal to 25, and q is greater or equal
to 1, then label the acceleration as too quick; label it as
normal otherwise.

The two numbers n and q give a good overview of a driver’s
profile. The fuel classifier labels an acceleration as too quick
if its score is greater or equal to 1. We compare the labels
assigned by the fuel classifier and this simple decision rule:

decision rule
quick normal

quick 920 61classifier normal 262 289

The labels given by these two rules match in 79% of all cases.
This is rather high considering we only used 23 example
strings to label only 4 states of the fuel PDRTA.

5 Discussion

We applied timed syntactic pattern recognition techniques to
the problem of detecting driver behavior. Although our tech-
niques are still preliminary, the result that labeling only 4
states in a learned PDRTA is sufficient to obtain an adequate
classifier clearly shows the high potential of our techniques.
It would be interesting to investigate whether other driving
patterns can also be distinguished using these PDRTAs.

Unfortunately, since the learned PDRTA models are quite
large, it is difficult to discover different driving behaviors by
examining the models. We aim to use tools from process min-
ing [van der Aalst and Weijters, 2005] for this purpose. Pro-
cess mining tools contain many routines and visualizations
that help to make large process models insightful.

Interesting directions for future work are the construction
of more sophisticated discretization routines, better decision
rules and more specialized automaton models. In addition,
our techniques are also useful for learning other models. It
would for instance be interesting to see whether our semi-
supervised method also achieves good results with learning
algorithms for non-timed automata such as the state-merging
algorithms for DFAs (see, e.g., [de la Higuera, 2005]). Fur-
thermore, it would be interesting to see whether our tech-
niques can also be applied to methods for learning types of
hidden semi-Markov models (see, e.g., [Yu, 2010]) where

the transition probabilities depend on the state durations by
means of time constraints.

References

[Akaike, 1974] Hirotsugu Akaike. A new look at the statisti-
cal model identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

[Alur and Dill, 1994] Rajeev Alur and David L. Dill. A the-
ory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[Bishop, 2006] Christopher M. Bishop. Pattern Recognition
and Machine Learning. Springer, 2006.

[de la Higuera, 2005] Colin de la Higuera. A bibliographi-
cal study of grammatical inference. Pattern Recognition,
38(9):1332–1348, 2005.

[Dima, 2001] Catalin Dima. Real-time automata. Journal
of Automata, Languages and Combinatorics, 6(1):2–23,
2001.

[Fu, 1974] King Sun Fu. Syntactic Methods in Pattern
Recognition. Academic Press, 1974.

[Rabiner, 1989] Lawrence R. Rabiner. A tutorial on hidden
Markov models and selected applications in speech recog-
nition. In Proceedings of the IEEE, volume 77, pages 257–
286, 1989.

[Roddick and Spiliopoulou, 2002] John F. Roddick and
Myra Spiliopoulou. A survey of temporal knowledge
discovery paradigms and methods. IEEE Transactions on
Knowledge and Data Engineering, 14(4):750–767, 2002.

[Shalizi and Crutchfield, 2001] Cosma Rohilla Shalizi and
James P. Crutchfield. Computational mechanics: pattern
and prediction, structure and simplicity. Journal of statis-
tical physics, 104(3-4):817–879, 2001.

[Sipser, 1997] Michael Sipser. Introduction to the Theory of
Computation. PWS Publishing, 1997.

[van der Aalst and Weijters, 2005] Wil M.P. van der Aalst
and A.J.M.M. (Ton) Weijters. Process mining. In Process-
Aware Information Systems: Bridging People and Soft-
ware through Process Technology, pages 235–255. Wiley
& Sons, 2005.

[Verwer et al., 2009] Sicco Verwer, Mathijs de Weerdt, and
Cees Witteveen. One-clock deterministic timed automata
are efficiently identifiable in the limit. In LATA, volume
5457 of LNCS, pages 740–751. Springer, 2009.

[Verwer et al., 2010] Sicco Verwer, Mathijs de Weerdt, and
Cees Witteveen. A likelihood-ratio test for identifying
probabilistic deterministic real-time automata from posi-
tive data. In ICGI, volume 6339 of LNCS, pages 203–216.
Springer, 2010.

[Yu, 2010] Shun-Zheng Yu. Hidden semi-markov models.
Artificial Intelligence, 174(2):215 – 243, 2010.

[Zhu and Goldberg, 2009] Xiaojin Zhu and Andrew B.
Goldberg. Introduction to semi-supervised learning. Syn-
thesis Lectures on Artificial Intelligence and Machine
Learning, 3(1):1–130, 2009.

1534




