An algorithm for learning real-time automata

Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen
Overview

- Detecting driving behavior
- Automata
- Learning an automaton
- Real-time automata
- An algorithm for learning real-time automata
- Results
- Conclusions
Truck driving behavior

- Required is a system that detects driving behavior from sensor data
- This system will be used to give real-time feedback to the driver
- However, there is not enough expert knowledge to construct one from
- It is possible to gather loads of sensor data from trucks
An automaton model for driving behavior

- It is beneficial if the system determines the behavior using discrete events:
 - Discrete events are easy to interpret
- A finite state automaton is used:
 - An automaton is interpretable and powerful
- The intuitive idea: a good driver speaks a ‘language’ different from the ‘language’ of a bad driver
Automata

- A finite set of states
- A finite set of symbols
- A finite set of state transitions, each labeled with a symbol
- A Boolean output value

- Used to determine whether a string (of discrete events) is an element of a regular language
Learning an automaton

• The input is a finite input sample S:
 • $\{(\text{true, abab}), (\text{false, aaabab}), \ldots\}$

• The output is an automaton such that:
 • It is consistent with S
 • It has the least number of states among all possible automata consistent with S
State merging

• Construct an augmented prefix tree acceptor:
 • a tree automaton accepting only the positive examples from the input sample and rejecting the negative
• Merge states of the automaton into one until no more merges are possible:
 • Two states q and q' can be merged if the data at q is consistent with the data at q'
• Optionally backtrack or make use some other search mechanism
Augmented prefix tree acceptor
Merging a state
Red blue framework
Evidence driven state merging

- Evidence driven state merging currently is a well-known algorithm for identifying DFAs
- A merge is performed if:
 - It is consistent
 - It has highest score amongst all possible merges
- The evidence score is:
 - $\#$ positive states merged with positive states + $\#$ negative states merged with negative states
- No backtracking is performed
Real-time automata

- A state transition can depend on the time delay d between two consecutive events:
 - state transitions optionally contain a guard: $d \in [t, t']$
 - a transition can fire only if its guard is satisfied
- In normal timed automata there can be a guard between any two events
Harmonica behavior

1. constant
2. slowdown
3. speedup, [0, 50]
4. constant, [0, 20]
5.

slowdown, [0, 300]
Learning a real-time automaton

• The input is a finite timed input sample S:
 • $\{(\text{true}, (a,1.0)(b,3.4)..), (\text{false}, (a,0.2)(a,0.5)..).. \}$

• The output is a real-time automaton such that:
 • It is consistent with S
 • It has the least number of transitions among all possible automata consistent with S
Learning a real-time automaton

- Construct a timed augmented prefix tree acceptor
- Merge states of the automaton
- Split transitions of the automaton into two:
 - $[t, t'] \rightarrow [t, t''], [t'' + 1, t']$
- Optionally backtrack or make use some other search mechanism
Prefix tree delay automaton
Splitting a transition
Timed evidence

• A tail is the suffix of an example starting at a blue node:
 • $(a, 1)(b, 2)(a, 2)...(a, 1)(a, 3)(b, 5)$
• The probability that two tails end up in the same state is determined by how ‘close’ their time values are
• For each tail we divide the EDSM score by the distance from its closest tail
Experiments

- Data is generated randomly from randomly generated real-time automata with:
 - 2, 4, 8, 16, 32 states
 - 1/2, 1, and 2 times #states of split points
 - 10000 different possibly time values
- Inputs: 50, 500, 1000, 2000, 5000, and 10000 samples
- We compared with a red blue state merging algorithm on the same data, sampled at a fixed rate: (a,300) → aaa
Results - 500 samples

probability of correct classification

0 2 4 6 8 10 12 14
problem number (increasing in size exponentially)

timed
sampled 100
sampled 1000
Results - 10000 samples

The graph shows the probability of correct classification for different problem numbers, with problem size increasing exponentially. There are three lines, representing 'timed', 'sampled 100', and 'sampled 1000'. The probability decreases as the problem number increases, with the 'sampled 1000' line showing the lowest probability.
Conclusions