One-clock deterministic
timed automata are efficiently
identifiable in the limit

Sicco Verwer, Mathijs de Weerdt, Cees Witteveen
LATA 2009

]
| TU Delft

Monday, April 6, 2009



Overview

* Deterministic timed automata (DTAs)

* Why learn DTAs!?

* Efficient identification in the limit

* DTAs are not efficiently identifiable

* Learning DTAs with a single clock efficiently

e Conclusions and future work
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accepts: (a, 1)(a, 2)(a, 3)(b, 4) rejects: (a, I)(a, 2)(a, 1)(b, 2)
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rejects: (a, t)(a, t')(b, t”) for any ¢, t’, t”
because x is reset before y in such a path
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DTASs

* A deterministic timed automaton (DTA):

- A deterministic finite state automaton (DFA)
- Aset of clocks X
- A clock guard (constraint) g for every transition d

- A set of clock resets R for every transition d
* Timed properties:

- All clocks increase their values synchronously
- A clock value can be reset to 0

- A transition can fire if its clock guard is satisfied
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Why learn DTASs!?

e DTAs:

- Use an explicit time representation (using numbers)
- Are intuitive models for many real-time systems

- Are used to model and verify reactive systems

* |n practice it is often difficult to construct DTAs by
hand, but data is easy to obtain:

-  We want to identify them from data
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Why learn DTASs!?

* Any timed system can also be represented using an
implicit time representation, using DFAs or HMMs

- Exponential blowup of the models and the data
required for learning

- Inefficient in the size of the timed data and the timed
model

* We want to learn DTAs directly from timed data

- Is it possible to do so efficiently?

]
8 TU Delft

Monday, April 6, 2009



Applications

* Learning truck driver behavior
* |dentifying process models
* |nferring models for ship movement

* Model based testing

- Anywhere where representing time explicitly results
in a large reduction in model size
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Overview

* Efficient identification in the limit
* DTAs are not efficiently identifiable
* Learning DTAs with a single clock efficiently

e Conclusions and future work
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|dentification in the limit

* |dentification in the limit views learning of languages
and models as a continuous process:

- Data is observed

- This data is used to modify the current model

* |dentification is successful if from some point on, the
model does not change anymore, and if it is correct

* |dentification is efficient if this point can occur after
observing a polynomial amount of data, and if the
model is computed using a polynomial time algorithm
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Efficient Ildentification

* A language class C is efficiently identifiable in the limit
if:

- there exists a polynomial time algorithm that can
identify any language L from C

- this algorithm is guaranteed to identify the correct

language L: when the input data contains a polynomial
characteristic set:

- a subset of size polynomial in the size of the smallest
representation (automaton) A such that L(A) = L;
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Polynomial Distinguishability

e |[f Cis efficiently identifiable in the limit (from
polynomial time and data), then an automaton class

C, for C is polynomially distinguishable

* A class of automata C, is polynomially distinguishable
if:

- for any two automata A and A’ in C,, there exists a
string in the symmetric difference of L(A) and L(A’) of

size polynomial in |A| + |A]
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D TAs are not pol. dist.

C
y < |, resety

N
@ a>@ b>

reset X X < |,resety

This DTA requires a timed string of exponential
length in order to end in state 4
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D TAs are not pol. dist.

C
y < |, resety

N
@ a>@ b>

reset X X < |,resety

accepts only (a, t)(b, t')(c, ti)...(c, tm)(d, ) where:
all £, t7, ¢, . tm < | and D t|, ..., tm = 2",
hence, it has to hold that:m = 2"
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D TAs are not pol. dist.

C
y < |, resety

N
@ a>@ b>

reset X X < |,resety

We cannot polynomially bound the size of the shortest
string that distinguishes these DTAs (for different n)
from a DTA accepting the empty language
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2-DTAs are not pol. dist.

C
y < |, resety

.
O—C—

reset X X < |,resety

These DTAs only require 2 clocks!
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Overview

* Learning DTAs with a single clock efficiently

e Conclusions and future work
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|-DTAs

e An |-DTA is a DTA with one clock x

* The DTAs we used to prove the non-polynomial
distinguishability of DTAs require at least two clocks

e |-DTAs are polynomially distinguishable! (ICGI 2008)

* Are they efficiently identifiable?
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rejects: (a, t)(a, t')(b, t”) for any ¢, t’, t”
because x is greater than 5
the first time it enters state 3
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Learning |-DTAs

* Based on RPNI, an algorithm for learning DFA

* Learn I-DTA one transition <q,q’, a, r, g> at a time:

- The source state q
ne target state q’
ne transition label a

ne cock reset r

-
-
-
-

ne clock guard g
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Learning Example

a
O<x=<3 a
reset 10<X <
\ reset

REENO)

S+ 2 {(2,4)(a,6); (2,5)(b,6); (b,3)(2,2); (2,4)(a, 1)(a,3); (2,4)(2,2)(2,2)(b,3))
S. 2 {(2,3)(2,10); (2,4)(2,2)(2,2); (2,4)(2,3)(2,2)(b,3); (2,5)(2,3))
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Learning Example

a
O<sx<3 a
reset 10sx <

reset

\ 4S
RESNO)

Choose the source state and transition label:
smallest number first and alphabetic order

|dentify a transition for state 2, with label a
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Learning Example

c<x<9
a
O<x<3 a
reset 10 < X < ©

reset

\ 4 <X
EESNO)

Choose the maximum upper bound for g, in this case 9
Use the data set to determine the smallest consistent lower bound ¢

g=c=<xx<9
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Learning Example

c<x<9
a
O<x<3 a
reset 10 <X <
reset

N
EETNE©)

The smallest reachable lower bound is 4
4<c<9
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Learning Example

c<x<9

S+ 2 {(a,4)(a,1)(a,3); (2,4)(a,2)(a,2)(b,3)}
S- 2 1(24)(2,2)(a,2); (3,4)(a,3)(2,2)(b,3); (3,5)(a,3);
will potentially use the transition
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Learning Example

c<x<9

S+ 2 {(3,4)(3,1)(2,3); (2,4)(2,2)(2,2)(b,3)}
S- 2 {(a,4)(a:2)(2,2); (2,4)(a,3)(2,2)(b,3); (2,5)(a,3)}

ce{456,7,8,9}
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Learning Example

c<x<9

S+ 2 {(a,4)(a,1)(a,3); (3,4)(a,2)(a,2)(b,3)}
S. 2 {(a,4)(3,2)(a,2); (3,4)(a,3)(a,2)(b,3); (3,5)(a,3)}
Inconsistency
C € {4, 5, 6, 7, 8, 9}
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Learning Example

c<x<9

S+ 2 {(2,4)(2,2)(2,2)(b,3))
S- 2 {(a,4)(a:2)(2,2); (2,4)(a,3)(2,2)(b,3); (2,5)(a,3)}

ce{6,7,8,9}
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Learning Example

a
6<x<9
a
O<x<3 a
reset 10 <X <

reset

N
RESNO)
S+ 2 {(2,4)(2,2)(2,2)(b,3))
S- 2 {(a,4)(a:2)(2,2); (2,4)(a,3)(2,2)(b,3); (2,5)(a,3)}

no inconsistency
ce{6,7,8,9} »c=6
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Learning Example

a
6b<x<9
a
O<x<3 a
reset 10<sX<
reset

\ 4 <X
EESNO)

The identifiled guardisg=6 < x < 9
if the clock is not reset

Perform the same algorithm for identifying g if the clock is reset

31
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Learning Example

c<x<9
reset

a
10sx <>
reset

S+ 2 {(3,4)(3,1)(2,3); (2,4)(2,2)(2,2)(b,3)}
S- 2 {(a,4)(a:2)(2,2); (2,4)(a,3)(2,2)(b,3); (2,5)(a,3)}

ce{456,7,8,9}
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Learning Example

c<x<9
reset

a
10sx <>
reset

S+ 2 {(a,4)(a,1)(a,3); (2,4)(2,2)(a,2)(b,3)}
S. 2 {(a,4)(a,2)(a,2); (2,4)(a,3)(a,2)(b,3); (3,5)(a,3)}
inconsistency if the clock is reset
C € {4, 5, 6, 7, 8, 9}

]
) TU Delft

Monday, April 6, 2009



Learning Example

7<x<9
reset
a
O<x=<3 a
reset 10<X <
\ reset
RESNO)

S+ 2 {}
S- 2 1(24)(2,3)(a,2)(b,3); (2.5)(2,3)}

no inconsistency if the clock is reset
ce{7,89 2c=7
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\ 4 <X
EESNO)

Learning Example

a
6b<x=<9
a
O<x=<3 a
reset 10<Xx <o
reset

The identified guardisg=7 <x <9
if the clock is reset

Choose the smallest lower bound:
g = 6 < x < 9 and the clock is not reset

35
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Learning Example

a
6<x<9
a
O<x<3 a
reset 1I0<Xx<s»

reset

N 4 <
REENO)

Choose the first consistent target state
(identical to RPNI)
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Learning Example

7<x<9
reset
O<x<3
reset 10<X<w
J reset
4<x<oo

S+ 2 {(3,4)(3,6); (2,5)(b,6); (b,3)(2,2); (2,4)(a, 1)(a,3); (2,4)(2,2)(2,2)(b,3)}
S. 2 {(2,3)(2,10); (2,4)(2,2)(2,2); (2,4)(2,3)(2,2)(b,3); (2,5)(a,3)}

no inconsistency if @ = |
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Learning Example

7<x<9
reset
d
O<x<3
reset 10 <X <
J reset
4<x<w
We identify:
<g=2,g=Il,s=ar=false,g=6 < x < 9>
and iterate
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Learning |-DTAs

* |dentify transitions in a fixed order

e Use data to determine the smallest consistent clock
guard and clock reset

* Use data to determine the first consistent target
state, like RPNI

e |terate until no new transitions can be identified

]
§ TU Delft

Monday, April 6, 2009



Properties

* The algorithm is polynomial time because:

- ldentifying a single transition takes polynomial time

- Every transition is fired by at least one string
* |dentifying a |-DTA requires polynomial data because:

- Inconsistent pairs exist for every incorrect decision
- |-DTAs are polynomially distinguishable, hence:

- The inconsistent pairs are of polynomial length

- Reaching all possible behaviors of a |-DTA requires a
polynomial number of transitions
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Learning |-DTAs

e Theorem:

|-DTAs are efficiently identifiable in the limit
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Conclusions

DTAs are an intuitive representation for real-time
systems

They are more compact (efficient) than DFA or
HMM representations of the same systems

Unfortunately, DTAs can in general not be identified
efficiently

|-DTAs are efficiently identifiable in the limit, and still
a lot more compact than DFAs or HMMs
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Future work

Find classes of DTAs with multiple clocks that are
polynomially distinguishable

Determine whether DTA learning algorithms exist
that identify DTAs efficiently in the size of the
smallest |-DTA representation

See whether this algorithm and the theorems are
useful in other settings, such as model checking or
system testing

Write an evidence driven variation of this algorithm
and test it on real data
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