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Overview

• Deterministic timed automata (DTAs)

• Why learn DTAs?

• Efficient identification in the limit

• DTAs are not efficiently identifiable

• Learning DTAs with a single clock efficiently

• Conclusions and future work
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DTAs
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1 2 3

a
reset x

a
reset y 

b
x ! 4 ∧ y " 5

4

a
reset x 

b
reset x 
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DTAs

4

accepts: (a, 1)(a, 2)(a, 3)(b, 4) rejects: (a, 1)(a, 2)(a, 1)(b, 2)

1 2 3

a
reset x

a
reset y 

b
x ! 4 ∧ y " 5

4

a
reset x 

b
reset x 
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DTAs

5

rejects: (a, t)(a, t’)(b, t’’) for any t, t’, t’’
because x is reset before y in such a path

1 2 3

a
reset x

a
reset y 

b
x ! 4 ∧ y " 5

4

a
reset x 

b
reset x 
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DTAs
• A deterministic timed automaton (DTA):

- A deterministic finite state automaton (DFA)

- A set of clocks X

- A clock guard (constraint) g for every transition d

- A set of clock resets R for every transition d

• Timed properties:

- All clocks increase their values synchronously

- A clock value can be reset to 0

- A transition can fire if its clock guard is satisfied
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Why learn DTAs?

• DTAs:

- Use an explicit time representation (using numbers)

- Are intuitive models for many real-time systems

- Are used to model and verify reactive systems

• In practice it is often difficult to construct DTAs by 
hand, but data is easy to obtain:

- We want to identify them from data
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Why learn DTAs?

• Any timed system can also be represented using an 
implicit time representation, using DFAs or HMMs

- Exponential blowup of the models and the data 
required for learning

- Inefficient in the size of the timed data and the timed 
model

• We want to learn DTAs directly from timed data

- Is it possible to do so efficiently?
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Applications

• Learning truck driver behavior

• Identifying process models

• Inferring models for ship movement

• Model based testing

• ...

- Anywhere where representing time explicitly results 
in a large reduction in model size

9

Monday, April 6, 2009



Overview

• Deterministic timed automata (DTAs)

• Why learn DTAs?

• Efficient identification in the limit

• DTAs are not efficiently identifiable

• Learning DTAs with a single clock efficiently

• Conclusions and future work
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Identification in the limit

• Identification in the limit views learning of languages 
and models as a continuous process:

- Data is observed

- This data is used to modify the current model

• Identification is successful if from some point on, the 
model does not change anymore, and if it is correct

• Identification is efficient if this point can occur after 
observing a polynomial amount of data, and if the 
model is computed using a polynomial time algorithm
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Efficient Identification 

• A language class C is efficiently identifiable in the limit 
if:

- there exists a polynomial time algorithm that can 
identify any language L from C

- this algorithm is guaranteed to identify the correct 
language Lt when the input data contains a polynomial 
characteristic set:

- a subset of size polynomial in the size of the smallest 
representation (automaton) A such that L(A) = Lt
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Polynomial Distinguishability

• If C is efficiently identifiable in the limit (from 
polynomial time and data), then an automaton class 
Ca for C is polynomially distinguishable 

• A class of automata Ca is polynomially distinguishable 
if:

- for any two automata A and A’ in Ca, there exists a 
string in the symmetric difference of L(A) and L(A’) of 
size polynomial in |A| + |A’|

13

Monday, April 6, 2009



DTAs are not pol. dist.

14

1

4

3
b

x ! 1, reset y

d

x "2
n 

! y ! 1
2

a
reset x

c
y ! 1, reset y 

4

This DTA requires a timed string of exponential 
length in order to end in state 4
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DTAs are not pol. dist.

15

1

4

3
b

x ! 1, reset y

d

x "2
n 

! y ! 1
2

a
reset x

c
y ! 1, reset y 

4

accepts only (a, t)(b, t’)(c, t1)...(c, tm)(d, t’’) where:
all t’, t’’, t1, ..., tm ≤ 1 and ∑ t1, ..., tm ≥ 2n,

hence, it has to hold that: m ≥ 2n
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DTAs are not pol. dist.

16

1

4

3
b

x ! 1, reset y

d

x "2
n 

! y ! 1
2

a
reset x

c
y ! 1, reset y 

4

We cannot polynomially bound the size of the shortest 
string that distinguishes these DTAs (for different n) 

from a DTA accepting the empty language
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2-DTAs are not pol. dist.
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1

4

3
b

x ! 1, reset y

d

x "2
n 

! y ! 1
2

a
reset x

c
y ! 1, reset y 

4

These DTAs only require 2 clocks!
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Overview

• Deterministic timed automata (DTAs)

• Why learn DTAs?

• Efficient identification in the limit

• DTAs are not efficiently identifiable

• Learning DTAs with a single clock efficiently

• Conclusions and future work
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1-DTAs

• An 1-DTA is a DTA with one clock x

• The DTAs we used to prove the non-polynomial 
distinguishability of DTAs require at least two clocks

• 1-DTAs are polynomially distinguishable! (ICGI 2008)

• Are they efficiently identifiable?
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1-DTAs

20

1 2 3

a

reset

a

x ! 5 

b

x " 2
4

a

reset

b

reset 

rejects: (a, t)(a, t’)(b, t’’) for any t, t’, t’’
because x is greater than 5

the first time it enters state 3
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Learning 1-DTAs

• Based on RPNI, an algorithm for learning DFA

• Learn 1-DTA one transition <q, q’, a, r, g> at a time:

- The source state q

- The target state q’

- The transition label a

- The cock reset r

- The clock guard g
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Learning Example

22

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

S+ ⊇ {(a,4)(a,6); (a,5)(b,6); (b,3)(a,2); (a,4)(a,1)(a,3); (a,4)(a,2)(a,2)(b,3)}
S- ⊇ {(a,3)(a,10); (a,4)(a,2)(a,2); (a,4)(a,3)(a,2)(b,3); (a,5)(a,3)}
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Learning Example

23

Choose the source state and transition label:
 smallest number first and alphabetic order

Identify a transition for state 2, with label a

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a
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1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

c ! x ! 9

Learning Example
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Choose the maximum upper bound for g, in this case 9
Use the data set to determine the smallest consistent lower bound c

g = c ≤ x ≤ 9
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Learning Example

25

The smallest reachable lower bound is 4
4 ≤ c ≤ 9

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

c ! x ! 9
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Learning Example
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S+ ⊇ {(a,4)(a,1)(a,3); (a,4)(a,2)(a,2)(b,3)}
S- ⊇ {(a,4)(a,2)(a,2); (a,4)(a,3)(a,2)(b,3); (a,5)(a,3)}

will potentially use the transition

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

c ! x ! 9
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Learning Example

27

S+ ⊇ {(a,4)(a,1)(a,3); (a,4)(a,2)(a,2)(b,3)}
S- ⊇ {(a,4)(a,2)(a,2); (a,4)(a,3)(a,2)(b,3); (a,5)(a,3)}

c ∊ {4, 5, 6, 7, 8, 9}

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

c ! x ! 9
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Learning Example

28

S+ ⊇ {(a,4)(a,1)(a,3); (a,4)(a,2)(a,2)(b,3)}
S- ⊇ {(a,4)(a,2)(a,2); (a,4)(a,3)(a,2)(b,3); (a,5)(a,3)}

inconsistency
c ∊ {4, 5, 6, 7, 8, 9}

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

c ! x ! 9
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Learning Example

29

S+ ⊇ {(a,4)(a,2)(a,2)(b,3)}
S- ⊇ {(a,4)(a,2)(a,2); (a,4)(a,3)(a,2)(b,3); (a,5)(a,3)}

c ∊ {6, 7, 8, 9}

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

c ! x ! 9
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1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

6 ! x ! 9

Learning Example

30

S+ ⊇ {(a,4)(a,2)(a,2)(b,3)}
S- ⊇ {(a,4)(a,2)(a,2); (a,4)(a,3)(a,2)(b,3); (a,5)(a,3)}

no inconsistency
c ∊ {6, 7, 8, 9} ➝ c = 6
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Learning Example

31

The identified guard is g = 6 ≤ x ≤ 9
if the clock is not reset

Perform the same algorithm for identifying g if the clock is reset

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

6 ! x ! 9
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1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

c ! x ! 9

reset

Learning Example

32

S+ ⊇ {(a,4)(a,1)(a,3); (a,4)(a,2)(a,2)(b,3)}
S- ⊇ {(a,4)(a,2)(a,2); (a,4)(a,3)(a,2)(b,3); (a,5)(a,3)}

c ∊ {4, 5, 6, 7, 8, 9}
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Learning Example

33

S+ ⊇ {(a,4)(a,1)(a,3); (a,4)(a,2)(a,2)(b,3)}
S- ⊇ {(a,4)(a,2)(a,2); (a,4)(a,3)(a,2)(b,3); (a,5)(a,3)}

inconsistency if the clock is reset
c ∊ {4, 5, 6, 7, 8, 9}

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

c ! x ! 9

reset
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1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

7 ! x ! 9

reset

Learning Example

34

S+ ⊇ {}
S- ⊇ {(a,4)(a,3)(a,2)(b,3); (a,5)(a,3)}

no inconsistency if the clock is reset 
c ∊ { 7, 8, 9} ➝ c = 7
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Learning Example

35

The identified guard is g = 7 ≤ x ≤ 9
if the clock is reset

Choose the smallest lower bound:
g = 6 ≤ x ≤ 9 and the clock is not reset

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

6 ! x ! 9
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Learning Example

36

Choose the first consistent target state
(identical to RPNI)

1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

6 ! x ! 9
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1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

7 ! x ! 9

reset

Learning Example

37

S+ ⊇ {(a,4)(a,6); (a,5)(b,6); (b,3)(a,2); (a,4)(a,1)(a,3); (a,4)(a,2)(a,2)(b,3)}
S- ⊇ {(a,3)(a,10); (a,4)(a,2)(a,2); (a,4)(a,3)(a,2)(b,3); (a,5)(a,3)}

no inconsistency if q’ = 1
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1 3

2
a

10 ! x ! "

reseta

4 ! x ! "

3

a

0 ! x ! 3

reset

b

0 ! x ! "

a

7 ! x ! 9

reset

Learning Example

38

We identify:
<q = 2, q’ = 1, s = a, r = false, g = 6 ≤ x ≤ 9>

and iterate
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Learning 1-DTAs

• Identify transitions in a fixed order

• Use data to determine the smallest consistent clock 
guard and clock reset

• Use data to determine the first consistent target 
state, like RPNI

• Iterate until no new transitions can be identified

39
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Properties
• The algorithm is polynomial time because:

- Identifying a single transition takes polynomial time

- Every transition is fired by at least one string

• Identifying a 1-DTA requires polynomial data because:

- Inconsistent pairs exist for every incorrect decision

- 1-DTAs are polynomially distinguishable, hence:

- The inconsistent pairs are of polynomial length

- Reaching all possible behaviors of a 1-DTA requires a 
polynomial number of transitions
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Learning 1-DTAs

• Theorem:

- 1-DTAs are efficiently identifiable in the limit
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Conclusions

• DTAs are an intuitive representation for real-time 
systems

• They are more compact (efficient) than DFA or 
HMM representations of the same systems

• Unfortunately, DTAs can in general not be identified 
efficiently

• 1-DTAs are efficiently identifiable in the limit, and still 
a lot more compact than DFAs or HMMs
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Future work
• Find classes of DTAs with multiple clocks that are 

polynomially distinguishable

• Determine whether DTA learning algorithms exist 
that identify DTAs efficiently in the size of the 
smallest 1-DTA representation

• See whether this algorithm and the theorems are 
useful in other settings, such as model checking or 
system testing

• Write an evidence driven variation of this algorithm 
and test it on real data
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