Verified Implementation of Exact Real Arithmetic in Type Theory

Bas Spitters
EU STREP-FET ForMath

Dec 9th 2013
Computable Analysis and Rigorous Numerics
Rigorous Numerics through Computable Analysis

Constructive analysis as an internal language for TTE
Type theory as a language for constructive mathematics
Type theory as a framework for computer proofs

Computer verified implementation of exact analysis
Dependent type theory

- Dependent type theory makes Bishop’s notion of operation/construction precise.
- Gives a functional programming language like haskell, SML, OCaml with very expressive type system.
- Framework for proofs
- Implementations: Coq, agda, epigram, Idris, . . .
- Extensional DTT is an abstract language for TTE via realizability. Locally Cartesian closed category, ΠW-pretopos.
Picard-Lindelöf Theorem

Consider the initial value problem

\[y'(x) = v(x, y(x)), \quad y(x_0) = y_0 \]

where

- \(v : [x_0 - a, x_0 + a] \times [y_0 - K, y_0 + K] \rightarrow \mathbb{R} \)
- \(v \) is continuous
- \(v \) is Lipschitz continuous in \(y \):
 \[|v(x, y) - v(x, y')| \leq L|y - y'| \]
 for some \(L > 0 \)
- \(|v(x, y)| \leq M \)
- \(aL < 1 \)
- \(aM \leq K \)

Such problem has a unique solution on \([x_0 - a, x_0 + a]\).
Proof Idea

\[y'(x) = v(x, y(x)), \quad y(x_0) = y_0 \]

is equivalent to

\[y(x) = y(x_0) + \int_{x_0}^{x} v(t, y(t)) \, dt \]

Define

\[(T f)(x) = y_0 + \int_{x_0}^{x} F(t, f(t)) \, dt \]

\[f_0(x) = y_0 \]

\[f_{n+1} = T f_n \]

Under the assumptions, \(T \) is a contraction on \(C([x_0 - a, x_0 + a], [y_0 - K, y_0 + K]) \).

By the Banach fixpoint theorem, \(T \) has a fixpoint \(f \) and \(f_n \rightarrow f \).

Formalization: Makarov, S - The Picard Algorithm for Ordinary Differential Equations in Coq
Metric Spaces

Let \((X, d)\) where \(d : X \to X \to \mathbb{R}\) be a metric space.

Let \(Brxy\) denote \(d(x, y) \leq r\).

A function \(f : \mathbb{Q}^+ \to X\) is called \textbf{regular} (Strongly Cauchy) if
\[\forall \varepsilon_1 \varepsilon_2 : \mathbb{Q}^+, B(\varepsilon_1 + \varepsilon_2)(f\varepsilon_1)(f\varepsilon_2).\]

The \textit{completion} \(\mathcal{C} X\) of \(X\) is the set of regular functions.

Let \(X\) and \(Y\) be metric spaces. A function \(f : X \to Y\) is called \textbf{uniformly continuous} with modulus \(\mu\) if
\[\forall \varepsilon : \mathbb{Q}^+ \forall x_1 x_2 : X, B(\mu\varepsilon)x_1x_2 \to B\varepsilon(fx_1)(fx_2).\]

For \(x_1, x_2 : \mathcal{C} X\), the metric on the completion \(B_{\mathcal{C} X}\) is defined as
\[B_{\mathcal{C} X}\varepsilon x_1x_2 := \forall \varepsilon_1 \varepsilon_2 : \mathbb{Q}^+, B_X(\varepsilon_1 + \varepsilon + \varepsilon_2)(x_1\varepsilon_1)(x_2\varepsilon_2).\]

Metric spaces with uniformly continuous functions form a category.

Completion forms a monad in the category of metric spaces and uniformly continuous functions.

R. O’Connor, extending work by E. Bishop.
Completion as a Monad

unit : \(X \rightarrow C X \) := \(\lambda x \lambda \varepsilon, \ x \)

join : \(C C X \rightarrow C X \) := \(\lambda x \lambda \varepsilon, \ x(\varepsilon/2)(\varepsilon/2) \)

map : \((X \rightarrow Y)\) \rightarrow \((C X \rightarrow C Y)\) := \(\lambda f \lambda x, \ f \circ x \circ \mu f \)

bind : \((X \rightarrow C Y)\) \rightarrow \((C X \rightarrow C Y)\) := \(\text{join} \circ \text{map} \)

Define functions \(Q \rightarrow Q; \) lift to \(C Q \rightarrow C Q.\)
Organize the library using, so-called type classes.
Type classes are parametric record types.
Coq searches for terms of these types automatically during unification.
Logic programming at the type level automates many mathematical reflexes.

- Gives uniform notation
- Algebra hierarchy, abstractions, diamond inheritance
- Abstract interfaces (like haskell).

S, van der Weegen, *Type Classes for Mathematics in Type Theory.*
Type Classes for Mathematical Structures

Class AppRationals AQ {e plus mult zero one inv} ‘{Apart AQ}
 ‘{Le AQ} ‘{Lt AQ}
 {AQtoQ : Cast AQ Q_as_MetricSpace}
 ‘{!AppInverse AQtoQ} {ZtoAQ : Cast Z AQ}
 ‘{!AppDiv AQ} ‘{!AppApprox AQ}
 ‘{!Abs AQ} ‘{!Pow AQ N} ‘{!ShiftL AQ Z}
 ‘{∀ x y : AQ, Decision (x = y)}
 ‘{∀ x y : AQ, Decision (x ≤ y)} : Prop := {
 aq_ring :> @Ring AQ e plus mult zero one inv ;
 aq_trivial_apart :> TrivialApart AQ ;
 aq_order_embed :> OrderEmbedding AQtoQ ;
 aq_strict_order_embed :> StrictOrderEmbedding AQtoQ ;
 aq_ring_morphism :> SemiRing_Morphism AQtoQ ;
 aq_dense_embedding :> DenseEmbedding AQtoQ ;
 aq_div : ∀ x y k, ball (2 ^ k) ('app_div x y k) ('x / 'y) ;
 aq_compress : ∀ x k, ball (2 ^ k) ('app_approx x k) ('x) ;
 aq_shift :> ShiftLSpec AQ Z (≪) ;
 aq_nat_pow :> NatPowSpec AQ N (^) ;
 aq_ints_mor :> SemiRing_Morphism ZtoAQ
}.

S, Krebbers, *Type classes for efficient exact real arithmetic in Coq*
Instances of Approximate Rationals

Record Dyadic Z := dyadic { mant: Z; expo: Z }.

Represents \(\text{mant} \cdot 2^{\text{expo}} \)

Instance dy_mult: Mult Dyadic :=
\[
\lambda x y, \text{dyadic} (\text{mant } x \ast \text{mant } y) (\text{expo } x + \text{expo } y).
\]

Instance : AppRationals (Dyadic bigZ).

Instance : AppRationals bigQ.

Instance : AppRationals Q.

Waiting for MPFR/Coq interval/floqc . . .
Coq < Check Complete.
Complete : MetricSpace \rightarrow MetricSpace

Coq < Check Q_as_MetricSpace.
Q_as_MetricSpace : MetricSpace

Coq < Check AQ_as_MetricSpace.
AQ_as_MetricSpace :
 \forall (AQ : Type) ..., AppRationals AQ \rightarrow MetricSpace

Coq < Definition CR := Complete Q_as_MetricSpace.

Coq < Definition AR := Complete AQ_as_MetricSpace.

AR is an instance of Le, Field, SemiRingOrder, etc., from the MathClasses library.
Integral

Following M. Bridger, *Real Analysis: A Constructive Approach*.

Class Integral \((f: \mathbb{Q} \to \mathbb{CR})\) :=
\[
\text{integrate: } \forall (\text{from}: \mathbb{Q}) (w: \mathbb{QnonNeg}), \mathbb{CR}.
\]

Notation \(\int\) := integrate.

Class Integrable \(\{!\text{Integral } f\}\): Prop := {
integral_additive:
\[
\forall (a: \mathbb{Q}) b c, \int f a b + \int f (a + b) c = \int f a (b + c);
\]

integral_bounded_prim: \(\forall \text{from}: \mathbb{Q}) (\text{width}: \mathbb{Qpos}) (\text{mid}: \mathbb{Q})
\[
(\forall x, \text{from} \leq x \leq \text{from} + \text{width} \Rightarrow \text{ball } r (f x) \text{mid}) \Rightarrow
\text{ball } (\text{width} \ast r) (\int f \text{from width}) (\text{width} \ast \text{mid});
\]
}

Earlier (abstract, but slower) implementation of integral by O’Connor and S
Complexity

Rectangle rule:
\[\left| \int_a^b f(x) \, dx - f(a)(b-a) \right| \leq \frac{(b-a)^3}{24} M \]
where \(|f''(x)| \leq M \) for \(a \leq x \leq b \).

Number of intervals to have the error \(\leq \varepsilon \):
\[\geq \sqrt{\frac{(b-a)^3 M}{24 \varepsilon}} \]

Simpson’s rule:
\[\left| \int_a^b f(x) \, dx - \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right) \right| \leq \frac{(b-a)^5}{2880} M \]
where \(|f^{(4)}(x)| \leq M \) for \(a \leq x \leq b \).

Number of intervals:
\[\geq \sqrt[4]{\frac{(b-a)^5 M}{2880 \varepsilon}} \]

Coquand, S *A constructive proof of Simpson’s Rule*, 2012:
Replace mean value theorem with law of bounded change
Use divided differences, Hermite-Genocchi
Conclusions

- Computer *verified* implementation of simple ODE solver.
- Computing with exact functions.
- May be seen as an executable specification, speed up with refinement.