Pictures of complete positivity in arbitrary dimension

Chris Heunen Bob Coecke
University of Oxford

QPL VIII, Nijmegen
October 28, 2011
Background

Categorical quantum mechanics:

- study quantum mechanics from *minimal assumptions*
- category with tensor, dagger, and *compact structure*

Get rid of compactness:

- construction turning arrows into *completely positive* ones
- *axiomatize* resulting categories
Graphical language for dagger tensor categories

Trade algebraic reasoning with morphisms for graphical calculus:

\[g \circ f = g \otimes f \]

\[f \otimes g = f \otimes g \]

\[\text{id}_X = \]

\[\text{swap}_{X,Y} = \]
Compactness

\[I \to X^* \otimes X \]

\[\quad \Rightarrow \quad \]

\[X \otimes X^* \to I \]

\[\Rightarrow \quad \text{such that} \quad \]

\[X \]

\[= \]

\[X \]

\[\Rightarrow \quad \text{four orientations of morphisms:} \quad \]

\[f^* \]

\[= \]

\[f \]

\[: Y^* \to X^* \]

\[f_\ast = (f^*)^\dagger : X^* \to Y^* \]

\[\Rightarrow \quad \text{Example: category of finite-dimensional Hilbert spaces} \]
Selinger’s CPM-construction

- dagger compact category \mapsto new dagger compact category
- $\text{fdHilb} \mapsto$ fin-dim \ast-algebras and completely positive maps

Definition of category $\text{CPM}(\mathcal{C})$:

- objects: those of \mathcal{C}

- arrows $X \rightarrow Y$:
 \[
 \begin{aligned}
 \begin{array}{c}
 f_\ast \\
 f
 \end{array}
 \end{aligned}
 \end{array}
 \quad
 \begin{array}{c}
 f \\
 \in \mathcal{C}(X, Z \otimes Y)
 \end{array}
 \)

- identities: those of \mathcal{C}
Selinger’s CPM-construction

\[
\text{CPM}(\mathbf{C}) \text{ is a dagger compact category:}
\]

\[
\begin{pmatrix}
 f_* & f \\
\end{pmatrix} \otimes \begin{pmatrix}
 g_* & g \\
\end{pmatrix} = \begin{pmatrix}
 g_* & f_* \\
\end{pmatrix} \otimes \begin{pmatrix}
 f & g \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
 f_* & f \\
\end{pmatrix}^\dagger = \begin{pmatrix}
 f^* & f^\dagger \\
\end{pmatrix}
\]
General CP-construction: idea

- $\text{CPM}(\text{fdHilb}) = \text{fin-dim } \ast$-algebras, completely positive maps
- But completely positive maps make sense for all C*-algebras

- Question: $\text{CP}(\text{Hilb}) = \text{C}^*$-algebras, completely positive maps
- Main obstruction: Hilb noncompact dagger tensor category

- Idea: ‘unbend’ f_\ast into f^\dagger
General CP-construction

Definition of category $\text{CP}(\mathbf{C})$:

- **objects**: those of \mathbf{C}

- **arrows** $X \to Y$:
 \[
 \begin{align*}
 \left\{ \begin{array}{l}
 f^\dagger f \\
 f
 \end{array} \right\}
 \quad \in \mathbf{C}(X, Z \otimes Y)
 \end{align*}
 \]

- **composition**:
 \[
 \begin{align*}
 \left(\begin{array}{c}
 g^\dagger \\
 g
 \end{array} \right)
 \circ
 \left(\begin{array}{c}
 f^\dagger \\
 f
 \end{array} \right)
 =
 \left(\begin{array}{c}
 f^\dagger \\
 g^\dagger \\
 g \\
 f
 \end{array} \right)
 \end{align*}
 \]

- **identity**:
 \[
 \text{id}_X = \text{swap}_{X,X}
 \]
General CP-construction makes sense: compact case

\[\text{CP}(C) \text{ is a tensor category:} \]

\[
\begin{pmatrix}
 f^\dagger \\
 f
\end{pmatrix} \otimes
\begin{pmatrix}
 g^\dagger \\
 g
\end{pmatrix}
= \begin{pmatrix}
 g^\dagger \\
 f^\dagger \\
 g \\
 f
\end{pmatrix}
\]

But not compact or dagger in general

Proposition: If \(C \) is compact, then \(\text{CPM}(C) \) and \(\text{CP}(C) \) are isomorphic as (dagger compact) tensor categories
A linear map $\varphi : A \rightarrow B$ between C*-algebras is

- **positive** when $\varphi(a^*a) \geq 0$
- **completely positive** when $\varphi \otimes \text{id} : A \otimes M_n \rightarrow B \otimes M_n$ positive
- ***-homomorphism** when $\varphi(ab) = \varphi(a)\varphi(b)$ and $\varphi(a^*) = \varphi(a)^*$
- **normal** when it is ultraweakly continuous (for von Neumann algebras: when $\varphi(\bigvee p_i) = \bigvee_i \varphi(p_i)$ for increasing projections)
- a **quantum operation** when normal and completely positive

Theorem (Stinespring): If $\varphi : A \rightarrow B(H)$ is completely positive and A is a von Neumann algebra, then

$$\varphi(a) = v^\dagger \pi(a) v$$

for ***-homomorphism** $\pi : A \rightarrow B(K)$ and bounded linear $v : H \rightarrow K$
General CP-construction makes sense: Hilbert space

A linear map \(\varphi: A \to B \) between C*-algebras is

- **positive** when \(\varphi(a^*a) \geq 0 \)
- **completely positive** when \(\varphi \otimes \text{id}: A \otimes M_n \to B \otimes M_n \) positive
- **\(*\)-homomorphism** when \(\varphi(ab) = \varphi(a)\varphi(b) \) and \(\varphi(a^*) = \varphi(a)^* \)
- **normal** when it is ultraweakly continuous (for von Neumann algebras: when \(\varphi(\bigvee p_i) = \bigvee_i \varphi(p_i) \) for increasing projections)
- a ***quantum operation*** when normal and completely positive

Theorem (Dixmier): If \(*\)-homomorphism \(\pi: B(H) \to B(K) \) is normal, then \(\pi = \left(B(H) \xrightarrow{\pi_1} B(H \otimes H') \xrightarrow{\pi_2} B(K') \xrightarrow{\pi_3} B(K) \right) \) for

- \(\pi_1(f) = f \otimes \text{id}_{H'} \)
- \(\pi_2(f) = pf \) for projection \(p \) onto subspace \(K' \subseteq H \otimes H' \)
- \(\pi_3(f) = u^\dagger fu \) for unitary \(u: K \to K' \)
General CP-construction makes sense: Hilbert space

Corollary: A linear map $\varphi: B(H) \to B(K)$ is a quantum operation iff $\varphi(f) = g^\dagger(f \otimes \text{id}_{H'})g$ for bounded linear $g: K \to H \otimes H'$.

Theorem: CP(Hilb) is isomorphic as a tensor category to Hilbert spaces and quantum operations

\[
\begin{pmatrix}
H & K \\
\downarrow & \downarrow \\
H' & H'
\end{pmatrix} \quad \mapsto \quad \left(g^\dagger(- \otimes \text{id}_{H'})g\right)
\]
Environment structures

Question: when is a given category of the form $\text{CP}(\mathbf{C})$?

Answer: an *environment structure* for a dagger tensor category \mathbf{C} is a dagger tensor supercategory $\hat{\mathbf{C}}$ with the same objects, in which each object X has a morphism \uparrow_X such that:

- $\uparrow_X Y = X \otimes Y$ in $\hat{\mathbf{C}}$
- $f^\dagger f^\dagger = g^\dagger g^\dagger$ in \mathbf{C} \iff $f = g$ in $\hat{\mathbf{C}}$
- $\forall \hat{f} \in \hat{\mathbf{C}}(X, Y) \exists f \in \mathbf{C}(X, Z \otimes Y): \hat{f} = f$ in $\hat{\mathbf{C}}$.
Environment structures: use

Theorem: An environment structure on a tensor category \mathbf{C} induces an isomorphism $\xi: \text{CP}(\mathbf{C}) \to \hat{\mathbf{C}}$ of tensor categories.
Axiomatizing the general CP-construction: idea

There is a canonical functor $\mathbf{C} \rightarrow \text{CP}(\mathbf{C})$

Let

- \mathbf{D} be the image of this functor ('double' of \mathbf{C})
- $\hat{\mathbf{D}} = \text{CP}(\mathbf{C})$

When is this an environment structure?
The doubling axiom

A tensor category satisfies the *doubling axiom* when

\[f f = g g \iff f = g \]

for all parallel morphisms \(f \) and \(g \).

Proposition: If a dagger compact category \(\mathbf{C} \) obeys the doubling axiom, then \(\text{CPM}(\mathbf{C}) \) satisfies *preparation-state agreement*:

\[f f^\dagger = g g^\dagger \iff f = g \]
Axiomatizing the general CP-construction

Canonical functor $\mathbf{C} \rightarrow \text{CP}(\mathbf{C})$ is not faithful, so cannot recover \mathbf{C} from abstract category $\text{CP}(\mathbf{C})$ alone. Best we can get: when $\text{CP}(\mathbf{C})$ arises from environment structure.

Theorem A tensor category $\hat{\mathcal{D}}$ is of the form $\text{CP}(\mathbf{C})$ if and only if it is part of an environment structure and satisfies the doubling axiom.
Axiomatizing the general CP-construction

Theorem A tensor category \hat{D} is of the form $\text{CP}(C)$ iff it is part of an environment structure and satisfies the doubling axiom.

(1) \iff (2) always
(2) \iff (3) means doubling axiom for $\text{CP}(C)$
(1) \iff (3) means $\frac{\bigoplus}{X} = \left(\begin{array}{c} X \\ X \end{array} \right)$ is environment structure