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Abstract

Non-locality and contextuality are among the most counterintuitive aspects of
quantum theory. They are difficult to study using classical logic and probability
theory. In this paper we start with an effect algebraic approach to the study of
non-locality and contextuality. We will see how different slices over the category
of set valued functors on the natural numbers induce different settings in which
non-locality and contextuality can be studied. This includes the Bell, Hardy
and Kochen-Specker-type paradoxes. We link this to earlier sheaf theoretic ap-
proaches by defining a fully faithful embedding of the category of effect algebras
in this presheaf category over the natural numbers.
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1. Introduction

This paper is about generalized theories of probability that allow us to ana-
lyze the non-locality and contextuality paradoxes from quantum theory. Infor-
mally, the paradoxes have to do with the idea that it might not be possible to
explain the outcomes of measurements in a classical way.

The paper is in two parts. In the first we establish new relationships between
two generalized theories of probability. In the second we analyze the paradoxes
of contextuality using our theories of probability, and we use this to recover
earlier formulations of them in different frameworks.

1.1. Generalized probability measures

Recall that a finite measurable space (X,Ω) comprises a finite set X and a
sub-Boolean algebra Ω of the powerset Ω ⊆ P(X), and recall:

Definition 1. A probability distribution on a finite measurable space (X,Ω) is
a function p : Ω → [0, 1] such that p(X) = 1 and if A1 . . . An are disjoint sets
in Ω, then

∑n
i=1 p(Ai) = p(

⋃n
i=1Ai).

IThis article is a significant extension of the extended abstract in Proc. ICALP 2015 [37].
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We now analyze this definition to propose two general notions of probability
measure. To this end, here we will focus on finite probability spaces, because
this is sufficient for our examples. We intend to return to infinite spaces in
future work.

Partial monoids. Our first generalization involves partial monoids. Notice that
the conditions on the probability distribution p : Ω → [0, 1] do not involve the
space P(X). We only used the disjoint union structure of Ω. More generally,
we can define a pointed partial commutative monoid (PPCM) to be a structure
(E,>, 0, 1) where > : E × E → E is a commutative, associative partial binary
operation with a unit 0. Then (Ω,], ∅, X) and the interval ([0, 1],+, 0, 1) are
PPCMs. A probability distribution is now the same thing as a PPCM homo-
morphism, (Ω,], ∅, X) → ([0, 1],+, 0, 1). Thus PPCMs are a candidate for a
generalized probability theory. (This is a long-established position; see e.g. [14].)

Functors. Our second generalization goes as follows. Every finite Boolean alge-
bra Ω is isomorphic to one of the form P(N) for a finite set N . The elements
of N are the atoms of Ω. Now, a probability distribution p : Ω → [0, 1] is
equivalently given by a function q : N → [0, 1] such that

∑
a∈N q(a) = 1. Let

D(N) = {q : N → [0, 1] |
∑
a∈N q(a) = 1} (1)

be the set of all distributions on a finite set N . It is well-known that D extends
to a functor D : FinSet → Set. The Yoneda lemma gives a bijection be-
tween distributions in D(N) and natural transformations FinSet(N,−)→ D.
Thus we are led to say that a generalized finite measurable space is a func-
tor F : FinSet→ Set (aka presheaf), and a probability distribution on F is a
natural transformation F → D. (This appears to be a new position.)

Relationship. Our main contribution in Section 2 and 3 is an adjunction be-
tween the two kinds of generalized measurable spaces: PPCMs, and presheaves
FinSet→ Set. ‘Effect algebras’ are a special class of PPCMs [16, 12]. We show
that our adjunction restricts to a reflection from effect algebras into presheaves
FinSet → Set, which gives us a slogan that ‘effect algebras are well-behaved
generalized finite measurable spaces’.

1.2. Relating non-locality and contextuality arguments

In the second part of the paper we investigate three paradoxes from quantum
theory, attributed to Bell, Hardy and Kochen-Specker. We justify our use of
effect algebras and presheaves by establishing relationships with earlier work
by Abramsky and Brandenburger [2], Hamilton, Isham and Butterfield [22] and
with the test space approach [6]. For the purposes of introduction, we focus on
the Bell paradox, and we focus on the mathematics. (Some physical intuitions
are given in Section 4.)
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The Bell paradox in terms of effect algebras and presheaves. As we show, the

Bell scenario can be understood as a morphism of effect algebras E
t−→ [0, 1],

i.e., a generalized probability distribution. The paradox is that although this
has a quantum realization, in that it factors through Proj (H), the projections
on a Hilbert space H, it has no explanation in classical probability theory, in
that there it does not factor through a given Boolean algebra Ω. Informally:

E

&&

t // [0, 1]

but

E

""

t // [0, 1]

Proj (H)

77

Ω
|
::

(2)

Relationship with earlier sheaf-theoretic work on the Bell paradox. In [2], Abram-
sky and Brandenburger have studied Bell-type scenarios in terms of presheaves.
We recover their results from our analysis in terms of generalized probability
theory. Our first step is to notice that effect algebras essentially fully embed
in the functor category [FinSet → Set]. We step even closer by recalling the
slice category construction. This is a standard technique of categorical logic for
working relative to a particular object. As we explain in Section 4, the slice
category [FinSet→ Set]/Ω is again a presheaf category. It is more-or-less the
category used in [2]. Moreover, our non-factorization (2) transports to the slice
category: Ω becomes terminal, and E is a subterminal object. Thus the non-
factorization in diagram (2) can be phrased in the sheaf-theoretic language of
Abramsky and Brandenburger: ‘the family t has no global section’.

Other paradoxes. Alongside the Bell paradox we study two other paradoxes:

• The Hardy paradox is similar to the Bell paradox, except that it uses
possibility rather than probability. We analyze this by replacing the unit
interval ([0, 1],+, 0, 1) by the PPCM ({0, 1},∨, 0, 1) where ∨ is bitwise-or.
Although this monoid is not an effect algebra, everything still works and
we are able to recover the analysis of the Hardy paradox by Abramsky
and Brandenburger.

• The Kochen-Specker paradox can be understood as saying that there is
no PPCM morphism

Proj (H)→ ({0, 1},>, 0, 1) (3)

with dimH ≥ 3 and where > is like bitwise-or, except that 1 > 1 is
undefined. Now, the slice category [FinSet→ Set]/Proj (H) is again
a presheaf category, and it is more-or-less the presheaf category used
by Hamilton, Isham and Butterfield. The non-existence of a homomor-
phism (3) transports to this slice category: Proj (H) becomes the terminal
object, and ({0, 1},>, 0, 1) becomes the so-called ‘spectral presheaf’. We
are thus able to rephrase the non-existence of a homomorphism (3) in the
same way as Hamilton, Isham and Butterfield [22]: ‘the spectral presheaf
does not have a global section’.
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2. Pointed Partial Commutative Monoids and Effect Algebras

A probability distribution on a finite measurable space is a function satisfying
certain conditions. We can understand this function as a homomorphism of
partial algebraic structures, as follows.

Definition 2 (e.g. [16]). A pointed partial commutative monoid (or PPCM)
(E, 0, 1,>) consists of a set E with chosen elements 0 and 1 ∈ E and a partial
function > : E × E → E, such that for all x, y, z ∈ E we have:

1. If x> y is defined, then y > x is also defined and x> y = y > x.

2. x> 0 is always defined and x = x> 0.

3. If x> y and (x> y) > z are defined, then y> z and x> (y> z) are defined
and (x> y) > z = x> (y > z).

We write x ⊥ y (say x is perpendicular to y), if x>y is defined. When we write
x> y, we tacitly assume x ⊥ y. We refer to x> y as the sum of x and y.

A morphism f : E → F of PPCMs is a map such that f(0) = 0, f(1) = 1
and f(a> b) = f(a) > f(b) whenever a ⊥ b. This entails the category PPCM.

Example 3. Any Boolean algebra (B,∨,∧, 0, 1) can be understood as a PPCM

(B, 0,>, 1) where x ⊥ y iff x∧ y = 0, and then x> y
def
= x∨ y. For example, for

any set X, the powerset forms a PPCM, with disjoint union: (P(X), ∅,], X).
The unit interval [0, 1] also forms a PPCM ([0, 1], 0,+, 1), where x⊥y if and

only if x+ y ≤ 1.
Let (X,Ω) be a finite measurable space. Since Ω is Boolean, we can view it

as a PPCM. Then a function Ω→ [0, 1] is a probability distribution if and only
if it is a PPCM morphism.

PPCMs seem to be the broadest class of structures that allow us to under-
stand the literal definition of ‘probability distribution’ (Def. 1) as a morphism
of algebraic structures. However, it is natural to ask whether there is a class
of well-behaved PPCMs that still contains both the Boolean algebras and the
interval [0, 1]. Consensus has emerged around effect algebras [16, 12], which
include Boolean algebras and the unit interval. Effect algebras are well-behaved
in many ways. One example is our Corollary 10; another example is construc-
tion of universal vector spaces [e.g. 16, §10], although we won’t use that here.

Definition 4 ([16]). An effect algebra (E, 0,>, 1) is a PPCM (E, 0,>, 1) such
that

1. For every x ∈ E there exists a unique x⊥ such that x ⊥ x⊥ and x>x⊥ = 1.

2. x ⊥ 1 implies x = 0.

We call x⊥ the ‘orthocomplement of x’. PPCM morphisms between effect alge-
bras always preserve orthocomplements. We denote by EA the full subcategory
of PPCM whose objects are effect algebras.
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Definition 5. An atom in a PPCM E is a non-zero element a ∈ E, such that
there are no non-zero elements b, c ∈ E with a = b> c.

Example 6. • The PPCM associated to a Boolean algebra is an effect al-
gebra; x⊥ is the complement in the Boolean algebra. In fact, Boolean
algebras form a full subcategory of PPCMs, that is, a function between
Boolean algebras is a Boolean algebra homomorphism if and only if it is a
morphism of PPCMs.

• The unit interval [0, 1] is an effect algebra; x⊥ is (1− x).

• We will consider the set 2 = {0, 1} as a PPCM in two ways.

– The initial PPCM (2,>, 0, 1) has 0>0 = 0 and 1>0 = 0>1 = 1. The
term 1 > 1 is undefined; this comes from the initial Boolean algebra
and so it is an effect algebra.

– The monoid (2,∨, 0, 1) with 0 ∨ 0 = 0 and 1 ∨ 0 = 0 ∨ 1 = 1 ∨ 1 = 1;
this is not an effect algebra.

• The projections on a Hilbert space form an effect algebra (Proj (H), 0,+, 1)
where p ⊥ q if their ranges are orthogonal.

As noted in the introduction, any finite Boolean algebra Ω is isomorphic to
a powerset of a finite set, P(N). Therefore, the PPCM morphisms Ω → [0, 1]
are in bijective correspondence with probability distributions on this underlying
set N . This motivates our next section.

3. Presheaves and tests

In this section we consider a different generalization of probability spaces.
Recall that for any finite set N we have a set D(N) of distributions (Equa-
tion (1)). This construction is functorial in N . Consider the category N,
the skeleton of FinSet, whose objects are natural numbers considered as sets,
N = {1, . . . , n}, and whose morphisms are functions. Then D : N → Set is
functorial with ((Df)(q))(i) =

∑
j∈f−1(i) q(j).

This leads us to a notion of generalized probability space via the Yoneda
lemma. Write SetN for the category of functors N → Set (aka ‘covariant
presheaves’ and natural transformations. The Yoneda lemma says D(N) ∼=
SetN(N(N,−), D).

More generally we can thus understand natural transformations F → D as
‘distributions’ on a functor F ∈ SetN. Informally, F (N) is the set of partitions
of F into N disjoint components. We can use a similar motivation to build a
presheaf of tests from any PPCM.

Definition 7. Let E be a PPCM. An n-test in E is an n-tuple (e1, . . . , en) of
elements in E such that e1 > . . .> en = 1.
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The tests of a PPCM E form a presheaf T (E) ∈ SetN, where T (E)(N) is the
set of n-tests in E, and if f : N →M is a function then

T (E)(f)(e1, . . . , en) = (>i∈f−1(j)ei)j=1,...,m

This extends to a functor T : PPCM → SetN. If ψ : E → A is a PPCM
morphism, then we obtain the natural transformation T (ψ) with components
T (ψ)N (e1, . . . , en) = (ψ(e1), . . . , ψ(en)). (See also [25, Def. 6.3].)

Example 8. • T (2,>, 0, 1) ∈ SetN is the inclusion: (T (2,>, 0, 1))(N) = N .

• T (2,∨, 0, 1) ∈ SetN is the non-empty powerset functor: (T (2,∨, 0, 1))(N) =
{S ⊆ N | S 6= ∅}.

• Any finite Boolean algebra (B,∨,∧, 0, 1) is of the form P(N) for a finite
set N ; we have T (B,>, 0, 1) = N(N,−), the representable functor.

• For the unit interval, T ([0, 1],+, 0, 1) = D, the distribution functor.

Our main result in this section is that the test functor essentially exhibits effect
algebras as a full subcategory of SetN.

Theorem 9. Let A and B be PPCMs. If A is an effect algebra, the induced
functor TA,B : PPCM(A,B)→ SetN(TA, TB) is a bijection.

Proof. We denote functions from an n-element set to an m-element set as lines
from n nodes above to m nodes below. For example,

( )
: {1, 2, 3} → {1, 2}

is the map 1 7→ 1 and 2, 3 7→ 2. We use this notation as well for the image
under a functor. Now if A is an effect algebra, every element a ∈ A is part of
a 2-test (a, a⊥). It is then clear that TA,B is injective. To show surjectivity,
suppose we have some natural transformation µ : T (A) → T (B). We need to
find a PPCM morphism ψµ : A→ B such that T (ψµ) = µ. For a ∈ A, consider
the 2-test (a, a⊥) and let ψµ(a) = x, where (x, x′) = µ2(a, a⊥). Note that x′ is
any complement of x, not necessarily unique. We show ψµ is indeed a PPCM
morphism. So let a ⊥ b in A and let c = (a > b)⊥. Then (a, b, c) is a 3-test.
Let µ3(a, b, c) = (x, y, z), then we immediately see x ⊥ y in B. Furthermore, by
naturality of µ we have

µ2(a, a⊥) = µ2

( )
(a, b, c)

=
( )

µ3(a, b, c)

= (x, y > z).

Therefore ψµ(a) = x and by a similar argument ψµ(b) = y.
We then calculate

µ2(a> b, c) = µ2

( )
(a, b, c)

=
( )

µ3(a, b, c)

= (x> y, z).
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Showing that indeed ψµ(a> b) = x> y.
To show ψµ preserves 1 we calculate

µ2(1A, 0A) = µ2

( )
(1A)

=
( )

µ1(1A)

=
( )

1B

= (1B , 0B).

Similarly ψµ preserves 0. By construction we have TA,B(ψµ) = µ, so TA,B is
indeed a bijection.

Corollary 10. The restriction to effect algebras, T : EA → SetN, is full and
faithful.

To summarize Sections 2 and 3, we have the following generalizations of
Boolean algebras. Each arrow is an embedding, i.e., a full and faithful functor.

PPCM

BA // EA

::

$$
[N,Set]

Remark on nerves and realizations. We remark that a more abstract way to view
the test functor is through the framework of nerves and realizations. In general,
a functor F : C → D induces a ‘nerve’ functor D(F (−),=) : D → [Cop,Set].
The usual motivating example is the nerve of a topological space X, which is a
simplicial set Top(F (−), X) : ∆op → Set; this is induced by considering each
simplex as a space, F : ∆→ Top. Moreover, the nerve functor has a left adjoint
[∆op,Set] → Top, the left Kan extension of F along the Yoneda embedding,
which takes a simplicial set to a topological realization. Another example is the
nerve of a category X, which is a simplicial set Cat(F (−), X) : ∆op → Set; this
is induced by considering each simplex as a category, F : ∆→ Cat. In this case,
the nerve functor Cat → [∆op,Set] is full and faithful. In other words, every
category is a canonical colimit of simplices, and so we say that F : ∆→ Cat is
dense.

In our setting, we have finite Boolean algebras instead of simplices and effect
algebras instead of topological spaces. For any natural number N , the powerset
P(N) is a Boolean algebra and hence an effect algebra. This extends to a functor
P : Nop → PPCM, and the test functor is the corresponding ‘nerve’ functor,
T = PPCM(=, P (−)) : PPCM→ [N,Set].

Theorem 11. The test functor T : PPCM→ [N,Set] has a left adjoint.
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Proof. See for instance Theorem 2 of [31, Ch. I.5]. The category PPCM is
cocomplete since it is a category of models of an essentially algebraic theory [7,
Theorem 3.36].

This left adjoint is the left Kan extension of P along the Yoneda embedding.
Theorem 9 can be phrased ‘the counit is an isomorphism at effect algebras’.
Corollary 10 can be phrased ‘finite Boolean algebras are dense in effect algebras’.
This last statement uses the fact that Nop ' FinBA, the category of finite
Boolean algebras, so that [N,Set] ∼= [Nop op,Set] ' [FinBAop,Set] which is
the free cocompletion of the category of finite Boolean algebras. So every effect
algebra is a canonical colimit of finite Boolean algebras.

As an aside, we remark that our category N is equivalent to finite Hausdorff
spaces, which yields a connection to a recent related result: compact Hausdorff
spaces are dense in piecewise C∗-algebras [15, Thm 4.5].

There also appears to be a connection with the theory of ‘contextuality
by default’ [13], which presents a scenario as (informally) a gluing of random
variables; this relationship deserves to be explored more carefully.

4. Bell scenarios: tables and effect algebras

In probability theory, questions of contextuality arise from the problem that
the joint probability distribution for all outcomes of all measurements may not
exist. We suppose a simple framework where Alice and Bob each have a mea-
surement device with two settings. For simplicity we suppose that the device
will emit 0 or 1, as the outcome of a measurement. We write a0:0 for ‘Alice
measured 0 with setting a0’, b1:0 for ‘Bob measured 0 with setting b1’, and so
on. To model this in classical probability theory we would consider a sample
space SA for Alice whose elements are functions {a0, a1} → {0, 1}, i.e., assign-
ments of outcomes to measurements. Similarly we have a sample space SB for
Bob. We would then consider a joint probability distribution on SA and SB.
While Alice and Bob are allowed to classically communicate with each other,
in this model, we implicitly assume that Alice and Bob can not signal to each
other. That is to say, for any distribution on joint measurements, we can de-
fine marginal distributions each for Alice and Bob, which do not depend on the
settings chosen by the other person. However, the classical model does include
an assumption: that Alice is able to record the outcome of the measurement
in both settings. In reality, and in quantum physics in particular, once Alice
has recorded an outcome using one measurement setting, she cannot then know
what the outcome would have been using the other measurement setting. Effect
algebras provide a way to describe a kind of probability distribution that takes
this measure-only-once phenomenon into account.

The non-locality ‘paradox’ is as follows: there are probability distributions
in this effect algebraic sense (without signalling), which are physically realizable,
but cannot be explained in a classical probability theory without signaling. The
first proof of such a system was given by John Bell [8], hence the name Bell
scenario.
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The main purpose of this section is not to study non-locality and contextu-
ality in different systems, but rather to give a general framework to study them.
We use this to recover earlier frameworks.

4.1. Tables

Definition 12. A function

τ : {a0:0, a0:1, a1:0, a1:1}×{b0:0,b0:1,b1:0,b1:1} → [0, 1]

is called a probability table, or just a table, if

• each experiment certainly has an outcome:
for i, j ∈ {0, 1}, ∑

o,o′∈{0,1}

τ(ai:o,bj :o
′) = 1.

• it has marginalization, aka no signalling: for all i, j, o ∈ {0, 1},

τ(ai:o,b0:0) + τ(ai:o,b0:1) = τ(ai:o,b1:0) + τ(ai:o,b1:1),

τ(a0:0,bj :o) + τ(a0:1,bj :o) = τ(a1:0,bj :o) + τ(a1:1,bj :o).

The standard Bell table τ : {a0:0, a0:1, a1:0, a1:1}×{b0:0,b0:1,b1:0,b1:1} → [0, 1]
is as follows:

t a0:0 a0:1 a1:0 a1:1
b0:0 1

2 0 3
8

1
8

b0:1 0 1
2

1
8

3
8

b1:0 3
8

1
8

1
8

3
8

b1:1 1
8

3
8

3
8

1
8

(4)

In this simple scenario we have two observers, each with two measurement
settings, each with two outcomes, but it is straightforward to generalize to
more elaborate Bell-like settings. We will come back to this in Section 4.3.

The classical way of modelling the Bell scenario involves a sample space
with 16 points; to be precise, we let the sample space be the set of 4-tuples
{0, 1}4, regarding a 4-tuple (oa0 , oa1 , ob0 , ob1) as describing an outcome for each
measurement setting. Any probability distribution on this set,

p : {0, 1}4 → [0, 1]

induces a table by marginalizing the settings that are not tested, for instance

t(a0:oa0
,b0:ob0

) =
∑

oa1 ,ob1

p(oa0 , oa1 , ob0 , ob1). (5)

Definition 13. A table is classically realizable if it arises from a distribution
on {0, 1}4 according to (5).
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We now have the following:

Proposition 14. The Bell table is not classically realizable.

This proposition is almost folklore and there are multiple proofs. See [2] for
an example. We shall give a proof in an effect algebraic setting in Corollary 25,
after we have introduced tensor products.

A general notion of table. Before we continue we introduce a more general no-
tion of table by replacing [0, 1] with an arbitrary PPCM. This general definition
is used in two ways. First, in Section 6.1, we consider possibility rather than
probability by replacing [0, 1] with the PPCM ({0, 1},∨, 0, 1). Second, we use
it to classify the tables in terms of effect algebras and presheaves (Prop. 19,
Prop. 27, Prop. 29).

Definition 15. Let X be a PPCM (e.g. X = [0, 1]). A function

τ : {a0:0, a0:1, a1:0, a1:1}×{b0:0,b0:1,b1:0,b1:1} → X

is called a X-table if

• each experiment certainly has an outcome:
for i, j ∈ {0, 1},

>
o,o′∈{0,1}

τ(ai:o,bj :o
′) = 1.

• it has marginalization, aka no signalling: for all i, j, o ∈ {0, 1},

τ(ai:o,b0:0) > τ(ai:o,b0:1) = τ(ai:o,b1:0) > τ(ai:o,b1:1),

τ(a0:0,bj :o) > τ(a0:1,bj :o) = τ(a1:0,bj :o) > τ(a1:1,bj :o).

An X-table t is classically realizable if there is a function p : {0, 1}4 → X such
that >s∈{0,1}4 p(s) = 1 and t(a0:oa0

,b0:ob0
) = >oa1 ,ob1

p(oa0
, oa1

, ob0
, ob1

).

4.2. Bell’s paradox in effect algebras

The above discussion cannot by phrased in terms of distributions on measur-
able spaces, but it can be phrased in terms of distributions on effect algebras.
The effect algebra is built from four sample spaces: one for each of Alice’s
measurement settings, and one for each of Bob’s measurement settings.

EA,0
def
= P({a0 : 0, a0 : 1}) EA,1

def
= P({a1 : 0, a1 : 1})

EB,0
def
= P({b0 : 0,b0 : 1}) EB,1

def
= P({b1 : 0,b1 : 1})

For example, the outcomes of an experiment performed by Alice alone, just
using measurement setting 0, are defined by a distribution EA,0 → [0, 1].

The outcomes of the entire Bell scenario form a distribution on an effect
algebra that is built by combining these four effect algebras using two construc-
tions: the sum (⊕) and the tensor (⊗) of effect algebras. Ultimately, a table
(Def. 12) amounts to a distribution (EA,0 ⊕EA,1)⊗ (EB,0 ⊕EB,1)→ [0, 1] (see
Prop. 19).
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4.2.1. Sums of effect algebras

To define effect algebras for Alice and Bob alone we take the sum of the effect
algebras for their two measurement settings. The sum, also called horizontal sum
in [12], is defined as follows.

Definition 16. Let A and B be non-degenerate PPCMs (0 6= 1). The sum
A⊕B is the PPCM (A\{0, 1})] (B \{0, 1})]{0, 1}. The orthogonality is given
by setting x ⊥ y if either x = 0, or y = 0, or x ⊥ y in A, or x ⊥ y in B.

The following is now a straightforward categorical computation.

Proposition 17. The sum A⊕B, with the evident injections A→ A⊕B ← B,
has the universal property of a coproduct in the category of PPCMs. It induces
a natural bijection

PPCM(A⊕B,C) ∼= PPCM(A,C)×PPCM(B,C)

Moreover A⊕B is an effect algebra if A and B are effect algebras.

We use sums to define effect algebras for Alice and Bob alone as follows:

EA
def
= EA,0 ⊕ EA,1 EB

def
= EB,0 ⊕ EB,1

In detail, the effect algebra EA has {0, a0:0, a0:1, a1:0, a1:1, 1} as its underlying
set. Sums are defined by 0 > x = x and ai:0 > ai:1 = 1. Similarly, the effect
algebra EB is {0,b0:0,b0:1,b1:0,b1:1, 1} with similar sums.

There are some points to note here.

1. By Proposition 17, a distribution for Alice, EA → [0, 1], amounts to a pair
of distributions EA,0 → [0, 1], EA,1 → [0, 1], one for each measurement
setting that she may choose.

2. The effect algebra EA is not a Boolean algebra. It cannot arise in classical
probability theory.

3. Having said this, classical probability theory has no problem with Alice
alone, in view of point 1 it is just a pair of distributions, both of which
are completely classical. We just cannot make it into a single distribution.
The interesting thing happens when we consider joint measurements for
Alice and Bob.

4.2.2. Bimorphisms

We now introduce a notion of bimorphism, which captures the notion of a
probability distribution on joint measurements. Later we will see that bimor-
phisms are classified by a tensor product.

Definition 18. Let A,B and C be pointed partial commutative monoids. A
bimorphism A,B → C is a function f : A×B → C such that for all a, a1, a2 ∈ A
and b, b1, b2 ∈ B with a1 ⊥ a2 and b1 ⊥ b2 we have
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f(a, b1 > b2) = f(a, b1) > f(a, b2) f(a1 > a2, b) = f(a1, b) > f(a2, b)
f(a, 0) = f(0, b) = 0 f(1, 1) = 1

That is to say, both f(−, 1) and f(1,−) are effect algebra morphisms.

We now describe the Bell scenario in the introduction to this section using
bimorphisms. A distribution on the joint measurements of Alice and Bob is a
bimorphism EA, EB → [0, 1]. We now give an elementary description of these
bimorphisms.

Each bimorphism t : EA, EB → [0, 1] restricts to a function

τ : {a0:0, a0:1, a1:0, a1:1} × {b0:0,b0:1,b1:0,b1:1} → [0, 1].

In fact, this gives a bijective correspondence between bimorphisms and tables.
This is true for generalized tables and so we show the general fact.

Proposition 19. Let X be a PPCM (e.g. [0, 1]). A function

{a0:0, a0:1, a1:0, a1:1}×{b0:0,b0:1,b1:0,b1:1} → X

arises as the restriction of a bimorphism EA, EB → X if and only if it is an
X-table (Def. 15).

Proof. First, we note the restriction of a bimorphism always satisfies the two
conditions; this follows from the definition of bimorphism. To understand the
marginalization requirement, notice that for any bimorphism t : EA, EB → X
we have, for instance,

t(a0:0,b0:0) > t(a0:0,b0:1) = t(a0:0, 1) = t(a0:0,b1:0) > t(a0:0,b1:1)

since b0:0 > b0:1 = 1 = b1:0 > b1:1.
Second, suppose τ is a table satisfying the two conditions. We extend it to

a bimorphism t : EA, EB → X as follows:

t(ai:o,bj :o
′) = τ(ai:o,bj :o

′) t(ai:o, 1) = τ(ai:j,b0:0) > τ(ai:j,b0:1)

t(x, 0) = 0 t(1,bj :o) = τ(a0:0,bj :o) > τ(a0:1,bj :o)

t(0, y) = 0 t(1, 1) = 1

By Proposition 19 the Bell table (4) extends to a bimorphism

EA, EB → [0, 1].

Quantum realization. A table has a ‘quantum realization’ if there is a way to
obtain it by performing quantum experiments. Recall that a quantum system is
modelled by a Hilbert space H, and a yes-no question such as “is the outcome
of measuring a0 equal to 1” is given by a projection on this Hilbert space. The
projections form an effect algebra Proj (H).

12



Definition 20. A quantum realization for a distribution on joint measure-
ments t : E,E′ → [0, 1] is given by finite dimensional Hilbert spaces H,H′,
two PPCM maps r : E → Proj (H) and r′ : E′ → Proj (H′), and a bimorphism
p : Proj (H),Proj (H′) → [0, 1], such that for all e ∈ E and e′ ∈ E′ we have
p(r(e), r′(e′)) = t(e, e′).

The Bell table (4) has a quantum realization, with H = H′ = C2 (see [4]).
The relation between (mixed) states and our notion of quantum realization is
as follows. Let H ⊗H′ be the tensor product of Hilbert spaces. By Gleason’s
theorem [27] there is a bijection between morphisms Proj (H⊗H′)→ [0, 1] and
density matrices on H⊗H′ if dim(H⊗H′) > 3, which is certainly the case for
H,H′ = C2. The canonical map Proj (H),Proj (H′) → Proj (H ⊗H′) given by
p, q 7→ p ⊗ q, where p ⊗ q(h ⊗ h′) = p(h) ⊗ q(h′), is a bimorphism. Therefore,
any density matrix gives rise to a bimorphism Proj (H),Proj (H′)→ [0, 1].

Classical realization. Classically, every time Alice and Bob perform a measure-
ment, nature determines an assignment of outcomes for all measurements, which
determines the outcomes for Alice and Bob. In such a deterministic theory we
can calculate a probability for things like a0:0 ∧ a1:1 ∧ b0:1 ∧ b1:1, in which
case if Alice chose a0 and Bob chose b1, they would get the outcome 0 and 1,
respectively.

Definition 21. A classical realization for a bimorphism t : E,E′ → [0, 1] is
given by two Boolean algebras B,B′, two effect algebra morphisms r : E → B,
r′ : E′ → B′ and a bimorphism p : B,B′ → [0, 1] such that for all e ∈ E and
e′ ∈ E′ we have p(r(e), r′(e′)) = t(e, e′).

To link this definition with Definition 13, we consider the Boolean algebra
BA, with atoms {a0:i∧a1:j | i, j ∈ {0, 1}}. Note that BA is a free completion of
the effect algebra EA to a Boolean algebra, in that, under identification of terms
like (a0:0∧a1:0)∨(a0:0∧a1:1) with a0:0, we have EA ⊆ BA and every morphism
EA → B, with B a Boolean algebra, must factor through BA. Similarly, we have
the algebra BB for Bob. A distribution {0, 1}4 → [0, 1] then corresponds with
a bimorphism BA, BB → [0, 1]. Therefore Proposition 14 can be written as:

Proposition 22. The bimorphism corresponding to Table 4 does not factor via
the canonical maps rA : EA → BA and rB : EB → BB. Therefore, Table 4 has
no classical realization.

4.2.3. Tensor products

Tensor products allow us to consider bimorphisms EA, EB → [0, 1] as a
distribution EA ⊗ EB → [0, 1].

Definition 23. The tensor product of two PPCMs E, E′ is given by a PPCM
E ⊗ E′ and a bimorphism i : E,E′ → E ⊗ E′, such that for every bimorphism
f : E,E′ → F there is a unique morphism g : E ⊗ E′ → F such that f = g ◦ i.
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This gives a bijective correspondence between morphisms E ⊗ E′ → F and
bimorphisms E,E′ → F . In fact, all tensor products of effect algebras exist (see
e.g. [26]; but they can be trivial [17]).

We return to the example of Alice and Bob. We know (Prop 19) that bimor-
phisms EA, EB → X correspond bijectively with X-tables, and so morphisms
EA ⊗ EB → X correspond to X-tables too. From the perspective of cate-
gory theory, the effect algebra EA ⊗ EB is thus a representation of the functor
Table : PPCM→ Set with Table(X) the set of X-tables.

We now give concrete descriptions of BA ⊗BB and EA ⊗ EB.

Proposition 24. • The tensor product of Boolean algebras, BA ⊗ BB, is
the free Boolean algebra on the four elements {a0, a1,b0,b1}, where we
identify, for example, a1:1 with a1 and a1:0 with ¬a1.

• The tensor product of effect algebras EA⊗EB is the effect algebra with 16
atoms of the form ai:k ∧ bj :l for i, j, k, l ∈ {0, 1}. Its atomic tests 1 (and
hence the perpendicularity relations) are given by expressions of the form

(a ∧ b, a ∧ b⊥, a⊥ ∧ b′, a⊥ ∧ b̃⊥)

or
(a ∧ b, a⊥ ∧ b, ã ∧ b⊥, ã⊥ ∧ b⊥),

where a, ã are atoms in EA and b, b̃ are atoms in EB. Note that there are
8 such tests per expression, but 4 of these overlap, so we have 12 of these
atomic tests in total.

Proof. We prove the second statement. Let E be the effect algebra as in the
proposition. First we note that for any effect algebra X, any elements a, ã ∈ EA,
b, b̃ ∈ EB, and bimorphism f : EA × EB → X, we have

1 = f(1, 1)

= f(a> a⊥, 1)

= f(a, 1) > f(a⊥, 1)

= f(a, b) > f(a, b⊥) > f(a⊥, b̃) > f(a⊥, b̃⊥)

and

1 = f(1, 1)

= f(1, b> b⊥)

= f(1, b) > f(1, b⊥)

= f(a, b) > f(a⊥, b) > f(ã, b⊥) > f(ã⊥, b⊥).

Now let g : EA, EB → X be a bimorphism. We define g̃ : E → X by
extension of g̃(ai:k ∧ bj :l) = g(ai:k, bj :l). We need to show g(a ∧ b) ⊥ g(a′ ∧ b′)
whenever a ∧ b ⊥ a′ ∧ b′, but this follows from our first observation.

1With this we mean tests in which only atoms occur.
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The map g 7→ g̃ is easily seen to be invertible. Indeed, given g̃, define
g(a, b) = g̃(a∧b). We conclude the proof by noting that we now have bijections:

E → X effect algebra morphism

A×B → X bimorphism

A⊗B → X effect algebra morphism

So that by the Yoneda lemma we have E ∼= EA ⊗ EB.

The statement of Bell’s paradox can now be written in terms of homomor-
phisms, rather than bimorphisms:

Corollary 25. Table 4, t : EA ⊗ EB → [0, 1], does not factor through the
embedding EA ⊗ EB → BA ⊗BB.

Proof. We write the following atoms in EA⊗EB as sums of atoms in BA⊗BB:

a0:0 ∧ b0:0 =(a0:0 ∧ a1:0 ∧ b0:0 ∧ b1:0) ∨ (a0:0 ∧ a1:1 ∧ b0:0 ∧ b1:0)

∨(a0:0 ∧ a1:0 ∧ b0:0 ∧ b1:1) ∨ (a0:0 ∧ a1:1 ∧ b0:0 ∧ b1:1) (?)

a0:0 ∧ b1:1 =(a0:0 ∧ a1:0 ∧ b0:0 ∧ b1:1) ∨ (a0:0 ∧ a1:1 ∧ b0:0 ∧ b1:1)

∨(a0:0 ∧ a1:0 ∧ b0:1 ∧ b1:1) ∨ (a0:0 ∧ a1:1 ∧ b0:1 ∧ b1:1)

a1:1 ∧ b0:0 =(a0:0 ∧ a1:1 ∧ b0:0 ∧ b1:0) ∨ (a0:1 ∧ a1:1 ∧ b0:0 ∧ b1:0)

∨(a0:0 ∧ a1:1 ∧ b0:0 ∧ b1:1) ∨ (a0:1 ∧ a1:1 ∧ b0:0 ∧ b1:1)

a1:0 ∧ b1:0 =(a0:0 ∧ a1:0 ∧ b0:0 ∧ b1:0) ∨ (a0:1 ∧ a1:0 ∧ b0:0 ∧ b1:0)

∨(a0:0 ∧ a1:0 ∧ b0:1 ∧ b1:0) ∨ (a0:1 ∧ a1:0 ∧ b0:1 ∧ b1:0)

Let φ : BA⊗BB → [0, 1] be the supposed probability distribution onBA⊗BB.
If we apply φ to both sides of the above equations we find in the Bell table that
the sum of the right hand sides must add up to 1

2 , 1
8 , 1

8 , 1
8 , respectively.

However, adding the last three equations we obtain

3

8
=φ(a0:0 ∧ a1:0 ∧ b0:0 ∧ b1:0)

+φ(a0:0 ∧ a1:1 ∧ b0:0 ∧ b1:0)

+φ(a0:0 ∧ a1:0 ∧ b0:0 ∧ b1:1)

+φ(a0:0 ∧ a1:1 ∧ b0:0 ∧ b1:1)

+φ(other terms),

but the first four terms already add up to 1
2 by the first equation (?) above, and

since φ takes values in [0, 1], this cannot be.

This proof reveals more. Every element ai:k ∧ bj :l can be written as the
sum of join of four elements in the Boolean algebra BA ⊗ BB. Now if we have
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any non-signalling probability table, that is, a probability distribution on the
effect algebra EA, EB, we might wonder if it factors through this free Boolean
algebra. So we are looking for a probability distribution on the atoms of B4

such that, whenever some elements of B4 sum to an element of E, we must have
that the sum of the values on the atoms of BA ⊗ BB equals the value of the
corresponding element in E. This way we obtain 16 equations which must be
satisfied simultaneously. These equations can be put into a matrix and this way
we obtain the incidence matrix from Abramsky and Brandenburger in [2].

4.3. Generalization of the Bell 2,2,2 type

As promised, we say a few words on the generalization of the Bell 2,2,2 type
systems, where we have 2 observers, each with 2 measurement settings, each
with two possible outcomes, to more general systems. We first consider just one
observer, Alice. She has a set of measurement settings a1, . . . , ak. Each of those
settings ai has a set of outcomes Oai

. The powerset P(Oai
) is an effect algebra

in the regular way. The coproduct of these effect algebras,
⊕

i P(Oai
), is now

the effect algebra of Alice, EA. We obtain such an effect algebra EAi
for every

observer Ai. It is the tensor product
⊗
EAi that we finally want to consider.

This procedure restricts to the above case EA ⊗ EB when we are in the 2,2,2
type scenario.

5. Sheaf theoretic characterization

We now phrase Bell’s paradox in the presheaf category, using the language
of sheaf theory: the table determines a matching family, but it has no amalga-
mation. We recall some standard definitions.

Definition 26. Let C be a category, let F : C → Set be a functor, and let
(fi : c→ di)i∈I be a family of morphisms in C with common domain. A family
of elements xi ∈ F (di) (i ∈ I) is a matching family if for all i, j ∈ I, and all
pairs of morphisms gi : di → e, gj : dj → e such that gifi = gjfj, we have
F (gi)(xi) = F (gj)(xj). An amalgamation for a matching family (xi)i∈I is an
element x ∈ F (c) such that xi = F (fi)(x).

(Since we consider covariant presheaves we have used a covariant formulation
of the concepts from sheaf theory here and in Section 5.1.)

Consider the family of functions πi,j : {0, 1}4 → {0, 1}2 in N, indexed by
(i, j) ∈ {0, 1}2, given by

πi,j(oa0 , oa1 , ob0 , ob1) = (oai , obj ). (6)

Let D : N → Set be the distributions functor. We now show that a matching
family for (6) in D corresponds to a table (Def. 12). It follows from the following
general result about X-tables (Def. 15).
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Proposition 27. Let X be a PPCM (e.g. [0, 1]) and let T (X) : N → Set be
the presheaf of tests.

A matching family (di,j)i,j∈{0,1} in (T (X))({0, 1}2) for {πi,j | i, j ∈ {0, 1}}
determines an X-table, with τ(ai:o,bj :o

′) = di,j(o, o
′). Conversely, every X-

table arises from a matching family.
An X-table has classical realization if and only if the corresponding matching

family has an amalgamation.

Proof. The first requirement on tables corresponds to the fact that di,j is a
test. The second requirement corresponds to the compatibility condition on
matching families. For the second part, note that a distribution on the classical
sample space {0, 1}4 is an element of (T (X))({0, 1}4).

The Bell table (4) thus induces a matching family for (πi,j)i,j in the distributions
functor D = T [0, 1]. It does not have an amalgamation.

5.1. Relating the effect-algebraic and sheaf-theoretic characterizations

The definitions of matching family and amalgamation have a different, equiv-
alent form, which is less elementary but more categorical and which allows us
to make a connection with formulations of the paradox in different categories.

Definition 28. Let c be an object of a category C. A sieve on c is a set of
elements with common domain, S ⊆ {f | f : c → d} that is closed under
post-composition (i.e. f ∈ S =⇒ gf ∈ S).

Every family of elements with common domain determines a sieve, by closing
under post-composition. A sieve S on c can equivalently be described as a
functor S̄ : C → Set that is a subfunctor of the hom-functor C(c,−): let
(S̄)(d) = {f : c→ d | f ∈ S}.

Consider a family of maps (fi)i∈I with domain c, generating a sieve S. We
can use the Yoneda lemma to rearrange the definitions of matching family and
amalgamation, as follows. A matching family for (fi)i∈I in F : C → Set is
equivalently given by a natural transformation S̄ → F . An amalgamation for
a matching family S̄ → F is a factorization of S̄ → F through the inclusion
S̄ � C(c,−). We can now rewrite Bell’s paradox as a non-factorization in the
presheaf category SetN:

S

��

τ // D

N({0, 1}4,−)

/

99 (7)

where S(N) = {f : {0, 1}4 → N | ∃i, j, g. f = g ◦ (πi,j)}.
Another way to obtain a non-factorization statement in the presheaf category

is to apply the functor T : EA → SetN, which is full and faithful from effect
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algebras (Cor. 10), to our effect algebra formulation of the Bell scenario. The
resulting diagram

T (EA ⊗ EB)

��

Tτ // T ([0, 1])

T (BA ⊗BB)

/

88
(8)

is isomorphic to (7): for T (BA ⊗ BB) ∼= T (P({0, 1}4)), and T ([0, 1]) ∼= D, and
also T (EA ⊗ EB) is isomorphic to the sieve S generated by (πi,j)i,j . Indeed,
we identify {0, 1}4 with the atoms of BA ⊗ BB. The maps πi,j are now ways
to make atoms of EA ⊗ EB from the Boolean atoms. A function in S(N) is a
composite g ◦ πi,j and hence a test in T (EA ⊗ EB).

5.2. Relationship with the work of Abramsky and Brandenburger
Abramsky and Brandenburger [2] also phrase Bell’s paradox in terms of a

compatible family with no amalgamations. We now relate our statement with
theirs.

Transferring the paradox to other categories. We can use adjunctions to transfer
statements of non-factorization (such as Corollary 25) between different cate-
gories. Let C be a category and let R : EA→ C be a functor with a left adjoint
L : C → EA. Let j : X → Y be a morphism in C, and let f : L(X) → A be a
morphism in EA. Then f factors through L(j) if and only if f ] : X → R(A)
factors through j, where f ] is the transpose of f .

L(X)

L(j)
))

f // A

L(Y )
|
66 X

j ''

f]

// R(A)

Y
|
55 (9)

We use this technique to derive several equivalent statements of Bell’s paradox.
To start, the equivalence of the non factoring of the triangles (8) (§5.1) and (2)
(§1.2) is immediate from the adjunction between the test functor and its left
adjoint (see Theorem 11).

No global section. Recall that if X is an object of a category C then the objects
of the slice category C/X are pairs (C, f) where f : C → X. Morphisms are
commuting triangles. The slice category C/X always has a terminal object,
(X, idX). The projection map ΣX : C/X → C, with ΣX(C, f) = C, has a right
adjoint ∆X : C → C/X with ∆X(C) = (C×X,π2). First, notice that, using the
adjunction ΣN(16,−) a ∆N(16,−) we can rewrite diagram (8) in the slice category

(SetN)/N(16,−) as:

(T (EA ⊗ EB), T i)
,,

〈Tt,T i〉 // (D × N(16,−), π2)

(N(16,−), id)
| 22

(10)

Since (N(16,−), id) is terminal, we can phrase Bell’s paradox as “the local section
〈Tt, T i〉 : (T (EA ⊗ EB), T i)→ (D × N(16,−), π2) has no global section”.
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Measurement covers. The analysis of Abramsky and Brandenburger is based
on a ‘measurement cover’, which corresponds to our effect algebra EA ⊗ EB.

Fix a finite set X of measurements. In our Bell example, X = {a0, a1,b0,b1}.
Also fix a finite set of O of outcomes. In our example, O = {0, 1}, so OX = 16.
Abramsky and Brandenburger work in the category of presheaves P(X)op → Set
on the powerset P(X) (ordered by subset inclusion). They explain Bell-type
paradoxes by considering the family of morphisms (i.e. inclusions) in P(X):

{{ai,bj} ⊆ X | i, j ∈ {0, 1}}. (11)

The Bell scenario is a matching family for the presheaf D(O(−)) : P(X)op → Set
which does not have an amalgamation.

Following Section 5.1, we can rephrase this sheaf-theoretic analysis in terms
of a missing factorization in the category of presheaves P(X)op → Set:

M
''

// D(O(−))

1
|
55

(12)

Here 1 is the terminal presheaf. The ‘measurement cover’ M⊆ 1 is defined by
M(U) = ∅ if {a0, a1} ⊆ U or {b0,b1} ⊆ U , and M(U) = {∗} otherwise. In
general, M(U) is inhabited, i.e., non-empty, if the measurement context U is
allowed in the Bell situation.

We now relate this diagram (12) with our diagram (2) from the introduc-

tion by using an adjunction between EA and SetP(X)op . We construct this
adjunction as the following composite:

EA
T

>
//
SetNoo

∆OX

>
//
SetN/N(OX ,−)

ΣOX

oo ' Set(Nop/(OX))op
I∗

>
//
SetP(X)op

I!

oo

(13)
The first two adjunctions in this composite have already been discussed. The

categorical equivalence SetN/N(OX ,−) ' Set(Nop/(OX))op is an instance of a
general fact about slices by representable presheaves (e.g. [28, Prop. A.1.1.7,

Lem. C2.2.17]): in general, SetD
op

/D(−, d) ' Set(D/d)op .

It remains to explain I! a I∗. The functor I∗ : Set(Nop/(OX))op → SetP(X)op

is induced by precomposing with the functor I : P(X) → Nop/OX that takes
a subset U ⊆ X to the pair (OU , OiU : OX → OU ) where iU : U → X is the
set inclusion function. It has a left adjoint, I!, for general reasons (see e.g. [28,
Prop. A.4.1.4]): the left adjoint is given by left Kan extensions along I.

Proposition 29. The right adjoint in (13) takes the effect algebra [0, 1] to the

presheaf D(O(−)) : SetP(X)op . The left adjoint in (13) takes the measurement
cover M⊆ 1 to the effect algebra EA ⊗ EB ⊆ BA ⊗BB.

Proof. Denote the left adjoint of the chain of adjunctions by L and the right
adjoint by R. Reading the chain of adjunctions from left to right, starting with
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an effect algebra A gives the presheaf RA = T (A)(O(−)) : P(X)
op → Set. A

special case gives R[0, 1] = D(O(−)). For any effect algebra X, we then have

EA(LM, X) ∼= SetP(X)op(M, RX) = SetP(X)op(M, T (X)(O(−))).

If we can now show SetP(X)op(M, T (X)(O(−))) ∼= SetP(X)op(EA ⊗ EB, X),
natural in X, we can conclude that LM ∼= EA ⊗ EB, by uniqueness of left
adjoints. By Proposition 19, it suffices to show that SetP(X)op(M, T (X)(O(−)))
is in natural bijection with the X-tables, in other words, that a matching family
(dai,bj

)i,j for (11) in (T (X))(O(−)) is the same thing as an X-table. This comes
immediately from expanding the definition of matching family. Note that each
dai,bj by definition a 4-tuple (xai:0,bj :0, xai:0,bj :1, xai:1,bj :0, xai:1,bj :1) such that

>o,o′ xai:o,bj :o′ = 1. We define a table by t(ai : o,bj : o′) = (xai:o,bj :o′). The
first condition on tables amounts to requiring that each 4-tuple is a test, and the
second condition on tables amounts to the compatibility condition for matching
families.

Corollary 30. The adjunction (13) relates the effect algebra formulation of
Bell’s paradox (2), with the formulation of Abramsky and Brandenburger (12).

5.3. Relationship with techniques for memory locality

The techniques used to study quantum non-locality in this paper are also
used in computer science to study locality in computer memory, that is, to
analyze which areas of memory a program uses. We now explore this connection.
In the simplest model of memory there is a fixed set of all memory locations, L,
and a fixed set V of storable values. The entire memory is described by a
function L→ V , assigning a value to each memory location. This is analogous
to the way that the classical sample space of a Bell scenario is a function X → O,
assigning an outcome to each measurement. So the set L of memory locations
is analogous to the set X of measurements in quantum non-locality, and the
set V of storable values is analogous to the set O of outcomes in quantum non-
locality. There are various further analogies to be made, but the most striking
analogy is between marginalizing some of the measurements in quantum non-
locality, and hiding public global memory into private local memory (so-called
block structure). To be more precise, we now briefly consider three abstract
techniques for memory locality and relate them with techniques for quantum
non-locality.

• Typically there is a class of program configurations which includes values
for public memory locations as well as some private memory and other
structure. One can organize the class of all program configurations as a
functor C : P(L)op → Set (e.g. [32, 38]). The idea is that C(U) is the
set of configurations that involve the public locations U . The functorial
action hides global memory into local memory. This is analogous to the
way that Abramsky and Brandenburger model the measurement cover
and the distributions as functors P(X)op → Set. Hiding public memory
is thus analogous to marginalization of measurements.
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• Partial monoids also play a role in the study of memory locations. A
partial commutative monoid with cancellation is often called a ‘separa-
tion algebra’ [10]. These are not always effect algebras. For example,
the prototypical separation algebra is the partial monoid of partial func-
tions, h : L → V , which does not have a top element. However, some
examples do form effect algebras. For example, the unit interval [0, 1] is
used as a monoid of permissions (e.g. [10, 11]), and in ‘classical bunched
implications’ a set of top elements is actually postulated [9]. Techniques
from effect algebras have been rediscovered, for example, the Riesz de-
composition property of effect algebras [12] has been rediscovered as the
‘cross-split’ property for separation algebras [11].

• Presheaves on sets and functions also play a role in theories of memory
locality (e.g. [24, 34, 38]). The idea is to think of a set as a ‘store shape’.
For example, any set of memory locations U ⊆ L induces a set V U of
possible value assignments to those locations. It is convenient to forget
that the sets have the form V U , and instead work with a category of all sets
and functions. Roughly speaking, the class of system configurations can be
organized into a functor C : N→ Set, with C(n) the set of configurations
when the memory is allowed to take n possible values (see e.g. [30]). This
is analogous to the presheaves of tests in quantum non-locality.

(This is a rough overview; in practice it is useful to vary the objects and
morphisms of N when studying memory locality.)

When the store shape is of the form m×n, this suggests that the memory
splits in two parts, one part with m possible values and the other with
n possible values. There is a projection function m × n → m, and the
functorial action C(m × n) → C(m) describes how to hide the second
part of the memory. This is analogous to marginalization in quantum
non-locality.

Moreover, the convolution tensor product of presheaves, which plays an
important role in memory locality (e.g. [33]), appears to be closely related
to the tensor product of effect algebras (§4.2.3).

There are limitations to these analogies. It remains to be seen whether the
analogies extend to Bell scenarios. It could be argued that programmers typ-
ically assume that programs run in a consistent global memory state, i.e. a
function L→ V , even if they only use part of the memory or a particular store
shape. However, this assumption has been challenged in recent work relating
Bell scenarios to database consistency [5]. It is possible that relaxed memory
models also challenge the assumption.

6. Other paradoxes

6.1. Different kinds of values in tables: paradoxes of possibility

In this section we move from probability to possibility. As far as the authors
are aware, this originated from [23]. Let N be a finite set, considered as a
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sample space; a possibility distribution on N is a non-empty subset S of N ; the
elements of S are the events of N that are possible. Equivalently, a possibility
distribution is a function p : N → {0, 1} such that

∨
i∈N p(i) = 1, with p(i) = 1

meaning ‘i is possible’.
We can move away from the classical situation by replacing the set N by an

effect algebra E. We say that a possibility distribution on an effect algebra E
is a morphism of PPCMs E → ({0, 1},∨, 0, 1) into the pointed monoid.

The other direction of generalization begins by using the Yoneda lemma
to conclude that a possibility distribution on N is a natural transformation
N(N,−) → P+, where P+ : N → Set is the non-empty powerset functor.
We can thus say that a possibility distribution on a functor F : N → Set is
a natural transformation F → P+. The two approaches are related because
T ({0, 1},∨, 0, 1) ∼= P+.

Possibilities are related to probabilities by the map s : ([0, 1],+, 0, 1) →
({0, 1},∨, 0, 1) given by s(0) = 0, s(x) = 1 for x 6= 0. This takes a probability
distribution to its support, and by composing this with a probability distribution
we get a possibility distribution.

Hardy’s paradox. Abramsky and Brandenburger consider the following possi-
bilistic table

τ : {a0:0, a0:1, a1:0, a1:1}×{b0:0,b0:1,b1:0,b1:1} → ({0, 1},∨, 0, 1)

following Hardy’s work [23]:

τ a0:0 a0:1 a1:0 a1:1
b0:0 1 1 0 1
b0:1 1 1 1 1
b1:0 0 1 1 1
b1:1 1 1 1 0

(14)

This has a quantum realization but no classical realization.
We can relate our effect algebraic formulation of this paradox with the analy-

sis of Abramsky and Brandenburger [2], by again using the chain of adjunctions
in (13).

Corollary 31. The right adjoint in (13) takes the effect algebra ({0, 1},∨, 0, 1)

to the presheaf P+(O(−)) : SetP(X)op . Thus the adjunction (13) relates the
effect algebra formulation of Hardy’s paradox with the formulation of Abramsky
and Brandenburger.

6.2. Kochen-Specker systems

Recall that Proj (H) are the projections on a Hilbert space H. A reformula-
tion of the well known Kochen-Specker theorem [29] is that there are no effect
algebra morphisms Proj (H) → ({0, 1},>, 0, 1) if dimH ≥ 3. To prove this, it
suffices to to find a subalgebra E of Proj (H) such that there are no morphism
E → {0, 1}.
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A Kochen-Specker system is represented by a sub-effect algebra E of Proj (H)
such that there is no effect algebra morphism E → ({0, 1},>, 0, 1). This means
we cannot assign a value 0 or 1 to every element of E in such a way that
whenever p1, . . . pn ∈ E with p1 + . . . pn = 1, exactly one of the pi is assigned 1
and this assignment does not depend on the other pj , j 6= i. (NB here we use
partial join >, with 1 > 1 undefined, whereas we used the total join ∨ in §6.1.)

We now view this in the presheaf category SetN. Since there is no morphism
Proj (H) → ({0, 1},>, 0, 1), there is no natural transformation T (Proj (H)) →
T ({0, 1},>, 0, 1), by Corollary 10. We now explore this more explicitly.

The bounded operators on H form a C*-algebra, B(H). An n-test in the ef-
fect algebra Proj (H) can be identified with a unital *-homomorphism Cn → B(H)
from the commutative C*-algebra Cn, by looking at the images of the charac-
teristic functions on single points. So T (Proj (H)) ∼= C∗(C−, B(H)). On the
other hand, T ({0, 1},>, 0, 1)(N) = N .

There is another way to view this, via a restricted Gelfand duality. Let CC∗f
be the category of finite dimensional commutative C*-algebras. The functor
C− : Nop → CC∗f is an equivalence of categories. Under this equivalence we

have presheaves T (Proj (H)), T ({0, 1},>, 0, 1) ∈ SetCC∗f
op

with

T (Proj (H))(A) = C∗(A,B(H)) T ({0, 1},>, 0, 1)(A) = Spec(A)

where Spec(A) is the Gelfand spectrum of A. That is,

Spec(A) = {φ : A→ C | φ a non-zero ∗-homomorphism}.

The elements of Spec(A) are called the characters. Thus the Kochen-Specker
paradox says:

There is no natural transformation C∗(−, B(H))→ Spec in SetCC∗f
op

. (15)

(See also [35], Theorem 1.2.)
We can use adjunctions to transport this statement to other categories. If

a functor R : SetCC∗f
op

→ C has a left adjoint L : C → SetCC∗f
op

and L(X) =
C∗(−, B(H)) then the paradox says there is no morphism X → R(Spec) in C.

Most notably, we transport the paradox to the setting of Hamilton et al. [22],
who were concerned with presheaves on the poset C(B(H)) of commutative sub-
algebras of B(H). The spectral presheaf on C(B(H)) assigns to every commu-
tative sub-algebra A its spectrum as above. A natural transformation from the
terminal presheaf to the spectral presheaf now assigns to every such sub-algebra
A a particular character. A character in turn assigns to every self-adjoint ele-
ment in A an element of σ(a), the spectrum of a,2 which in our finite dimensional
setting is just an eigenvalue of a. As a ∗-homomorphism, a character respects
sums and products, while naturality implies this assignment of eigenvalues is
independent of the surrounding algebra. Thus a natural transformation from

2The spectrum of an operator is not to be confused with the spectrum of an algebra.
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the terminal presheaf to the spectral presheaf is a global assignment of outcomes
for experiments, which by the Kochen-Specker theorem does not exist.

We transport this using the following composite adjunction:

SetCC∗f
op
∆C∗(−,B(H))

>
//
SetCC∗f

op

/C∗(−, B(H))
ΣC∗(−,B(H))

oo ' Set(CC∗f ↓B(H))op
J∗

>
//
SetC(B(H))op

J!

oo

(16)
The first adjunction between slice categories is as in Section 5.2. The middle
equivalence is standard (e.g. [28, Prop. A.1.1.7]); here (CC∗f ↓ B(H)) is the cat-
egory whose objects are pairs (A, f : A→ B(H)) where A is a finite-dimensional
commutative C*-algebra and f is a *-homomorphism. The adjunction J! a J∗
is induced by the evident embedding J : C(B(H)) → (CC∗f ↓ B(H)), where a
commutative C∗-subalgebra A of B(H) is mapped to (A ↪→ B(H)).

Proposition 32. The right adjoint of (16) takes the spectral presheaf on CC∗f
to the spectral presheaf on C(B(H)). The left adjoint of the composite (16) takes
the terminal presheaf on C(B(H)) to the presheaf C∗(−, B(H)) on CC∗f .

Proof. Let K : C(B(H)) → CC∗f be the inclusion functor. Reading the
adjunction from left to right sends a presheaf F on CC∗f to F ◦K on C(B(H)).
In particular, the spectral presheaf gets mapped to the spectral presheaf.

To show the second half of the statement we show, similar to Proposition 29,
that natural transformations σ : 1 → G ◦ K are in natural correspondence
to natural transformations α : C∗(−, B(H)) → G. This bijection is given as
follows: given σ : 1→ G ◦K, define α : C∗(−, B(H))→ G as αA(f) = σf(A)(∗)
and given α : C∗(−, B(H))→ G, define σ : 1→ G◦K as σA(∗) = αA(iA) where
iA : A ↪→ B(H).

Corollary 33. The paradox (15) is equivalent to the statement of [22]: the
spectral presheaf has no global section.

7. Test spaces

In this section we want to consider another approach to non-locality and
contextuality via test spaces. However, test spaces come in different guises in
the literature. Here we want to present a small overview of these different
approaches to test spaces and make a link with effect algebras. Currently, the
following definition, which comes from [18], is probably the most common.

Definition 34 (Test space). A test space (X,Σ) consists of a set X together
with a set of subsets Σ ⊂ 2X such that the members of Σ cover X, i.e.,

⋃
T∈Σ T =

X. A probability measure on a test space (X,Σ) is a function µ : X → R≥0

such that
∑
x∈T µ(x) = 1 for every test T ∈ Σ.

More details about these test spaces can be found in [14]. The version of test
spaces we will use is more general in the sense that tests can include multiple
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instances of the same element. This will be comparable to how it might be
possible to add an element in an effect algebra to itself. The following definitions
are from [20] and [21].

Definition 35. An effect test space (X, T ) consists of a set X and a collection
T ⊂ NX such that

• For any x ∈ X there exists some t ∈ T such that t(x) 6= 0.

• If s, t ∈ T with s(x) ≤ t(x) for all x ∈ X, then s = t.

An important notion in the theory of test spaces is that of perspectivity.

Definition 36. Given an effect test space (X, T ), any function f ≤ t ∈ T is
called an event. Two events f, g are orthogonal if f + g is again an event and
complementary if f + g ∈ T . Two events f, g are perspective if there exists an
event h such that f, h and g, h are complementary. We write f ≈ g if f and g
are perspective.

Definition 37. An effect test space (X, T ) is algebraic if every t ∈ T has finite
support and if for events f, g, h, if f ≈ g and h+ f ∈ T then h+ g ∈ T . That
is to say, if two events share a complement, they share all complements.

Let (X, T ) and (Y,S) be algebraic effect test spaces. Any (partial) function

ψ : X → Y defines a function ψ̂ : {f ∈ NX | f has finite support} → NY by

ψ̂(f)(y) =
∑
{f(x) | φ(x) = y}. We understand the empty sum to be zero.

In particular, if 1x is the characteristic function of x ∈ X, then ψ̂(1x)(y) =∑
{1x(x′) | ψ(x′) = y}, which is 1 only if x′ = x, that is, y = ψ(x), so

ψ̂(1x) = 1ψ(x).

We obtain a category AEtest of algebraic effect test spaces whose mor-
phisms (X, T ) → (Y,S) are partial functions ψ : X → Y such that ψ̂(t) ∈ S if
t ∈ T . The reason to consider partial functions becomes clear when we consider
E = 0, the terminal effect algebra, in the adjunction below.

Example 38. Let I =
(
(0, 1], {f : (0, 1]→ N | supp(f) is finite,

∑
x(f(x))·x =

1}
)
. Then I is an algebraic effect test space describing the unit interval. Here

(0, 1] is the half-open unit interval, which we need because of the second point
of Definition 35. Let (X, T ) be any algebraic effect test space. A morphism
µ : (X, T )→ I corresponds to a probability measure µ̃ on X, where µ̃(x) = 0 if
µ(x) is undefined.

By slight modification of the ideas in [21] we now distill an adjunction be-
tween algebraic effect test spaces and effect algebras, which will allow us to
transpose paradoxes. (We note that Jacobs and Mandemaker [26, §3] also ex-
tracted a similar adjunction from [21], but for a modified notion of test space
called ‘test perspective’; we contend that our use of bona fide effect test spaces
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and partial maps stands more closely to test space literature.)

Let f be an event in an algebraic effect space (X, T ). Denote by π(f)
the set π(f) = {g | g ≈ f} and let Π(X) = {π(f) | f an event}. In [21] it
is shown that that Π(X) can be given the structure of an effect algebra in a
straightforward way. That is, π(f) > π(g) = π(f + g) whenever this makes
sense and π(f)⊥ = π(h) if h is a complement of f . We extend Π to a functor

Π : AEtest→ EA by Π(ψ)(f) = π(ψ̂(f)).

There is also a functor in the other direction, which we denote by S. Let E
be an effect algebra. We obtain an algebraic test space S(E) = (X, T ) where
X = E\{0} and T = {f : X → N | supp(f) is finite,>x(f(x)) · x = 1}. If
ϕ : E → A is an effect algebra morphism, we obtain an AEtest morphism S(ϕ)
by restricting to E\{0}. Note that I = S([0, 1]).

Lemma 39. Let E be an effect algebra. The map φ : E → ΠS(E), e 7→ π(1e)
is an isomorphism.

Proof. An inverse to φ is given as follows: let f be an event in ΠS(E), then
f =

∑
e f(e)1e. Now φ−1(π(f)) = >e f(e)e. See [21] for details.

Proposition 40. The functors Π and S form an adjoint pair Π a S. The map
φ−1 is the counit of this adjunction.

Proof. We want to show Hom(Π(X, T ), E) ∼= Hom((X, T ), S(E)). Given
ϕ : Π(X, T ) → E, define ϕ̄ : (X, T ) → S(E) by ϕ̄(x) = ϕ(π(1x)). Given

ψ : (X, T ) → S(E) define ψ̄ : Π(X, T ) → E by ψ̄(π(f)) = φ−1(π(ψ̂(f))).
Notice that any event f : X → N can be written as f =

∑
x f(x)1x. We then

have

¯̄ϕ(π(f)) = φ−1(π( ˆ̄ϕ(f)))

= φ−1(π( ˆ̄ϕ(
∑
x

f(x)1x)))

= φ−1(π(
∑
x

f(x)1ϕ̄(x)))

=
∑
x

f(x)ϕ̄(x)

=
∑
x

f(x)ϕ(π(1x))

= ϕ(π(f)),

and

¯̄ψ(x) = ψ̄(π(1x))

= φ−1(π(ψ̂(1x)))

= φ−1(π(1ψ(x)))

= ψ(x).
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In order to show the relation between test spaces and effect algebras, we
take a look at two non-locality scenarios.

7.1. Bell scenario
We shall take a look on how to transfer the Bell paradox to test spaces. It

follows from Lemma 39 and Proposition 40 that S is fully faithful. Hence we
can easily transfer the Bell paradox by applying S to the non-factoring triangle
as follows:

S(EA ⊗ EB)
++

// S([0, 1])

S(BA ⊗BB)
|
33

In fact, whenever we have a morphism φ : (X, T ) → (Y,S) such that Π(φ) :
Π(X, T ) → Π(Y,S) is the inclusion i : EA ⊗ EB → BA ⊗ BB, the method of
Diagram 9 allows us to transfer the paradox to AETest. This might be relevant
as the space S(EA ⊗ EB) is quite involved and we could find a smaller space.

Example 41. Consider figure 17 below. This is also depicted in [6, Fig. 7],
where it is called a hyper-graph, but we understand it as a test space by identify-
ing vertices and hyper-edges of a graph with points and tests of a test space. Let
Z be the set of points in it and for every line or circle define a function from
Z to N, which sends the points on this line or circle to 1 and the rest to 0. We
call the set of these functions Q. Then (Z,Q) is an algebraic effect test space.

a1:1 ∧ b0:0

a1:0 ∧ b0:0

a0:0 ∧ b0:1

a0:1 ∧ b0:1

a1:1 ∧ b0:1

a1:0 ∧ b0:1

a0:0 ∧ b0:0

a0:1 ∧ b0:0

a1:0 ∧ b1:1

a1:1 ∧ b1:1

a0:1 ∧ b1:0

a0:0 ∧ b1:0

a1:0 ∧ b1:0

a1:1 ∧ b1:0

a0:0 ∧ b1:1

a0:1 ∧ b1:1

(17)

We have conveniently labelled the points of this space. In the terminology of
non-locality, the circles correspond to fixed measurement settings and the lines
correspond to the no-signalling conditions. Hence we see that applying the func-
tor Π to this test space gives an effect algebra isomorphic to EA⊗EB. The Bell
table thus describes a distribution (Z,Q)→ I which does not factor though the
canonical map (Z,Q)→ S(BA ⊗BB).

N.B. Since the functor Π is not full, we cannot just take any test space
(X, T ) for which Π(X, T ) ∼= BA⊗BB in order to find a non-factorization of the
Bell scenario. In particular there is no map (Z,Q)→ (16, {f}) where 16 is a 16
element set and f : 16→ N is the map f(i) = 1∀i ∈ 16.
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7.2. GHZ scenario

The second example we will look at is the GHZ scenario [19]. We will use
the adjunction to explore the scenario from the perspective of both test spaces
and effect algebras. Like the Bell scenario, the GHZ scenario involves separate
observers, each with measurement settings and possible outcomes. But like the
Kochen-Specker scenario the ‘paradox’ here is absolute and not probabilistic.

There are three separate observers, Alice, Bob and Charlie, each with two
measurement settings (x and y) and two possible outcomes (−1 and +1). The
quantum realization of the scenario is as follows. Alice, Bob and Charlie share
a quantum state of the form ΨGHZ = 1√

2
(|↑↑↑> − |↓↓↓>). They each have the

choice to perform the Pauli-x operator, σx, which sends ↑ to ↓ and ↓ to ↑ or
Pauli-y operator, σy, which sends ↑ to i· ↓ and ↓ to −i· ↑. The crux is that
certain combinations of Pauli operators have the GHZ state as an eigenvector.
Indeed,

σxσxσxΨGHZ = −ΨGHZ , (18)

σxσyσyΨGHZ = ΨGHZ , (19)

σyσxσyΨGHZ = ΨGHZ , (20)

σyσyσxΨGHZ = ΨGHZ . (21)

Now in a local non-contextual setting we should be able to assign eigenvalues, +1
or −1 to the Pauli operators in such a way that it respects the above products,
but this is impossible as we can see from a parity argument: every Pauli operator
occurs twice on the left hand sides, hence the total product is +1, while the
product of the right hand side is −1. By the methods of [6] we can write
down a test space, (XGHZ , TGHZ), for this scenario (Figure 22). The vertices
on the circles correspond to the outcome of measurements whose settings are
written inside the circle. The remaining lines correspond to tests coming from
no-signalling.

−+−

+ + +

+−+

−−−

−−+

+−−

+ +−

−+ +

−−+

+−−

−+−

+ + +

−+−

+ + +

−−+

+−−

XXX

YYXYXY

XYY

(22)
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The statement of the paradox is now that there are no AETest morphisms from
(XGHZ , TGHZ) to the test space ({∗}, {!}) with one point and one test ! : ∗ 7→ 1.
Translated to effect algebras this statement becomes: there is no effect algebra
map Π(XGHZ , TGHZ) to ({0, 1},>), which is exactly a Kochen-Specker type
theorem.

8. Concluding remarks

We have exhibited a crucial adjunction between two general approaches to fi-
nite probability theory: effect algebras and presheaves (Corollary 10). We have
used this to analyze paradoxes of non-locality and contextuality (Section 4).
There are simple algebraic statements of these paradoxes in terms of partial
commutative monoids, but these transport across the adjunction to statements
about presheaves on N. By taking slice categories of the presheaf category, we
recover earlier analyses of the paradoxes (e.g. Corollary 31). Finally we inves-
tigated the transportation of non-locality and contextuality paradoxes between
test spaces and effect algebras.

Cohomology

To conclude, we mention some work that comes from the presheaf formal-
ism. Informally, presheaves have to do with “gluing together” local information.
Now non-locality is precisely a statement about how different local pieces of in-
formation fail to be glued together. Cohomology tries to capture the reason
why this local information cannot be glued together and can therefore be used
to study non-locality. We refer to [3] and [1]. A connection with effect algebras
has been developed in [36].
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[12] Pulmannová S. Dvurečenskij, A. New trends in quantum structures.
Kluwer, 2000.

[13] Kujala J. V. Dzhafarov, E. N. Context-content systems of random variables:
The contextuality-by-default theory. J. Math. Psychol., to appear.

[14] Gabbay D.M. Lehmann D. (eds.) Wilce A. Engesser, K. Test spaces. In:
Handbook of Quantum Logic and Quantum Structures: Quantum Logic.
Elsevier, 2009.

[15] Fritz T. Flori, C. (amost) c∗-algebras as sheaves with self-action.

[16] Bennett M. Foulis, D.J. Effect algebras and unsharp quantum logics.
Found. Physics, 24(10):1331–1352.

[17] Bennett M.K. Foulis, D.J. Tensor products of orthoalgebras. Order, 10:271–
282.

[18] Leifer M. Fritz, T. Plausibility measures on test spaces.

[19] Horne M. Shimony A. Zeilinger A. Greenberger, D. Bell’s theorem without
inequalities. Am. J. Phys., 58(12).

[20] S. Gudder. Effect test spaces. International Journal of Theoretical Physics,
36(12):2681–2705.

[21] S. Gudder. Effect test spaces and effect algebras. Foundations of Physics,
27(2):287–304.

30



[22] Isham C.J. Butterfield J. Hamilton, J. Topos perspective on the Kochen-
Specker theorem: III. Int. J. Theoret. Phys., pages 1413–1436.

[23] L. Hardy. Nonlocality for two particles without inequalities for almost all
entangled states. Physical Review Letters, 71(11):1665–1668.

[24] Tennent R. D. Hermida, C. Monoidal indeterminates and categories of
possible worlds. Theor. Comput. Sci., 430:3–22.

[25] B. Jacobs. Probabilities, distribution monads, and convex categories.
Theor. Comput. Sci., 2(28).

[26] Mandemaker J. Jacobs, B. Coreflections in algebraic quantum logic. Foun-
dations of physics, 42(7):932–958.

[27] Mandemaker J. Jacobs, B. The expectation monad in quantum founda-
tions. 8th International Workshop on Quantum Physics and Logic (QPL
2011) EPTCS, 95:143182.

[28] P.T. Johnstone. Sketches of an elephant: a topos theory compendium. OUP,
2002.

[29] Specker E. Kochen, S. The problem of hidden variables in quantum me-
chanics. Journal of Mathematics and Mechanics, 17:5987.

[30] P. B. Levy. Global state considered helpful. Proc MFPS 2008.

[31] Moerdijk I. Mac Lane, S. Sheaves in geometry and logic. Springer-Verlag,
1992.

[32] P. O’Hearn. On bunched typing. J. Funct. Program., 13(4):747–496.

[33] Power J. Takeyama M. Tennent R. D. O’Hearn, P.W. Syntactic control of
interference revisited. Theor. Comput. Sci., 228(1–2):211–252.

[34] F. J. Oles. Type algebras, functor categories and block structure. Nivat,
M., Reynolds, J. C. (Eds.), Algebraic Methods in Semantics. CUP, pages
543–573.

[35] M. Reyes. Obstructing extensions of the functor spec to noncommutative
rings. Israel J. Math., 192:667–698.

[36] F. Roumen. Cohomology of effect algebras.

[37] Uijlen S. Staton, S. Effect algebras, presheaves, non-locality and contextu-
ality. Proc. ICALP 2015.

[38] R.D. Tennent. Semantical analysis of specification logic. Inf. Comput.,
85(2):135–162.

31


	Introduction
	Generalized probability measures
	Relating non-locality and contextuality arguments

	Pointed Partial Commutative Monoids and Effect Algebras
	Presheaves and tests
	Bell scenarios: tables and effect algebras
	Tables
	Bell's paradox in effect algebras
	Sums of effect algebras
	Bimorphisms
	Tensor products

	Generalization of the Bell 2,2,2 type

	Sheaf theoretic characterization
	Relating the effect-algebraic and sheaf-theoretic characterizations
	Relationship with the work of Abramsky and Brandenburger
	Relationship with techniques for memory locality

	Other paradoxes
	Different kinds of values in tables: paradoxes of possibility
	Kochen-Specker systems

	Test spaces
	Bell scenario
	GHZ scenario

	Concluding remarks

