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Abstract
We target the problem of accuracy and robustness
in causal inference from finite data sets. Our aim is
to combine the inherent robustness of the Bayesian
approach with the theoretical strength and clarity
of constraint-based methods. We use a Bayesian
score to obtain probability estimates on the in-
put statements used in a constraint-based proce-
dure. These are subsequently processed in decreas-
ing order of reliability, letting more reliable deci-
sions take precedence in case of conflicts, until a
single output model is obtained. Tests show that
a basic implementation of the resulting Bayesian
Constraint-based Causal Discovery (BCCD) algo-
rithm already outperforms established procedures
such as FCI and Conservative PC. It indicates
which causal decisions in the output have high re-
liability and which do not. The approach is easily
adapted to other application areas such as complex
independence tests.

1 Introduction: Robust Causal Discovery
In real-world systems interactions between a set of variables
V are often modeled in the form of a causal DAG (directed
ayclic graph) GC . A directed path from A to B in such a
graph GC indicates a causal relation A ⇒ B in the system,
whereas an edge A→ B in GC indicates a direct causal link.

The causal Markov and faithfulness assumptions link
the structure of the graph GC to observed probabilistic
in/dependencies through d-separation [Pearl, 2000], which
forms the basis behind most existing causal discovery pro-
cedures. Together, they imply that the causal DAG GC is
also minimal, in the sense that no proper subgraph can satisfy
both assumptions and produce the same probability distribu-
tion [Zhang and Spirtes, 2008].

If some of the variables in the causal DAG are hidden then
the independence relations between the observed variables
may be represented in the form of an ancestral graph (AG)
[Richardson and Spirtes, 2002]; intuitively similar to a DAG

∗The paper on which this extended abstract is based was the re-
cipient of the best paper award of the 2012 Conference on Uncer-
tainty in Artificial Intelligence (UAI) [Claassen and Heskes, 2012].

except that it can also contain bi-directed arcs X ↔ Y (un-
observed common cause between X and Y ) and undirected
edges X−−Y (selection effects, ignored in this article).

Different graphs can produce the same set of independen-
cies: the equivalence class [G] is the set of all graphs that
are indistinguishable from G in terms of implied independen-
cies. The invariant features, common to all members of [G],
can be represented in the form of a partial ancestral graph
(PAG) P: an ancestral graph where circle marks ‘◦’ on edges
indicate ‘unknown tail or arrowhead’. A complete PAG en-
codes all identifiable, present or absent causal relations; see
e.g. [Zhang, 2008] for details on how to read PAGs.

With this in mind, the task of a causal discovery algorithm
is to find as many invariant features of the equivalence class
over observed variables from a given data set as possible.

Causal discovery paradigms
The so-called constraint-based algorithms search for condi-
tional independencies X⊥⊥Y |Z in order to eliminate direct
causal links X − Y from the causal PAG P . An efficient
search strategy can uncover the entire skeleton, after which a
number of orientation rules are executed to find invariant tails
‘−’ and arrowheads ‘>’ on edges. Members of this group
include the IC-algorithm [Pearl and Verma, 1991], PC/FCI
[Spirtes et al., 2000], and many others; see e.g. [Glymour et
al., 2004; Kalisch et al., 2011]. Of these, the FCI algorithm
in conjunction with the orientation rules in [Zhang, 2008] is
sound and complete in the large-sample limit when hidden
common causes and/or selection bias may be present.

They tend to output a crisp and clear causal model. The
downside is that for realistic, finite data sets they give little
indication of which parts of the network are stable (reliable),
and which are not: if unchecked, even one erroneous bor-
derline independence decision may lead to multiple incorrect
orientations [Spirtes, 2010]. To tackle this lack of robustness,
Ramsey et al. [2006] proposed a conservative approach in-
volving explicit validation of certain orientation rules. The
resulting Conservative PC algorithm is indeed more robust,
but also significantly less informative than vanilla PC.

The score-based algorithms build on the implied mini-
mality of the causal graph. They define a scoring criterion
S(G,D), often corresponding to a (Bayesian) likelihood, that
measures how well a Bayesian network with structure G fits
the observed data D, while preferring simpler networks, with



fewer free parameters, over more complex ones. For DAG
structures with either discrete or Gaussian variables closed
form solutions exist that can be computed efficiently from
data. These are employed in algorithms such as K2 [Cooper
and Herskovits, 1992] and the Greedy Equivalence Search
(GES) [Chickering, 2002] to search for an optimal structure.

Score-based procedures can output a range of high-scoring
models. Multiple alternatives are arguably less straightfor-
ward to interpret, but it does allow for a measured interpreta-
tion of the reliability of inferred causal relations, and is less
susceptible to incorrect categorical decisions [Heckerman et
al., 1999]. The main drawback is the need to rely on the
causal sufficiency assumption (no latent confounders).

2 The Best of Both Worlds
The strength of constraint-based algorithms lies in the ability
to handle data from arbitrary causal DAGs and turn it into
clear, unambiguous causal output. The strength of Bayesian
score-based approaches lies in the robustness and implicit
confidence measure that a likelihood-weighted combination
of multiple models can bring.

I Our idea is to improve on both methods by using a
Bayesian approach to estimate the reliability of different con-
straints, and use this to decide if, when, and how that infor-
mation should be used.

Instead of classifying pieces of information as ‘true’ or not,
we want to rank and process independence constraints ac-
cording to a principled confidence measure, and build up a
global causal model starting from the most reliable informa-
tion down to a discretionary minimum confidence level.

For that we use a recently developed method to break up
the causal inference process into a series of modular steps
that can be executed in arbitrary order. It works by translating
observed in/dependence constraints into basic logical causal
statements L via:

1. X⊥⊥Y | [Z ∪ Z] ` (Z ⇒ X) ∨ (Z ⇒ Y ),
2. X⊥⊥�Y |Z∪ [Z] ` (Z ; X)∧ (Z ; Y )∧ (Z ; Z),

where square brackets indicate a minimal set of nodes.
The logical causal statement L : (Z ⇒ X) ∨ (Z ⇒ Y )

states that there is either a causal relation from Z to X , or
from Z to Y , or both. Similarly, the logical causal statement
L : (Z ; X) states that there is no directed path from Z
to X in the underlying causal DAG GC ; see [Claassen and
Heskes, 2011] for details. Subsequent statements follow
from straightforward deduction on the causal properties
transitivity and acyclicity.

Crucial in this connection is that these logical causal state-
ments are implied directly by the structure of the underlying
causal graph GC , and so in turn by the induced ancestral graph
over the observed variables. As a result, we can obtain prob-
ability estimates on logical causal statements L ∈ L by sum-
ming the normalized posterior likelihoods of all structures G
that entail L through d-separation:

p(L|D) ∝
∑

G∈G(`L)

p(D|G)p(G), (1)

For the likelihood estimates p(D|G) on possible DAG
structures we employ the well-known Bayesian Dirichlet
(BD) metric for discrete variables [Heckerman et al., 1995].

p(D|G) =
n∏

i=1

qi∏
j=1

Γ(N ′
ij)

Γ(Nij +N ′
ij)

ri∏
k=1

Γ(Nijk +N ′
ijk)

Γ(N ′
ijk)

, (2)

with n the number of variables, ri the multiplicity of variable
Xi, qi the number of possible instantiations of the parents of
Xi in G, Nijk the number of cases in data set D in which
variable Xi has the value ri(k) while its parents are instanti-
ated as qi(j), and with N ′

ij =
∑ri

k=1N
′
ijk pseudocounts for a

Dirichlet prior over the free parameters.
For the prior over structures p(G) we can opt for a uniform

distribution over all possible graphs, or even include addi-
tional background information. To obtain proper probability
estimates we still need to normalize eq.(1) by dividing
through the sum of all contributions from all graphs. It is
well-known that the number of possible graphs increases
super-exponentially with the number of nodes. However,
eq.(1) equally applies to graphs over arbitrary subsets
X ⊂ V of the observed variables. For sparse graphs we can
limit the search to (small) subsets of max. size K � |V| in
order to keep the computations feasible, without losing much
information on the possible logical causal statements that
can be inferred. It implies that we can employ an efficient
search strategy over increasing subsets X of variables,
similar to PC/FCI. It does mean that there are now multiple
ways (different subsets of variables) to obtain a given logical
causal statement L, but it can be shown that it is sufficient
to only keep track of the maximum probability estimates
obtained so far. The resulting p(L|D(X)) form a conservative
estimate of the theoretical optimal probability that could be
obtained from the entire data set D.
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Figure 1: (a) causal DAG with hidden nodes, (b) minimal uDAG
over observed variables

When considering graphs over subsets of variables, we still
need to account for the fact that the minimal DAG over an
arbitrary subset X ⊂ V may be unfaithful (a ‘uDAG’) to the
underlying causal structure. For example in Figure 1(a) the
corresponding ancestral graph contains invariant bi-directed
edges W ↔ Z and V ↔ T from hidden common causes
that cannot be accommodated in a DAG. As a result, apparent
direct causal links such as X → Z and V → T appear in the
minimal uDAG in (b).



To avoid drawing incorrect conclusions we need to rely on
a modified d-separation inference rule:
Lemma 1. Let G be a uDAG for some distribution p(X). Let
GX‖Y be the graph obtained by eliminating the edge X − Y
from G (if present). Then, if X ⊥⊥GX‖Y

Y |Z then:

(X ⊥⊥G Y |Z)⇔ (X ⊥⊥pY |Z).

In words: independence from d-separation remains valid,
but the identifiable dependencies are restricted. The rule
can be extended to indirect dependencies in a uDAG G by
showing that if π = 〈X, .., Y 〉 is the only unblocked path
fromX to Y given Z in G, thenX ⊥⊥�p Y |Z; see [Bouckaert,
1995; Claassen and Heskes, 2012] for details. From this we
build a (pre-computed) mapping G → L from each possibly
unfaithful uDAG G to all valid logical causal statements L.

Finally, as we now consider graphs over subsets of differ-
ent sizes, it becomes essential to ensure that we also have a
consistent prior p(G) for structures of different sizes. Per-
haps surprisingly, this is not obtained by applying the same
strategy at different levels: a uniform distribution over DAGs
over {X,Y, Z} implies p(“X ⊥⊥ Y ”) = 6/25, whereas a
uniform distribution over two-node DAGs implies p(“X ⊥⊥
Y ”) = 1/3. We obtain a consistent multi-level prior by start-
ing from a preselected level K, and then extend to different
sized structures through marginalization.

3 Implementation and results
We can now turn the results from the previous section into
a working algorithm, called the Bayesian Constraint-based
Causal Discovery (BCCD) algorithm, depicted below.

It starts from a data set D and available background infor-
mation I, and outputs a matrix of identified causal relations
MC , indicating explicitly for each pair of variables whether
there is a causal relation X ⇒ Y , absence of causal relation
X ; Y , or ‘unknown’. It also produces a graphical causal
model in the form of a PAG P .

A crucial step in the algorithm is the mapping G × L
from (possibly unfaithful) DAG structures to logical causal
statements in line 9, which converts posterior likelihoods for
structures into probability estimates for causal relations. This
mapping is the same for each run, so it can be precomputed
once from the rules such as in Lemma 1, and stored for use
afterwards (l.1) The uDAGs G are represented as adjacency
matrices. For speed and efficiency purposes, we choose to
limit the structures to sizeK ≤ 5, which gives a list of 29,281
uDAGs at the highest level. For details about representation
and rules, see [Claassen and Heskes, 2012].

The adjacency search (l.3-15), loops over subsets from
neigbouring nodes, looking for identifiable causal informa-
tion, while keeping track of adjacencies that can be elimi-
nated (l.11). As the set W = {X,Y } ∪ Z can be encoun-
tered in different ways, line (7) checks if the test on that set
has been performed already. A list of probability estimates
p(L|D) for each logical causal statement is built up (l.10),
until no more information is found.

The inference stage (l.16-21) then processes the list L in
decreasing order of reliability, until the threshold is reached.

Algorithm 1 Bayesian Constraint-based Causal Discovery
In : database D over variables V, backgr.info I
Out: causal relations matrix MC , causal PAG P
Stage 0 - Mapping

1: G × L ← Get uDAG Mapping(V,Kmax = 5)
2: p(G)← Get Prior(I)

Stage 1 - Search
3: fully connected P , empty list L, K = 0, θ = 0.5
4: while K ≤ Kmax do
5: for all X ∈ V, Y ∈ Adj(X) in P do
6: for all Z ⊆ Adj(X)\Y , |Z| = K do
7: W← Check Unprocessed(X,Y,Z)
8: ∀G ∈ GW : compute p(G|DW)
9: ∀L : p(LW|DW)←

∑
G→LW

p(G|DW)
10: ∀L : p(L)← max(p(L), p(LW|DW))
11: P ← p(“Wi−��−Wj”|DW) > θ
12: end for
13: end for
14: K = K + 1
15: end while

Stage 2 - Inference
16: LC = empty 3D-matrix size |V|3, i = 1
17: Ł← Sort Descending (Ł, p(L))
18: while p(Li) > θ do
19: LC ← Run Causal Logic(LC , Li)
20: i← i+ 1
21: end while
22: MC ← Get Causal Matrix(LC)
23: P ←Map To PAG(P,MC)

Statements in L are added one-by-one to the matrix of log-
ical causal statements LC (encoding identical to L, see
[Claassen and Heskes, 2011]), with additional information in-
ferred from the causal logic rules. Basic conflict resolution is
achieved by not overriding information already derived from
more reliable statements. The final step (l.22,23) retrieves all
explicit causal relations in the form of a causal matrix MC ,
and maps this onto the skeleton P obtained from Stage 1 to
return a graphical PAG representation.

4 Experimental Evaluation
We have tested various aspects of the BCCD algorithm
in many different circumstances, and against various other
methods. The principal aim in this paper is to verify the via-
bility of the Bayesian approach. We compare our results and
that of other methods from data against known ground-truth
causal models. For that, we generate random causal graphs
with certain predefined properties (adapted from Melancon
et al. [2000]; Chung and Lu [2002]), generate random data
from this model, and marginalize out one or more hidden
confounders. We looked at the impact of the number of data
points, size of the models, sparseness, choices for parameter
settings etc. on the performance to get a good feel for ex-
pected strengths and weaknesses in real-world situations.

It is well-known that the relative performance of different
causal discovery methods can depend strongly on the perfor-
mance metric and/or specific test problems used in the eval-



uation. Therefore, we will not claim that our method is in-
herently better than others based on the experimental results
below, but simply note that the fact that in nearly all test cases
the BCCD algorithm performed as good or better than other
methods, is a clear indication of its viability and potential.
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Figure 2: BCCD approach to (complex) independence test; (a) con-
ditional independence X ⊥⊥ Y |W, Z, (b) minimal conditional de-
pendence X⊥⊥�Y |W ∪ [Z]

First we implemented the BCCD approach as a simple
independence test through a modified mapping G → I of
structures G to implied in/dependence statements I. Figure
2 shows a typical example in the form of ROC-curves for
different sized data sets, compared against a chi-squared test
and a Bayesian log-odds test from [Margaritis and Bromberg,
2009], with the prior on independence as the tuning param-
eter for BCCD. For ‘regular’ conditional independence there
was no significant difference (BCCD slightly ahead, more as
conditioning set increases). But for minimal independencies
other methods reject for both high and low decision thresh-
olds, resulting in the looped curves in (b); BCCD has no such
problem.
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Figure 3: Equivalence class accuracy (% of edge marks in PAG) vs.
decision parameter; for BCCD and (conservative) FCI, from 1000
random models; (a) 6 observed nodes, 1-2 hidden, 1000 points, (b)
idem, 12 observed nodes

Figure 3 shows typical results for the BCCD algorithm it-
self: for a data set of 1000 records the PAG accuracy for both
FCI and conservative FCI peaks around a threshold α ≈ 0.05
- lower for more records, higher for less - with conservative
FCI consistently outperforming standard FCI. The BCCD al-
gorithm peaks at a cut-off value θ ∈ [0.5, 0.7] with an accu-
racy that is slightly higher than the maximum for conservative

FCI. The PAG accuracy tends not to vary much over this in-
terval, making the default choice θ = 0.5 fairly safe, even
though the number of invariant edge marks does increase sig-
nificantly (more decisions).
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Figure 4: Accuracy of causal decisions as a function of the decision
parameter

Figure 4 depicts the causal accuracy as a function of the
tuning parameter for the three methods. The BCCD depen-
dency is set against (1−θ) so that going from 0→ 1 matches
processing the list of statements in decreasing order of relia-
bility. As hoped/expected: changing the decision parameter
θ allows to access a range of accuracies, from a few very re-
liable causal relations to more but less certain indications. In
contrast, the accuracy of the two FCI algorithms cannot be
tuned effectively through the decision parameter α. The rea-
son behind this is apparent from Figure 2(b): changing the
decision threshold in an independence test shifts the balance
between dependence and independence decisions, but it can-
not identify or alter the balance in favor of more reliable de-
cisions. We consider the fact that the BCCD can do exactly
that as the most promising aspect of the Bayesian approach.

5 Discussion

The experimental results confirm that the Bayesian approach
is both viable and promising: even in a basic implementation
the BCCD algorithm already outperforms other state-of-the-
art causal discovery algorithms. It yields slightly better ac-
curacy, and comes with an easy tuning parameter that can be
used to vary from making just a few but very reliable causal
statements to many possibly less certain decisions.

An interesting question is how far off from the theoretical
optimum we are: at the moment it is not clear whether we are
fighting for the last few percent or if sizeable gains can still
be made. Obvious improvements include scoring equivalence
classes (instead of all DAGs), handle larger substructures
through sampling, and to score ADMGs directly [Silva and
Ghahramani, 2009; Evans and Richardson, 2010]. Finally we
want to extend the method to handle continuous/mixed data
without the need for discretization.
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