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Abstract

We present two inference rules, based on so called minimal conditional indepen-
dencies, that are sufficient to find all invariant arrowheads in a single causal DAG,
even when selection bias may be present. It turns out that the set of seven graphi-
cal orientation rules that are usually employed to identify these arrowheads are, in
fact, just different instances/manifestations of these two rules. Contains detailed
proofs to main results.

1 Introduction

Learning causal relations from data is still considered a challenging task, especially when latent
variables and selection bias may be present. Even in these circumstances, some methods, like the
FCI-algorithm [2], are able to infer valid causal information from conditional (in)dependencies in
an observed probability distribution. For example, they may identify that variableX causally affects
variable Y , or, conversely, that variable Y is not a cause of X , and can often distinguish between
direct and indirect causal relations.

In this article, we focus on the second aspect: detectable absence of causal influence. In the graphical
output produced by the FCI-algorithm, an arrowhead at a node Y on an edge from X in the graph
represents causal information of the form ‘Y does not cause X’. We want to show that two rules,
based on the ones in [12] for combining multiple models, form a sound and complete set to uncover
all identifiable arrowheads in this output.

Section 2 introduces some basic terminology and the assumptions made. Section 3 describes the cur-
rent state-of-the-art approach to learning all invariant arrowheads from a given distribution. Section
4 generalizes the link between observed minimal conditional (in)dependencies and causal relations,
to allow for possible selection bias. Section 5 contains the main result: that two rules are sufficient
to derive all arrowheads, without relying on the detailed structure of the graph. The last two sections
discuss some extensions and potential applications for this approach.

2 Graphical model preliminaries

2.1 Terminology

First some standard graphical model concepts used throughout the article. A directed graph G is a
pair 〈V,E〉, where V is a set of vertices or nodes and E is a set of edges between pairs of nodes,
represented by arrows X → Y . A path π = 〈V0, . . . , Vn〉 between V0 and Vn in G is a sequence
of distinct vertices such that for 0 ≤ i ≤ n − 1, Vi and Vi+1 are connected by an edge in G. A
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directed path is a path that is traversed entirely in the direction of the arrows. A directed acyclic
graph (DAG) is a directed graph that does not contain a directed path from any node to itself. A
vertex X is an ancestor of Y (and Y is a descendant of X) if there is a directed path from X to Y in
G or if X = Y . A vertex Z is a collider on a path π = 〈. . . , X, Z, Y, . . .〉 if it contains the subpath
X → Z ← Y , otherwise it is a noncollider. A trek is a path that does not contain any collider.

For disjoint (sets of) vertices X , Y and Z in a DAG G, X is d-connected to Y conditional on Z
(possibly empty), iff there exists an unblocked path π = 〈X, . . . , Y 〉 between X and Y given Z, i.e.
such that every collider on π is an ancestor of some Z ∈ Z and every noncollider on π is not in Z.
If not, then all such paths are blocked, and X is said to be d-separated from Y ; see [1, 2] for details.

Definition 1. Two nodes X and Y are minimally conditionally independent given a set of nodes Z,
denoted [X⊥⊥Y |Z], iff X is conditionally independent of Y given a minimal set of nodes Z. Here
minimal, indicated by the square brackets, implies that the relation does not hold for any proper
subset Z′ ( Z of the (possibly empty) set Z.

A causal DAG GC is a graphical model in the form of a DAG where the arrows represent direct
causal interactions between variables in a system [3]. There is a causal relation X ⇒ Y iff there is
a directed path from X to Y in GC . Absence of such a path is denoted X ⇒� Y . The causal Markov
condition links the structure of a causal graph to its probabilistic concomitant, [1]: two variables X
and Y in a causal DAG GC are dependent given a set of nodes Z, iff they are connected by a path π
in GC that is unblocked given Z.

When there are possible latent (hidden) and selection variables in a DAG, the distribution over
the subset of observed variables can be represented by a (maximal) ancestral graph (MAG) [4].
Different MAGs can represent the same distribution, but only the (invariant) features shared by all
MAGs that can represent that distribution carry identifiable causal information. The (complete)
partial ancestral graph (cPAG) P that represents the equivalence class [G] of a MAG G is a graph
with either a tail ‘−’, arrowhead ‘>’ or circle mark ‘◦’ at each end of an edge, such that P has
the same adjacencies as G, and there is a tail or arrowhead on an edge in P , iff it is invariant in
[G], otherwise it has a circle mark [5]. Absence of an edge between two variables X and Y in a
graph G is sometimes explicitly indicated as X −��− Y . The cPAG of a given MAG is unique and
maximally informative for [G]. We use PAGs as a concise and intuitive graphical representation of
(all) conditional (in)dependence relations between nodes in an observed distribution; see [4, 5] for
more information on how to read independencies directly from a MAG/PAG using the m-separation
criterion, which is essentially just the d-separation criterion, only applied to MAGs.

2.2 Assumptions

Below we briefly discuss the main assumptions in this article:

- causal DAG
- causal faithfulness
- causal Markov
- large sample limit
- possible latent variables and selection bias
- no deterministic relations / (blocking) interventions

We assume that the systems we consider correspond to some underlying causal DAG GC over a great
many observed and unobserved nodes.

Throughout this article we adopt the causal faithfulness assumption, which implies that all and only
the conditional independence relations entailed by the causal Markov condition applied to the true
causal DAG will hold in the joint probability distribution over the variables in GC . For an in-depth
discussion of the justification and connection between these assumptions, see [6].

We assume that the large sample limit distributions P (V) are known and can be used to obtain cate-
gorical statements about probabilistic (in)dependencies between sets of nodes. Finite data precludes
such definite decisions, which has to be accounted for in the conclusions. In this article, however,
we are mainly concerned with the validity of our results in the large sample limit (for if they do not
apply even there, then they are heuristic at best). Note, however, the remarks at the end of section 6.
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In real experiments, we do not observe (in)dependencies between variables in the underlying causal
structure directly, but through the data obtained from the experiment. This introduces the possibility
of selection bias, see [7]. As a result, dependencies may be observed that do not originate from
the true causal structure, but from the data gathering process. In this way, it is possible to generate
distributions that cannot be reproduced faithfully by any causal DAG structure, but can be repre-
sented by ancestral graphs [4]. Loosely speaking, selection on a node in a causal DAG makes all
ancestors dependent, while leaving conditional independencies intact, by destroying (connecting)
all unshielded colliders (X → Z ← Y with no edge between X and Y ) that have a directed path
to it. Consequently, the detection of an unshielded collider Z in observed data also signifies the
absence of selection bias on Z or any of its descendants. In this article we explicitly do not assume
the absence of selection bias, i.e. all conclusions remain valid, whether selection effects are present
or not.

Finally, we assume there are no deterministic relations in GC , nor interventions that effectively
block or overrule the causal influence of one node on another. Both these assumptions are implied
by faithfulness.

3 Learning causal models

Usually, causal discovery starts from an observed probability distribution over a subset of variables,
and then tries to determine which variables do or do not have a directed path to each other in the
underlying causal DAG. Here we only consider causal relations that, in the large sample limit, can
be discovered from the conditional (in)dependencies that are present in the data, and ignore other
properties of the distribution that can yield causal information, such as non-Gaussianity and non-
linear features, see [8, 9]. From the previous section we know that this independence structure can
be represented in the form of a MAG G. However, many different MAGs can represent the same
observed probabilty distribution. Therefore, it is only the invariant features, such as missing edges
and arrowhead- and tail marks at certain edges, that are common to all MAGs in the equivalence
class [G], that carry definite, identifiable causal information. The challenge of causal discovery is
how to identify these invariant features from a given data set.

The Fast Causal Inference (FCI) algorithm [2] was one of the first algorithms that was able to validly
infer causal relations from conditional independence statements in the large sample limit, even in
the presence of latent and selection variables. It consists of an efficient search for a conditional
independence between each pair of variables, to identify the skeleton of the underlying causal MAG,
followed by an orientation stage to identify invariant tail and arrowhead marks. It was shown to be
sound [7], although not yet complete. Ali et al. [10] showed that a set of seven graphical orientation
rules (see below) is sufficient to identify all invariant arrowheads in the equivalence class [G], given
a single MAG G. Later, Zhang [5] extended this result to another set of seven rules that could orient
the remaining invariant tails, and proved the resulting procedure to obtain the PAG is not only sound,
but also complete.

In the rules, the following notion is employed: in a MAG G, a path π = 〈X,Z1, (. . . , Zk, )Z, Y 〉 is
a discriminating path for Z, iff X is not adjacent to Y , and every node {Z1, . . . , Zk} is a collider
on π and is a parent of Y .

The rules to obtain the PAG P start from a given MAG G. However, when starting from data instead
of a MAG, each rule is formulated in terms of an equivalent set of (in)dependence statements, see
e.g. [7] for more details. In that case, a preliminary rule is used to obtain the skeleton of P:

R0a For every pair of variables {X,Y }, if there is a set Z such that X ⊥⊥Y |Z, then remove
the edge X−��−Y from P , and record bfZ ∈ Sepset(X,Y )

All edges in the skeleton of P initially get circle marks ◦−◦ . For the next step, the seven graphical
orientation rules to find all invariant arrowheads are given below, where we follow the enumeration
in [5] in referring to the rules. Here tails − and arrowheads > on edges represent invariant marks
that have already been identified; circle marks ◦ are either not yet identified or non-invariant marks,
and the asterisk ∗ is a meta-symbol that stands for any of the other three (‘does not matter’). Figure
1 provides a graphical description.
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Figure 1: RulesR0b−R4b, arrowhead orientation rules

R0b For every triple X ∗−∗Z ◦−∗Y , with X and Y not adjacent, if Z /∈ Sepset(X,Y ), then
orient triple as X ∗→Z←∗Y .

R1 If X ∗→Z ◦−∗Y , and X and Y are not adjacent, then orient as Z−→Y .
R2a If Z−→X ∗→Y and Z ∗−◦Y , then orient as Z ∗→Y .
R2b If Z ∗→X−→Y and Z ∗−◦Y , then orient as Z ∗→Y .
R3 If X ∗→Z←∗Y , X ∗−◦W ◦−∗Y , X and Y are not adjacent and W ∗−◦Z, then orient

as W ∗→Z.
R4a If u = 〈X, . . . , Zk, Z, Y 〉 is a discriminating path between X and Y for Z, and Z ◦−∗Y ,

then if Z ∈ Sepset(X,Y ), then orient Z−→Y .
R4b If u = 〈X, . . . , Zk, Z, Y 〉 is a discriminating path between X and Y for Z, and Z ◦−∗Y ,

then if Z /∈ Sepset(X,Y ), then orient Zk←→Z←→Y .

These seven rules are sound and complete: rule R0b needs to be completed first, after which rules
R1−R4b can be repeatedly fired in arbitrary order until no more new instances apply. Each invariant
arrowheadX ∗→Y in the PAG G identified in this way, corresponds to the absence of causal relation
Y ⇒� X in the underlying causal DAG GC . In addition, also some invariant tails Z−→Y are found
in rules R1 and R4a. Out of these, only the tails added by R1 definitely imply the causal relation
Z ⇒ Y ; the tails added by R4a, and indeed by any of the other tail orientation rules in [5], do not
necessarily imply a causal relation, as they cannot exclude selection bias on (a descendant of) Z as
the origin of the tail.

We refer to the combination of the original FCI-algorithm, together with the complete set of orienta-
tion rules, as the extended FCI-algorithm. In this article, however, we ignore the final tail orientation
rules and the details behind the initial adjacency search, and only focus on the arrowhead orientation
stage, as depicted in Algorithm 1.

The first part of the algorithm, lines 1 − 5, aims to find the skeleton of the graph by eliminating
edges between nodes X and Y that are separated by some set Z. The ‘in some clever way’ not only
has to do with avoiding as many unneccessary conditional independence tests as possible, but also
with the fact that without causal sufficiency (i.e. with latent common causes a.k.a confounders) it
is no longer sufficient to restrict the search for separating sets to the so called Markov blanket [11]
of the nodes, see also [7]. The second part, lines 6 − 15, is the orientation stage that identifies all
invariant arrowheads in the output PAG, as well as some invariant tails. The repeated loop reflects
the fact that orienting one edge mark may lead to subsequent orientations. In the next section we
look at alternatives to this orientation procedure.
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Input : independence oracle, fully ◦−◦ connected graph over V
Output : PAG P

1: for all {X,Y } ∈ V do
2: search in some clever way for a X⊥⊥Y |Z
3: if found, eliminate X−��−Y from P (=R0a)
4: record Z in Sepset(X,Y )
5: end for
6: R0b: orient X ∗→Z←∗Y , iff X−��−Y and Z /∈ Sepset(X,Y )
7: repeat
8: R1 : orient Z−→Y , if X−��−Y and X ∗→Z
9: R2a: orient Z ∗→Y , if Z−→X ∗→Y

10: R2b: orient Z ∗→Y , if Z ∗→X−→Y
11: R3 : orient W ∗→Z, if X ∗→Z←∗Y , X ∗−◦W ◦−∗Y and X−��−Y
12: if 〈X,Z1, . . . , Zk, Z, Y 〉 is a discriminating path for Z, then
13: R4a: orient Z−→Y , iff Z ∈ Sepset(X,Y )
14: R4b: orient Zk←→Z←→Y , iff Z /∈ Sepset(X,Y )
15: until no new orientations found

Algorithm 1: FCI for invariant arrowheads

4 Causal relations from independence patterns

This section generalizes the result in theorem 1 of [12] to allow for the possibility of selection bias.

For that, let GC be a causal DAG over variables V, with hidden variables L and selection variables S,
so that O = V\ (L∪S) is the set of observed variables. Let G′ be the corresponding (marginalized)
maximal ancestral graph of GC over O, so G′ ≡ GC [SL in [4], and let X , Y , Z and W represent
disjoint (subsets of) nodes (possibly empty) from O. Then:

Lemma 1. An observed minimal conditional independence [X⊥⊥Y |Z] implies that every Z ∈ Z
has a directed path to X , Y and/or S ∈ S in GC .1

Proof. We construct a directed path from an arbitrary Z1 ∈ Z to either X , Y or S in GC . Similar
to Theorem 1 in [13], Z1 must be the (only) noncollider on some path π1 in G′ connecting X and Y
given all the other nodes (Z \ Z1) ∪ S (otherwise Z1 would not be needed in Z). If the edge along
π1 on either side of Z1 is undirected, then there is a directed path from Z1 to some S ∈ S in GC

(lemma 3.9 in [4] + acyclicity), and we are done. If there is no such undirected edge, then follow π1

in the direction of the outgoing arrow (choose either branch if Z1 has two outgoing arrows along π1)
until either X , Y or a collider on π1 that is an ancestor of one of the remaining nodes in Z \Z1, say
Z2, is encountered. (A collider that is ancestor of S would also be unblocked, but in this case the
collider cannot have a directed path to S, since that would imply that the initial arrow from Z1 would
have been an undirected edge. As we are constructing a strictly directed path this also holds for all
other nodes encountered along that path in the remainder of this proof). If X or Y is found then a
directed path has been found and we are done. If not then we can continue the directed path from
the collider encountered on π1 to its descendant node Z2 ∈ Z \ Z. This node in turn must be the
only noncollider on some other path π2 thatm-connectsX and Y given all nodes Z\Z2. Again this
path can be followed in the direction of the arrows until either X or Y or a collider that is ancestor
of one of the nodes in Z \ {Z1, Z2} is encountered. (This cannot be one of the previous nodes since
that would imply the existence of a directed path.) We can continue, and as long as neither X nor
Y is reached we will find new nodes from Z until all have been encountered. At that point the final
node will lie on a trek connecting X and Y that cannot be blocked by any other node in Z, and
therefore will have a directed path to X or Y . By construction, that means that if Z1 /∈ An(S), then
there is a directed path from Z1 to either X or Y in GC . As Z1 was chosen arbitrarily it holds for all
Z ∈ Z.

1Many thanks to Peter Spirtes for pointing out that a similar observation was already made in [7] (corol-
lary to lemma 14), although it was only used to prove correctness of the FCI-algorithm and never used as an
orientation rule.
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Lemma 2. A node W that creates the conditional dependence X⊥⊥�Y |Z ∪W — so, without W ,
X⊥⊥Y |Z — implies that there are no directed paths from W to X , Y , Z or S in GC .

Proof. Node W must be a (descendant of a) collider on some path π m-connecting X and Y given
Z ∪W , otherwise it would not be needed to unblock the path. Any directed path in GC from W
to a node in Z ∪ S implies that W is not needed, for then conditioning on W cannot unblock a
collider that is not already unblocked by conditioning on Z ∪ S. No directed paths from W to Z
implies that if there existed a directed path from W to X or Y , then it could not be blocked by any
Z ∈ Z. But then such a path would make W a noncollider on an unblocked path between X and
Y given Z: starting from X , let θX be the first collider encountered along π that is unblocked by
conditioning on W , and similarly θY the first collider along π starting from Y , (possibly θX = θY ,
but {θX , θY } /∈ Z (otherwise W not needed)); then the paths 〈X, θX ,W 〉 and 〈W, θY , Y 〉 are into
W and unblocked given Z ∪ W , so a directed path W ⇒ X would make W a noncollider on
unblocked path 〈X, θX ,W, Y 〉 given Z, contradicting X⊥⊥Y |Z; idem for W ⇒ Y .

Together, the two rules allow to infer causal relations, even in the presence of selection bias:

Corollary 3. In a causal DAG GC , if there is a minimal conditional independence [X⊥⊥Y |Z], and
a conditional dependence X ⊥⊥� U |W ∪ Z created by some Z ∈ Z, then there is a directed path
Z ⇒ Y in GC .
Proof. Analogous to Lemma 1 in [12]: the minimal conditional independence [X⊥⊥Y |Z] implies
directed paths from Z to X , Y and/or S (lemma 1), of which both options Z ⇒� X and Z ⇒� S are
eliminated by X⊥⊥�U |W ∪ Z (lemma 2), leaving only Z ⇒ Y .

Finally, the standard result for the exclusion of direct interactions between nodes, i.e. not mediated
by any of the other observed nodes in GC , still applies when selection bias may be present:

Lemma 4. A (conditional) independence X⊥⊥Y |Z implies the absence of direct causal paths
X ⇒ Y or X ⇐ Y in GC between X and Y that are not mediated by nodes in Z.

Proof. From the faithfulness assumption, with or without selection bias, the existence of a directed
path between X and Y not via any node in Z would result in X⊥⊥�Y |Z, see [2].

It is used to eliminate direct links between variables. For empty Z it implies absence of any causal
path between X and Y . This lemma relies on the assumption that there are no external interventions
on nodes in the underlying causal DAG GC that effectively block any causal influence from other
nodes, see section 2.2.

5 Arrowheads from minimal independencies

This section derives the main result of this report: that the seven graphical orientation rules,
R0b−R4b in Figure 1, for inferring all invariant arrowheads in (the PAG of) a causal DAG
are, in fact, different manifestations of just two rules, that both start from a minimal conditional
independence

Theorem 1. In a PAG G, all invariant arrowheads X ∗→Y are instances of rules

(1) U⊥⊥�V |W ∪ Y , created by Y from a minimal [U⊥⊥V |W], with X ∈ (U ∪ V ∪W), or

(2) a minimal [Y ⊥⊥Z |W ∪X], with an arrowhead at Z ∗→X from either rule (1) or rule (2).

Proof sketch. Both rules are sound, as they are direct applications of Lemmas 1 and 2. The proof
that they are also complete follows from the lemmas below, by induction on the graphical orientation
rules R0b−R4b, showing that none of them introduces a violation of Theorem 2. As these rules
are sufficient for arrowhead completeness [10, 5], it follows that the theorem holds for all invariant
arrowheads.
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For the remainder of the proof, we show that in each case, if the antecedent of one of the graphical
orientation rules R0b−R4b, see Figure 1, is satisfied, then the antecedent of rules (1) and/or (2)
is also satisfied, and the consequent of rule (1)/(2) then matches the consequent of the graphical rule.

Lemma 5. The arrowheads at Z from rules R0b, R3, and R4b are covered by rule (1) and the
arrowhead at Y from ruleR1 is covered by rule (2).

Proof. Implied directly by the corresponding patterns in Figure 1:

R0b: If this rule fires, then it implies [X ⊥⊥ Y |W] for some set W (possibly empty), with
X⊥⊥�Y |W ∪ Z. Therefore rule (1) applies and Z gets arrowheads on the edges from X
and Y in G, just as in the consequent ofR0b in Figure 1.

R1: Implies [X⊥⊥Y |Z] with Z ∈ Z and an arrowhead at Z from a rule that fired before. If no
violations beforeR1 fires, then rule (2) applies, and there is an arrowhead at Z−→Y in G,
just as in the consequent ofR1.

R3: Implies [X ⊥⊥Y |W] with W ∈W, and X ⊥⊥�Y |W ∪ Z. Therefore rule (1) applies, to
give W ∗→Z in G, just as inR3.

R4b: By construction of the discriminating path,R4b implies [X⊥⊥Y |Z], with {Z1, . . . , Zk} ∈
Z, but Z /∈ Z as X ⊥⊥� Y |Z ∪ Z. Therefore rule (1) applies, resulting in the addition of
Zk ∗→Z←∗Y to G, just as inR4b.

Lemma 6. The arrowheads at Y from rulesR2b,R4a, andR4b are covered by rules (1) and (2).

Proof. If no violations before R2b fires, then the arrowhead at Z ∗→X either appeared by rule (1)
as a nodeX that creates the dependencyU⊥⊥�V |W ∪X from [U⊥⊥V |W], withZ ∈ (U∪V ∪W)
(case 1), or by rule (2), as a minimal conditional independence [X ⊥⊥U |W ∪ Z], with an already
established arrowhead at U ∗→ Z, for which either U and Y are also independent given W ∪ Z
(case 2a), or not (case 2b).
Note: Y /∈W, otherwise path 〈X,Y, Z, U〉 would be unblocked; also: Y is a descendant of X .

For the three cases:

1) If conditioning on X creates U ⊥⊥�V |W ∪X , then conditioning on Y as a descendant of
X implies U⊥⊥�V |W ∪ Y , and so rule (1) also applies to Z ∗→Y .

2a) If Y ⊥⊥U |W ∪ Z, then also [Y ⊥⊥U |W ∪ Z], as no subset can block the path between
Y and U via X , and so rule (2) applies to Z−→Y .

2b) If Y ⊥⊥�U |W ∪ Z, then there is an unblocked path π between U and Y given W∪Z. The
path π is into Y , since otherwise the path 〈X,Y 〉+π would be an unblocked path between
X and U given W∪Z, contrary to [X⊥⊥U |W ∪ Z]. Therefore, conditioning on collider
Y on the path creates the dependency X⊥⊥�U |W ∪ Z ∪ Y , and so rule (1) applies.

InR4a andR4b, the arrowhead at Y is simply an instance ofR2b with Zk = X .

This leaves ruleR2a as the only remaining case to prove. For that we use three intermediate results.
First we have the observation:

Lemma 7. If two nodes X and Y are conditionally independent given a set of nodes Z, X⊥⊥Y |Z,
then an arbitrary node V can be:

(a) part of the conditional independence, i.e. V ∈ (X ∪ Y ∪ Z),

(b) conditionally independent of X and/or Y given Z, i.e. (V ⊥⊥X |Z) ∨ (V ⊥⊥Y |Z), or

(c) (descendant of) a collider between U and V , such that X⊥⊥�Y |Z ∪ V .
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Proof. If neither (a) nor (b), i.e. V /∈ (X ∪ Y ∪ Z) and V ⊥⊥�{X,Y } |Z, then there are paths
πX = 〈X, . . . , V 〉 and πY = 〈Y, . . . , V 〉 in the corresponding graph that are unblocked given Z.
Node V has to be a collider on the path π = πX +πY , otherwise π would be unblocked given Z (as
V /∈ Z), which would make X and Y dependent, contrary to X⊥⊥Y |Z. But then conditioning on
Z ∪ V will make them dependent, i.e. then (c).

Note that if Z is a minimal set that makes X and Y independent, then case (b) does not imply that it
is also minimal for V ⊥⊥(X/Y ) |Z, as shown by the example in Figure 2: from [X⊥⊥Y | {Z1, Z2}],
for node V we find V ⊥⊥X | {Z1, Z2}, as none of the other options in lemma 7 applies, ... but this
is only minimal for subset [V ⊥⊥X |Z2].

Figure 2: Example of case (b) in lemma 7 with ‘minimal’ only for subset

In the proof ofR2a we also use:

Lemma 8. In an ancestral graph G, if a node Z unblocks a blocked path π = 〈U, . . . , V 〉 between
two nodes U and V given some set W, then there are unblocked paths from both U and V into Z
relative to W, and so Z⊥⊥�{U, V } |W.

Proof. A path π is unblocked given W if all non-colliders on π are not in W and all colliders are in
An(W). As An(W) ⊆ An(W∪Z), adding a node Z can only unblock on a collider, so a blocked
path π can only be unblocked by conditioning on a node Z that is (a descendant of) a collider X on
the path (possibly X = Z). No node W ∈W\X blocks the path X ⇒ Z (otherwise conditioning
on Z would not be needed), therefore if π is unblocked relative to W, then so are the two paths
πU = 〈U, ..(, X, ..), Z〉 and πV = 〈Z, (.., X, ).., V 〉, which implies Z⊥⊥�{U, V } |W.

Finally, we need the following result:

Lemma 9. In an ancestral graph G, if there is an edge Y ∗−∗Z, and there are nodes such that
Z ⊥⊥ U |W and Z ⊥⊥� U |W ∪ Y , then there is a node V ∈ (U ∪W) such that [Z ⊥⊥ V |Q]
and Z ⊥⊥�V |Q′ ∪ Y . In words, if conditioning on a node Y destroys (unblocks) some conditional
independence for a neighbouring node Z, then the same holds for at least some minimal conditional
independence between Z and one of the other nodes involved.

Proof. By definition, there is a W′ ⊆ W such that [U⊥⊥Z |W′]. If then also U⊥⊥�Z |W′ ∪ Y ,
then the lemma applies with W = U and Q = W′. If not, i.e. if U⊥⊥Z |W′ ∪ Y , then we can
show that there is a node W ∈W for which the lemma holds. From the original U⊥⊥�Z |W ∪ Y ,
by lemma 8, there is an unblocked path π = 〈U, . . . , Y 〉 into Y given W. The path π contains
one or more (say k) colliders, some of which are (ancestors of) nodes from W, but not from W′

(otherwise the path to Y would also be unblocked given W′, which, together with edge Z ∗→Y ,
would imply U⊥⊥�Z |W′ ∪ Y , contrary to the assumed). Number the colliders as W1, . . . ,Wk, as
they are encountered along π when starting from Y , such that π = U ∗→Wk ←→ . . .←→W2←
→W1←→Y (ignoring/marginalizing other, intermediate nodes on the path, that are not in W). By
induction: if there is no unblocked trek between W1 and Z given W, then they are (minimally)
conditionally independent given some set Q1 ⊂ W (possibly empty), but dependent given Y , as
the paths from both W1 and Z into Y are not blocked by any node from W (as a ‘colliderless’
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subpath of unblocked path π, resp. direct edge to Y ), and so the lemma is satisfied. If not, i.e. if
there is an unblocked trek between W1 and Z given W, then this trek is out of W1, otherwise the
path 〈U,Wk, ..,W1, Z〉 would be unblocked relative to W, making U and Z dependent given W,
contrary the given. But then for W2, if there is no unblocked trek to Z, then [W2 ⊥⊥Z |Q2], with
W1 ∈ Q2, because it is the only node from W that blocks the trek W2 ←→W1 −→ Z. But that
also means that the path from W2 to Y is unblocked given Q2, and so W2 ⊥⊥� Z2 |Q2 ∪ Y . If
not, then the unblocked trek to Z is (again) out of W2, otherwise U ⊥⊥�Z |W, contrary the given.
This applies to all successive colliders Wi on the path π. But if all, up to and including Wk, have
an unblocked trek into Z, then no unblocked path between U and Z implies that Wk is needed to
block U ∗→Wk −→ Z, and so all Wi on π are in W′, implying an unblocked path to Y , and so
U⊥⊥�Z |W′ ∪ Y .

We can now show:
Lemma 10. The arrowhead at Y fromR2a is covered by rules (1) and (2).

Proof. Assuming no violations before R2a fires, then if the arrowhead at X ∗→Y originates from
rule (2), then the edge appears as X −→ Y , and is therefore also an instance of R2b, which we
already found to be valid. If X ∗→Y originates from rule (1), then there is a minimal [U⊥⊥V |W],
with X ∈ (U ∪ V ∪W), and the node Y creates U⊥⊥�V |W ∪ Y . By lemma 7 there are now three
cases for node Z:

(a) Z ∈ (U ∪ V ∪W),

(b) Z⊥⊥U |W, (and/or Z⊥⊥V |W)

(c) U⊥⊥�V |W ∪ Z.

For case (a), both X and Z are in (U ∪V ∪W), and so if rule (1) applies to X ∗→Y , it also applies
to Z ∗→Y . Case (c) cannot occur, as that would imply Z ⇒� (U ∪ V ∪W) by lemma 2, whileR2a
has Z−→X , with X ∈ (U ∪ V ∪W).
For the remaining case (b), w.l.o.g. we assume Z⊥⊥U |W. Then from lemma 9 it follows that there
is at least one minimal conditional independence between Z and some node from (U ∪W) that is
destroyed by conditioning on Y . Therefore, the arrowhead Z ∗→Y is then covered by rule (1).

Figure 3: Example of non-minimal case (b) in lemma 10.

Example. Figure 3 shows an instance of case (b) for R2a where the initial separating set is not
minimal. Here, R2a applies to Z ∗→ Y , after X ∗→ Y is derived via rule (1) from [U ⊥⊥X |W ]
with U⊥⊥�X |W ∪ Y (the origin of the edge Z −→ X is not depicted). By lemma 7, for node Z
indeed U ⊥⊥Z |W holds (case b), but not as a minimal independence, as [U ⊥⊥Z |∅]. As a result,
edge Z ∗→Y does not follow from rule (1) applied to this combination of nodes as conditioning on
Y does not make U and Z dependent, i.e. U ⊥⊥Z |Y . However, as in the proof of lemma 10, Z is
minimally conditionally independent of ‘eliminated’ node W , but dependent when conditioning on
Y . Therefore, rule (1) applies to [W ⊥⊥Z |∅] and W ⊥⊥�Z |Y , from which follows that Z ∗→Y .

We can now complete the proof of the main result:

Proof of theorem 1. Follows from the arrowhead completeness of rulesR0b-R4b, the fact that after
R0a the theorem holds (no arrowheads), in combination with the proof in lemmas 5-10 that none of
the rules R0b-R4b introduces a violation of the theorem, if there was no violation prior to firing of
the rule.
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6 Extensions

We can extend the previous results to improve scope and efficiency of the causal relations identified
from minimal conditional (in)dependencies. First we note that, for each pair of nodes {X,Y }, the
standard implementation of the FCI-algorithm already finds only one minimal conditional indepen-
dence, see lines 1-5 of Algorithm 1. The next results shows that this is also sufficient to find all
invariant arrowheads in our new approach.

Lemma 11. For each pair of nodes {X,Y } in the graph, finding a single minimal separating set Z,
i.e. such that [X⊥⊥Y |Z] (if it exists), is sufficient to orient all invariant arrowheads, using the two
rules in Theorem 1.

Proof sketch. This stems from the fact that the graphical orientation rules are defined on sets of
adjacent nodes, which ensures that most nodes are almost always needed to separate two nonadjacent
nodes in the same rule, and so will be found as part of the separating set, no matter how large/variable
the set of nodes to block all paths between the two can be. Note: once a minimal set is found
for a pair of nodes, then all remaining nodes are checked to see if including them destroys the
independence (so rule (1) applies).

The essential steps in the detailed proof per rule are very similar to that for theorem 1. Again, R2a
turns out to be the only ‘difficult’ one.

For that, we use the following result:

Lemma 12. In an ancestral graph G, if there are (sets of) nodes U, Y, Z and W, such that
[U⊥⊥Z |W] and U⊥⊥�Z |W ∪ Y , with Z ∗→Y in G, then there is a node V (possibly V = U ),
such that for all sets Q for which [V ⊥⊥Z |Q] it holds that V ⊥⊥�Z |Q ∪ Y .
In words: if conditioning on a node Y destroys (unblocks) some minimal conditional independence
for a neighbouring node Z, then it does so in all minimal independencies between Z and at least one
node in G.

Proof. Follows along the lines of lemma 9. We show that if lemma 12 does not hold for U , then we
can (repeatedly) find another node V to which the lemma can be applied in turn, until we eventually
find one that satisfies the lemma. Note: in this proof U ∗→ Y denotes any (unblocked) trek in G
between U and Y that is into Y , i.e. not necesarily an edge (except for the neighbors Z ∗→Y ).
Similar for U←→Y etc.
From the proof of lemma 9, there is an unblocked path π = U ∗→Wk←→ . . .←→W2←→W1←→Y
that is into Y given W, for some k ≥ 0. If any of the nodes Wi does not have an unblocked (trek)
path Wi −→ Z relative to W, then let V be the first such Wi encountered along π when starting
from Y , so that [V ⊥⊥Z |W′] and V ⊥⊥�Z |W′ ∪ Y , for some W′ (W (in W, all nodes up to Wi

are needed to make V = Wi independent of Z, which also ensures an unblocked path from V to
Y ; also note that unblocked treks relative to W imply unblocked treks relative to W′), and so the
lemma can be applied with V instead of U and W′ instead of W.
If not, (so all Wi have an unblocked trek Wi−→Z relative to W), then let V be the first node in G,
encountered along π when starting from U , that is not in W. If there is no such V , then no node in G
can block the path π, and all nodes Wi are needed in all sets that make U and Z independent, ensur-
ing the path to Y is unblocked, so conditioning on Y will destroy the independence, ergo satisfying
the lemma with V = U . If V is encountered somewhere between Wi+1←∗V ∗→Wi, (with i ≥ 1,
Wk+1 = U ), then V cannot have an unblocked path toZ given W, because then, i.e. with V /∈W, if
the path to Z is out of V , that would imply an unblocked path U ∗→ . . .←→Wi+1←∗V −→Z, or, if
the path toZ is into V , it would imply an unblockedU ∗→ . . .←→Wi+1←−V ←∗Z or an unblocked
U ∗→ . . .←→Wi+1←→V ←∗Z (as then collider V is an ancestor of Wi), contrary to [U⊥⊥Z |W].
Therefore, V is minimally conditionally independent of Z given some subset W′ ⊆ W, that in-
cludes all {Wi, ..,W1} (because of the unblocked treks Wi −→ Z), and so also has an unblocked
path to Y . Therefore lemma 12 can be applied to this V with [V ⊥⊥Z |W′] and V ⊥⊥�Z |W′ ∪ Y .
That leaves the case where V is encountered on the path W1←∗V ∗→Y (possibly W1 = U ). If
V does not have an unblocked trek to Z relative to W, then V is (minimally) conditionally inde-
pendent of Z given some subset W′ ⊆ W, and we can again apply lemma 12 with V in place of
U . If V does have an unblocked trek to Z relative to W, then this trek has to appear in the form
W1←→V ←∗Z, otherwise, if either of the unblocked treks W1←∗V and V ∗−∗Z is out of V , then
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the path U ∗→ . . .←→W1←∗V −→Z would be unblocked, contrary to [U⊥⊥Z |W]. So both treks
W1←→V ←∗Z are into V . Now, if V is part of some minimal independence between U and Z,
then by lemma 1, V has a directed path to U and/or Z. But V cannot have a directed path to U , for
then the trek U←−V ←∗Z must be blocked by some node from W, otherwise U and Z would be
dependent without V , which in turn would unblockW1←→V ←∗Z, as V would be a collider that is
an ancestor of W, contrary to [U⊥⊥Z |W]. But then V also cannot have a directed path to Z, as that
would have to be blocked by some node from W as well, otherwise U . . .W1←→V −−∗Z would be
unblocked, which in turn would unblock W1←→ V ←∗Z, as collider V is again ancestor of some
node in W, making U and Z dependent given W, contrary the initial assumption. Therefore, if
both treks W1←→V ←∗Z are into V , then V is not part of any minimal conditional independence
between U and Z, and so cannot prevent the original [U⊥⊥Z |Q] with U⊥⊥�Z |Q ∪ Y being found,
with ∀Q : {W1, ..Wk} ⊆ Q, guaranteeing the unblocked paths to Y , and so the lemma applies with
V = U .
This recursive application of lemma 12 to nodes, conditionally independent of Z, that are closer and
closer to Y along the initial path π can continue at most until there is a direct edge U ∗→ Y in G:
at that point, for any set Q that (minimally) separates U and Z, conditioning on Q ∪ Y will make
them dependent, and so the lemma is satisfied.

It turns out it is actually easier to use a more restricted variant of theorem 1 to prove lemma 11:

Lemma 13. In a PAG P , all invariant arrowheads Z ∗→Y are instances of
(1′) U⊥⊥�V |W ∪ Y , created from [U⊥⊥V |W], with Z ∈ (U ∪ V ∪W), and where for all sets

W′ : [U ⊥⊥ V |W′] the paths from U and V to Y are unblocked relative to W′, and either
Z ∈ {U, V } or (necessarily) Z ∈W′.

(2′) [X⊥⊥Y |W] with Z ∈W, and Z ⇒� (X ∪ S) from either case (1′) or case (2′), and Z in all
sets W′ : [X⊥⊥Y |W′].

In words: case (1) only needs to be applied to instances where Z is always part of the minimal condi-
tional independence, and that will always be unblocked when conditioning on Y . Case (2) also only
needs to be applied to instances where Z is always part of the minimal conditional independence.

Proof. For each arrowhead rule:
R0b fires on any (minimal) conditional independence X⊥⊥Y |W between X and Y , and for

any such W, including Z will unblock the path 〈X,Z, Y 〉, so case (1′) applies,
R1 node Z is part of any set (minimal or not) that separates X and Y , and so case (2′) applies,
R3 similar toR0b, fires on a node W that is part of all sets separating X and Y , and including

Z will unblock the path 〈X,Z, Y 〉, and so case (1′) applies,
R4b (arrowheads at Z) all nodes Z1, . . . , Zk are part of all sets separating X and Y , and includ-

ing Z then makes them dependent, so case (1′) applies,
R2b for instance (1) in lemma 6, if case (1′) applies to Z ∗→X , then it also applies to Z ∗→Y ,

as X is never part of the minimal conditional independence involving Z, and so unblocked
paths to X imply unblocked paths to Y ; for instance (2a), Z is present in all sets that make
X and U independent, and so also in all sets that make Y and U independent (as it implies
Z−→Y ), and so case (2′) applies; for instance (2b), if Y ⊥⊥�U |W ∪ Z holds for all sets for
which [X⊥⊥U |W ∪ Z], then it is an instance of case (1′) with V = X . If not, then there
is some W′ for which [X⊥⊥U |W′ ∪ Z] and not Y ⊥⊥�U |W′ ∪ Z. But as Z is needed in
all sets that block a path π = U.. ∗→Z −→X between U and X , it means that Z is also
needed in all sets that separate U and Y , because if there is any remaining unblocked path
π from U to either X or Z, then π+ either X−→Y or Z−→Y is an unblocked path from
U into Y . Therefore Z is also needed in all sets that separate U and Y , which, together
with Z ⇒� (U ∪ S), implies that it is an instance of case (2′).

R4a/b (arrowhead at Y ) instances ofR2b with Zk = X ,
R2a if the arrowhead between X and Y originates from case (2′) then X −→ Y , and so is

instance of R2b; if from case (1′) and it holds before, then instance (c) in lemma 7 still
cannot occur. The proof of instance (b) (lemma 9) shows that Z appears as one of the
separated nodes in some minimal conditional independence [W ⊥⊥Z |Q] that is destroyed
by conditioning on Y , and so is an instance of lemma 12, which implies that it satisfies
case (1′). Finally, if instance (a) (in lemma 7), and arrowhead X ∗→ Y results from case
(1′), i.e. X appears in all W : [U ⊥⊥V |W], and for all of these there are unblocked paths

11



from U and V into Y relative to W, then if Z ∈ {U, V } or Z appears in all sets W, then
both X and Z satisfy the definition of case (1′) for Z. If not, i.e. if Z does not appear in
all minimal sets W that can separate U and V , then Z cannot have edges to both U and V
(otherwise it would be needed in all sets, because it cannot be a collider between them, as
Z−→X and X has a directed path to at least U or V , by lemma 1). Therefore, in that case
(by lemma 7), Z is conditionally independent of U or V given some W, and so (lemma
9) also minimally conditionally independent, and so (lemma 12) also in some combination
that satisfies case (1′).

(Note that R2b is not simply an instance of lemma 12, as that only says that X has a conditional
independence with some node V ∈W that will always be destroyed by conditioning on Y . It does
not guarantee that Z is also always a part of this set.)

So all arrowhead rules are covered by lemma 13. As the two cases in lemma 13 are just a restricted
form of the cases in theorem 1, it follows that all rules are also covered by 1 if just a (any) single
minimal independence is found between each pair (if it exists).

The rules in theorem 1 already allow identification of many causal relations X ⇒ Y and absence
thereof. However, sometimes, we can (only) identify a causal relation indirectly from two or more
steps. As before, we assume that GC is the causal DAG over a set of nodes V, possibly including
latent variables and selection variables, and that P is the corresponding completed PAG over the
subset of observed variables.

Lemma 14. The transitive closure of the invariant arcs found by rule (2), all correspond to identifi-
able, definite causal relations in the underlying causal DAG GC .

Proof. By corollary 3, all arrowheadsX ∗→Y found by rule (2) in Theorem 1 correspond to definite
causal relations X ⇒ Y . The binary relation X ⇒ Y is transitive, as X ⇒ Y and Y ⇒ Z also
implies thatX ⇒ Z (there is at least a directed path fromX to Z via Y in the underlying DAG GC).
Therefore all elements in the transitive closure also correspond to definite causal relations.

Note: this lemma corresponds to orientation ruleR8a in [5].

All results we have obtained so far do not depend on the structure of the graph, that is, they apply
to arbitrary sets of nodes, irrespective of the graphical structure between the nodes in the PAG. In
particular, they do not need to be adjacent. Nevertheless, if we record all instances identified by
rules (1) and (2) in Theorem 1, and then apply corollary 3 and lemma 14 to infer (absence of) causal
relations, then it is straightforward to transfer this structure independent information on relations
between pairs of nodes directly to edges in the graph P .

Lemma 15. Let (X,Y ;Z) ∈ SCI , record the fact that all Z ∈ Z occur in some minimal (condi-
tional) independence for two nodes X and Y , and let MC contain all recorded explicit (absence of)
causal relations X ⇒ Y in GC , then

- (X,Y ; ∗) ∈ SCI implies that X−��−Y in P ,
- (X,Y ; ∗) /∈ SCI and (X ⇒ Y ) ∈MC implies that X−−∗Y in P ,
- (X,Y ; ∗) /∈ SCI and (Y ⇒� X) ∈MC implies that X ∗→Y in P .

Proof. Follows directly from the definition of a (completed) PAG in combination with the validity
of lemmas 1, 2, and 4, together with corollary 3 and lemma 14.

It implies that all invariant arcs X −→ Y in the PAG P established in this way are definite causal
relations, i.e. identifiable, whether there is selection bias present or not. In general, however, invari-
ant arcs X −→Y in a PAG may also be produced by selection on (a descendant of) X , without the
actual existence of a directed path X ⇒ Y in the underlying causal DAG GC .

Note that it does not imply that all definite causal relations can be identified this way. Indeed,
there are examples of such relations that do not rely on rule (2). Then again, there can also exist
identifiable definite causal relations that do take this form, but that do not start from an invariant tail
in the PAG at all. Similarly, for some instances, the identifiable absence of a causal relation X ⇒� Y
does not follow directly from Theorem 1 for arbitrary single minimal independencies, as in lemma

12



11. Still, this never pertains to adjacent nodes, and can always be identified using Theorem 2 in [12].
More details on this, and how to read (definite) causal and other relations from a PAG, will be the
subject of another article.

7 Conclusion

We have shown that the results underpinning causal discovery from multiple models in [12] can be
extended to allow for the presence of selection bias. As such, the corresponding two rules are suf-
ficient to directly identify all invariant arrowheads in a PAG. This in contrast to the seven graphical
orientation rules [10, 5] that are normally used to accomplish this feat. The rules can be incorporated
efficiently in a standard structure learning algorithm, like FCI [2]. As the rules do not depend on the
detailed structure of the underlying graph, they offer the interesting possibility to work towards a
more robust form of causal inference for finite data, by considering multiple combinations of nodes
to decide on (the absence of) a specific causal relation.

The MCI-algorithm introduced in [12] was sound, but by no means complete. Arrowhead com-
pleteness for single models is a first step towards a completeness result for multiple models. Next
step is to look at invariant tails in a PAG, see [5]. Current results suggest that two additional rules,
similar to the ones in Theorem 1, are sufficient to cover all invariant tails in a single model as well.
Furthermore, a few more rules can be applied to eliminate edges. Whether or not this approach will
be able to cover all possible causal information that can be inferred from multiple models remains
an open question.
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