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Abstract

We present a novel approach to constraint-
based causal discovery, that takes the form
of straightforward logical inference, applied
to a list of simple, logical statements about
causal relations that are derived directly from
observed (in)dependencies. It is both sound
and complete, in the sense that all invari-
ant features of the corresponding partial an-
cestral graph (PAG) are identified, even in
the presence of latent variables and selection
bias. The approach shows that every identifi-
able causal relation corresponds to one of just
two fundamental forms. More importantly,
as the basic building blocks of the method
do not rely on the detailed (graphical) struc-
ture of the corresponding PAG, it opens up
a range of new opportunities, including more
robust inference, detailed accountability, and
application to large models.

1 Introduction

Causal discovery remains at the heart of most scien-
tic research to date. Understanding which variables
in a causal system influence which other is crucial for
predicting the effects of actions and policies. Learning
such relations from observational data is challenging,
especially when latent confounders (hidden common
causes) and selection bias (affecting the chance of in-
clusion in the data set) can be present.

With the introduction of the FCI algorithm in the
seminal work of (Spirtes et al., 2000), it was shown
that, under reasonable assumptions, it is indeed pos-
sible to infer valid causal information from observed
probabilistic independencies in the large sample limit.
Subsequent results and contributions from various re-
searchers (Spirtes et al., 1999; Ali et al., 2005; Zhang,

2008a) have developed this into a method that pro-
duces a provably sound and complete output model
that captures all identifiable causal information.

Perhaps surprisingly, this does not mean that the prob-
lem of causal discovery from data is now considered
‘solved’ by the wider research community: the method
has trouble handling large models, and worse, in prac-
tice the output is often seen as unreliable.

Most current constraint-based approaches to causal
discovery rely on a two step process: a structure identi-
fication phase from observed independencies, followed
by a (graphical) orientation phase. In real-world data,
the large sample limit does not apply, and if one or
more incorrect independence decisions are made, then
this can lead to a series of erroneous orientations. But
this ambiguity is not apparent in the output, severely
limiting the interpretability of the entire model, also
because there is little or no accountability prospect
for any of the causal relations found. Bayesian score-
based methods such as GES (Chickering, 2002) are
better suited to deal with this kind of problem, as they
can produce multiple output models (Heckerman et al.,
1999). However, they have trouble accounting for hid-
den variables and selection bias, and also suffer from
the complexity problem. Would it be possible to give
a (complete) characterization of identifiable causal re-
lations, without first building a global structure?

Related work

One of the first to identify causal relations without re-
course to a global structure was Cooper (1997), who
presented an algorithm that could infer a causal rela-
tion from certain independence relations between three
variables, in combination with information that one of
these was known to be an uncaused variable. Later
Mani et al. (2006) showed that certain independence
relations between four variables, corresponding to a
so-called embedded Y-structure, indicate the presence
of a causal relation without the need for such back-
ground knowledge. A different approach to tackle the



large scale complexity was taken by (Spirtes, 2001),
who introduced a variant of FCI that could be inter-
rupted at various stages in the inference process, with
an output that is correct, but perhaps less informative
than if the algorithm had been allowed to complete.

The perceived lack of robustness in the graphical ori-
entation phase (due to incorrect independence deci-
sions from limited available data), was addressed by
Ramsey et al. (2006) who introduced checks to iden-
tify certain inconsistencies in the observed indepen-
dencies that violate so-called ‘orientation faithfulness’,
and avoid propagating these to the rest of the graph.
In a related paper, Zhang and Spirtes (2008) also con-
sider testable instances of adjacency unfaithfulness.

In this paper we introduce three rules to convert ob-
served minimal (in)dependencies into logical state-
ments about causal relations. We show that straight-
forward inference on these logical statements, using
standard properties of causality, is sufficient to obtain
all identifiable causal information. The result is the
first provably sound and complete alternative to the
augmented FCI algorithm. As such it generalizes other
methods that do not need to build a global indepen-
dence structure first, and is easily formulated as an
anytime algorithm. The fact that the method only
requires three simple rules that can be combined in
any desired order of occurrence offers hope that this
approach can be adapted to improve robustness on
real-world data sets as well.

The paper is organized as follows. Section 2 describes
some standard methods and terminology. Section 3
introduces the logical inference rules. Sections 4 and
5 show these rules are complete. Proofs are provided
in the Appendix and in (Claassen and Heskes, 2011).

2 Background

2.1 Mixed graphical models

A mixed graph G is a graphical model that can con-
tain three types of edges between pairs of nodes: di-
rected (−→), bi-directed (←→), and undirected (−−). In
a mixed graph, standard graph-theoretical notions,
e.g. child/parent, ancestor/descendant, directed path,
cycle, still apply. So, a vertex Z is a collider on a
path u = 〈. . . , X, Z, Y, . . .〉 if there are arrowheads at
Z on both edges from X and Y , otherwise it is a non-
collider ; if X and Y are not adjacent in G, then the
subpath 〈X, Z, Y 〉 is unshielded.

A mixed graph G is ancestral, iff an arrowhead at X
on an edge to Y implies there is no directed path from
X to Y in G, and there are no arrowheads at nodes
with undirected edges. As a result, arrowhead marks

can be read as ‘is not an ancestor of’. In a mixed
graph G, a vertex X is m-connected to Y by a path
u, relative to a set of vertices Z, iff every noncollider
on u is not in Z, and every collider on u is an an-
cestor of Z. If there is no such path, then X and Y
are m-separated by Z. An ancestral graph is maximal
(MAG) if for any two non-adjacent vertices there is
a set that separates them. A directed acyclic graph
(DAG) is a special kind of MAG, containing only →
edges, for which m-separation reduces to the familiar
d -separation criterion. The Markov property links the
structure of an ancestral graph G to observed prob-
abilistic independencies: X ⊥⊥ Y |Z, if X and Y are
m-separated by Z. Faithfulness implies that the only
observed independencies in a system are those entailed
by the Markov property. For more details, see (Koller
and Friedman, 2009; Spirtes et al., 2000).

An important concept is that of a minimal conditional
(in)dependence, capturing the notion that really all
variables in the minimal set, indicated by brackets,
play a role in making two variables (in)dependent:

- X⊥⊥Y |W ∪ [Z] ≡ ∀Z′( Z : X⊥⊥�Y |W ∪ Z′,
- X⊥⊥�Y |W ∪ [Z] ≡ ∀Z′( Z : X⊥⊥Y |W ∪ Z′.

Finally, three path definitions that appear in the ori-
entation rules in the next section: in a MAG, a path
u = 〈X, . . . , W, Z, Y 〉 is a discriminating path for Z if
X is not adjacent to Y , and every node between X
and Y is a collider along u, and is a parent of Y . In a
PAG P (see below), a path u = 〈V0, . . . , Vn+1〉 is said
to be an uncovered potentially directed (p.d.) path, if
each successive triple along u is unshielded, and no
edge Vi ∗−∗Vi+1 has an arrowhead at Vi or a tail at
Vi+1. If all edges on u are of the form ◦−◦ , then the
path is called an uncovered circle path.

2.2 Causal models and ancestral graphs

A popular and intuitive way of representing a causal
system is in the form of a causal DAG GC , where
the arrows represent direct causal interactions between
variables in a system (Pearl, 2000; Zhang, 2008b). We
say there is a causal relation X ⇒ Y , iff there is a
directed path from X to Y in GC . Absence of such
a path is denoted X ⇒� Y . The following properties
follow readily from this definition

Proposition 1. Causal relations in a DAG GC are:

irreflexive : X ⇒ X ` false
acyclic : X ⇒ Y ` Y ⇒� X
transitive : (X ⇒ Y ) ∧ (Y ⇒ Z) ` X ⇒ Z

Other definitions are possible, for example we may
want to allow for non-recursive relations (feedback)
or include threshold effects. Such extensions imply



that the causal system is not faithful to a causal DAG,
which may impact the conclusions in this article.

When some variables in the causal DAG are hid-
den, or when there is possible selection bias (Spirtes
et al., 1999), the independence relations between the
observed variables can be represented in the form of
a maximal ancestral graph (Richardson and Spirtes,
2002). Roughly speaking, hidden common causes be-
come bi-directed edges, and selection bias on common
effects gives undirected edges. The (complete) partial
ancestral graph (PAG) represents all invariant features
that characterize the equivalence class [G] of such a
MAG, with a tail ‘−’ or arrowhead ‘>’ end mark on
an edge, iff it is invariant in [G], otherwise it has a
circle mark ‘◦’, see (Zhang, 2008a). Tails in a PAG
are associated with identifiable (define?) direct causal
relations, and arrowheads with the absence thereof,
(Zhang, 2008b). Figure 1 illustrates the relation be-
tween these three types of graphs. Note that when se-
lection bias may be present, an invariant arc in a PAG
P by itself not necessarily implies a causal relation,
e.g. link B −→ F in Figure 1.3). However, if the tail
node also has an incoming invariant arrowhead from
another node, as for arc E−→F , then it does represent
a definite, identifiable causal relation.

Figure 1: 1) Causal DAG (dashed = hidden, gray = se-
lection); 2) MAG over observed nodes; 3) complete PAG.

The challenge of causal discovery from observed inde-
pendencies is how to identify all these invariant fea-
tures from a given data set, in order to determine
which variables do or do not have a directed path to
which others in the underlying causal DAG.

2.3 Augmented FCI algorithm

The famous Fast Causal Inference (FCI) algorithm
(Spirtes et al., 2000) was one of the first algorithms
that was able to validly infer causal relations from con-
ditional independence statements in the large sample
limit, even in the presence of latent and selection vari-
ables. It consists of an efficient search for a conditional
independence between each pair of variables to identify
the skeleton of the underlying causal MAG, followed
by an orientation stage to identify invariant tail and
arrowhead marks. It was shown to be sound in the
large sample limit (Spirtes et al., 1999), although not

yet complete. Ali et al. (2005) proved that the seven
graphical orientation rules employed by FCI were suffi-
cient to identify all invariant arrowheads in the equiv-
alence class [G], given a single MAG G. Later, Zhang
(2008a) introduced another set of seven rules to orient
all remaining invariant tails. Augmented with this set
of rules the FCI algorithm is also provably complete.

Loosely speaking, the augmented FCI algorithm con-
sists of an ingenious adjacency search based on condi-
tional independencies (details of which will not concern
us here), to find the skeleton of the PAG P, followed
by an orientation phase based on a set of graphical
rules, detailed in Table 11. Inspection reveals a cer-
tain hierarchy in which rules can trigger which others,
reflected in the structure of Algorithm 1.

R0a If X⊥⊥Y |Z, then X−��−Y , Sep(X, Y )← Z.
R0b If X ∗−∗Z ◦−∗Y and X−��−Y , then if

Z /∈ Sep(X, Y ), then X ∗→Z←∗Y .
R1 If X ∗→Z ◦−∗Y , and X−��−Y , then Z−→Y .
R2a If Z−→X ∗→Y and Z ∗−◦Y , then Z ∗→Y .
R2b If Z ∗→X−→Y and Z ∗−◦Y , then Z ∗→Y .
R3 If X ∗→ Z←∗Y , X ∗−◦W ◦−∗Y , X −��− Y ,

and W ∗−◦Z, then W ∗→Z.
R4a If u = 〈X, .., Zk, Z, Y 〉 is a discriminating path

between X and Y for Z, and Z ◦−∗Y , then if
Z ∈ Sep(X, Y ), then Z−→Y .

R4b Idem, if Z /∈ Sep(X,Y ) then Zk←→Z←→Y .
R5 If u = 〈Z, X, .., W, Y, Z, X〉 is an uncov. circle

path, then Z−−Y (idem for all edges on u).
R6 If X−−Z ◦−∗Y , then orient as Z−−∗Y .
R7 If X−−◦Z ◦−∗Y , and X−��−Y , then Z−−∗Y .
R8a If Z−→X−→Y and Z ◦→Y , then Z−→Y .
R8b If Z−−◦X−→Y and Z ◦→Y , then Z−→Y .
R9 If Z ◦→ Y , u = 〈Z, X,W, .., Y 〉 is an uncov.

p.d. path, and X−��−Y , then Z−→Y .
R10 If Z ◦→ Y , X −→ Y ←−W , u1 = 〈Z, S, .., X〉

and u2 = 〈Z, V, ..,W 〉 are uncov. p.d. paths,
(possibly with S = X and/or V = W ), then if
S−��−V , then Z−→Y .

Table 1: Orientation rules of augmented FCI

Starting from the fully ◦−◦ connected graph in line
1, R0a eliminates all edges between conditionally in-
dependent nodes to obtain the skeleton of P with only
◦−◦ edges (line 4). Then rules R0b-R4b obtain all
invariant arrowheads (as well as some tails). Rules
R5 −R10 then suffice to identify all and only the re-
maining invariant tails. For example, in Figure 1, the
arrowheads at C from A and B are identified by R0b,
and the tailmark at B−→F follows from R9.

1We follow the numbering from (Zhang, 2008a). The
metasymbol ∗ stands for an arbitrary edge mark, and
X−��−Y explicitly indicates the absence of an edge between
X and Y in the PAG P; see also Figures 2 and 3.



Input : independence oracle for V
Output : complete PAG P over V

1: P ← fully ◦−◦ connected graph over V
2: for all {X, Y } ∈ V do
3: search in some clever way for a X⊥⊥Y |Z
4: P ← R0a (eliminate X−��−Y )
5: record Sep(X, Y )← Z
6: end for
7: P ← R0b (unshielded colliders)
8: repeat P ← R1−R4b until finished
9: P ← R5 (uncovered circle paths)

10: repeat P ← R6−R7 until finished
11: repeat P ← R8a−R10 until finished

Algorithm 1: Augmented FCI algorithm

3 Inference from causal logic

Note: we use X, Y , Z, etc. to denote disjoint (sets
of) observed variables, and S to denote the (possibly
empty) set of selection nodes in a causal DAG GC .

3.1 Logical rules from minimal independence

There is a well-known, fundamental connection be-
tween minimal (in)dependencies and causal relations:

Lemma 2. If a node Z changes an (in)dependence
relation between X and Y in a causal DAG, then:

1. X⊥⊥Y |W ∪ [Z] ` Z ⇒ (X ∪ Y ∪W ∪ S),

2. X⊥⊥�Y |W ∪ [Z] ` Z ⇒� (X ∪ Y ∪W ∪ S).

with special case X⊥⊥Y | [W ∪ Z] ` Z ⇒ (X∪Y ∪S).

This means that, using X ⇒� Y
def= ¬(X ⇒ Y ), we can

translate observed minimal (in)dependencies directly
into logical statements about causal relations:

Lemma 3. For observed minimal (in)dependencies
between nodes in a causal DAG GC :

1. X⊥⊥Y | [W ∪ Z] ` Z ⇒ X ∨ Z ⇒ Y ∨ Z ⇒ S

2. X⊥⊥�Y |W ∪ [Z] ` Z ⇒� X ∧ Z ⇒� Y ∧
Z ⇒� W ∧ Z ⇒� S

By establishing which minimal (in)dependencies hold
in a distribution, a list  L can be compiled of logical
statements of the form:

1: Z ⇒ X ∨ Z ⇒ Y ∨ Z ⇒ S
2: X ⇒� Y
3: Y ⇒ X ∨ Y ⇒W ∨ Y ⇒ S, etc.

Each line states a truth, for one specific node, about
the causal relations it has with one or more others.
New statements can be inferred by substituting the
subject of one line in another, and then reduce by using
the three causal properties from Proposition 1.

To illustrate the inference process in deriving (new)
causal information, consider these two examples:

Example 1. Suppose in a causal system GC both
X⊥⊥Y | [Z] and X⊥⊥�U |W ∪ [Z] have been observed,
for some Z ∈ Z. Then this corresponds to

1: Z ⇒ X ∨ Z ⇒ Y ∨ Z ⇒ S
2: Z ⇒� X ∧ Z ⇒� U ∧ Z ⇒� S ∧ Z ⇒� W

Using (2:) to eliminate Z ⇒ X and Z ⇒ S from (1:)
then gives (3:)

` (false) ∨ Z ⇒ Y ∨ (false)
3: Z ⇒ Y

This case corresponds to the embedded Y-structure
from Mani et al. (2006), and matches the conditions
for orientation rule R1.

Example 2. Suppose in a causal system GC both
Z⊥⊥W | [UZW ∪X] and X⊥⊥Y | [UXY ∪ Z ∪W ] have
been observed, with UXY and UZW two possibly
empty/overlapping sets of nodes. Then for the infer-
ence list this gives statement (1:) from the first inde-
pendence, and (2:) and (3:) from the second:

1: X ⇒ Z ∨ X ⇒W ∨ ∨ X ⇒ S
2: Z ⇒ X ∨ ∨ Z ⇒ Y ∨ Z ⇒ S
3: W ⇒ X ∨ W ⇒ Y ∨ W ⇒ S

Using transitivity and irreflexivity, when substituting
(2:) and (3:) in (1:), this reduces to (4:)

` X ⇒ X ∨ X ⇒ X ∨ X ⇒ Y ∨ X ⇒ S
4: X ⇒ Y ∨ X ⇒ S

This case matches instances of R9, where all alterna-
tives for X from the first minimal independence nec-
essarily lead to a causal relation to node Y (or S).
However, contrary to Example 1, selection bias can-
not be eliminated from these two statements alone.

3.2 Inferred statements

Remarkably enough, Lemma 3 and Proposition 1 are
already sufficient to identify almost all causal infor-
mation that can be discovered from probabilistic in-
dependencies, by repeatedly executing the substitute
and reduce steps on the list of logical statements  L.
There is just one more piece of information needed to
complete the puzzle.

Lemma 4 (Inferred blocking node). In a causal
system GC , if X ⊥⊥ Y | [Z], and there is a subset
{Z1, . . . , Zk, Z} ⊆ Z, such that in the sequence [U] ≡
[U0, . . . , Uk+2] = [X, Z1, . . . , Zk, Z, Y ] it holds that:

- Ui ⇒� {Ui−1, Ui+1},
- Uj⊥⊥�Uj+1 |Z′,

with i = 1..k, and with j = 0..(k + 1) and ∀Z′ ⊆
Z \ {Uj , Uj+1}, then Z ⇒ (Zk ∪ Y ∪ S).



In other words, if we find an ‘inferred blocking node’,
then we can add the following statement to the list:
1: Z ⇒ Zk ∨ Z ⇒ Y ∨ Z ⇒ S

Lemma 4 is clearly a generalization of rule R4a: if
the nodes in the sequence [U] are adjacent in P, then
it corresponds to a discriminating path for Z, and
the non-independence tests in the second item can be
omitted. Note that resulting statement (1:) reveals
that the discriminating path for Z in R4a behaves
identical to a node Z observed in a minimal indepen-
dence between Zk and Y . As a result, whether or not
we observe Zk⊥⊥Y | [.. ∪ Z], the fact that in the given
conditions Z does not create a dependency between
X and Y , allows us to infer that Z blocks some path
between Zk and Y ; hence ‘inferred blocking node’.

One remark: the set of possible independence relations
involved in lemma 4 may seem quite daunting. How-
ever, in section 5 we will see that ultimately only a
handful need to be checked.

3.3 Direct and indirect causal relations

Reasoning with presence or absence of causal relations
implies that we are not limited to direct causal influ-
ences only, but can draw on other, indirect sources of
causal information as well: both can be used to de-
rive new information in exactly the same way. But
sometimes it can be very useful to distinguish between
direct and indirect causes. In the PAG, a missing edge
represents absence of a direct cause.
Lemma 5. In a causal system GC , a (minimal) condi-
tional independence X⊥⊥Y |Z implies that all causal
paths X ⇒ Y or X ⇐ Y , or common causes of X and
Y in GC are mediated by nodes in Z.

For independent nodes X⊥⊥Y |∅ it implies neither is
a cause of the other: (X ⇒� Y ) ∧ (Y ⇒� X).

Lemma 5 gives the global structure (skeleton) of the
PAG. If we want to distinguish between direct and in-
direct causal relations, we can simply use the MAG
definition for tail/arrowhead marks (see Richardson
and Spirtes, 2002, §4.2) to project the causal informa-
tion in the list  L onto this skeleton:
Lemma 6. The causal information from statements
in the list  L can be transferred to invariant edge marks
between adjacent nodes in the corresponding PAG P:

- if X ⇒� Y ∈  L, then X←∗Y ,
- if X ⇒ Y (∨ X ⇒ S) ∈  L, then X−−∗Y ,

In the next section we will see that this is also com-
plete. It means that after the logical causal infer-
ence (LoCI) process has completed, we can option-
ally choose to reproduce the PAG, provided the global

structure could be established. If not, for example be-
cause only an arbitrary subset of (in)dependence rela-
tions was available, then all causal information in the
list  L remains valid, even though the orientation rules
in Table 1 can no longer be applied.

4 A logical characterization of causal
information

In this section we show that the combination of
the logical statements, derived directly from ob-
served/inferred conditional (in)dependencies via lem-
mas 3 and 4, together with the three inference rules
in proposition 1, are sufficient to obtain all invariant
orientations (tails and arrowheads) in the PAG. We
do this by matching each orientation rule to specific
instances of the lemmas, and already inferred infor-
mation. In doing so, we make good use of the known
completeness of the augmented FCI algorithm.
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Figure 2: Rules R0b−R4b, arrowhead orientation rules

4.1 Invariant arrowheads

First we show that all graphical orientation rules that
can identify invariant arrowheads, see Figure 2, are,
in fact, different graphical instances of just two cases,
that can be found from minimal independencies and
subsequent dependencies.

We would like to emphasize that there is no need to
search for the specific cases discussed in this section:
they automatically pop up when running the causal
logic rules in proposition 1 on the list of statements  L.
We use them here to characterize all causal informa-
tion that can be identified in this way, and thus, since
the augmented FCI algorithm is complete, by any al-
gorithm for causal discovery.



Lemma 7. In a PAG P, all invariant arrowheads
Z ∗→Y are instances of

(1): U⊥⊥�V |W ∪ [Y ], created from U⊥⊥V | [W],
with Z ∈ (U ∪ V ∪W),

(2): X⊥⊥Y | [W ∪ Z], with Z ⇒� (X ∪S) from either
case (1) or case (2).

In words: all invariant arrowheads originate from ei-
ther an observed conditional dependence (1), or as the
reverse of a definite causal relation (2).

As a result, all seven arrowhead orientation rules
R0b−R4b are covered by lemma 3. Note that, when
starting from the full set of (in)dependence statements
in lemma 3, it is not necessary to consider discriminat-
ing paths (nor ‘inferred blocking nodes’), in order to
guarantee arrowhead completeness, contrary to when
starting from a MAG, as in (Ali et al., 2005).2

4.2 Invariant tails

The previous section will not only find all arrowheads,
but also a number of invariant tails, as case (2) in
lemma 7 already covers all instances of rule R1, in-
cluding the tail Z−→Y . In this section we show that
all remaining invariant tails from rules R5−R10, see
Figure 3, correspond to three cases, that can be found
from minimal independencies in combination with the
three inference rules in proposition 1.

To do that, we first introduce the following concept:

Definition. A transitive relation from X to Y is a
sequence of nodes [X, Z1, . . . , Zk, V1, . . . , Vm, Y ] (not
necessarily distinct), such that:

- ∀Zi,∃Ui : Zi−1⊥⊥Zi+1 | [Ui ∪ Zi],
- ∀Vj : Vj ⇒ (Vj+1 ∪ S),

with Z0 = X,Zk+1 = V1, Vm+1 = Y , for k,m ≥ 0.

In words: a series of overlapping minimal conditional
independencies, followed by a causal relation. A tran-
sitive relation can be as short as a single independence
X ⊥⊥ Y | [Z1], or a relation X ⇒ Y . As such, it is a
generalization of the uncov. p.d. path in section 2.3.

The reason for this introduction is the property:

Corollary 8. In a causal system GC , if there is a tran-
sitive relation [X, Z1, . . . , Y ], then:

- X ⇒ (Z1 ∪ S) ` X ⇒ (Y ∪ S).

We can now state:

2This may seem contradictory, as a MAG is just an
encoding of an independence model, but it is not possible to
read which set separates X and Y inR4a/b from the MAG,
without actually checking for the discriminating path.

Lemma 9. In a PAG P, all invariant tails Z −−∗Y
from graphical orientation rulesR4a, R5, R7, R9, and
R10 are instances of:

(2b): X⊥⊥Y | [W ∪ Z], with X ⇒ (Z∪S) from either
case (3) or another instance of (2b),

(3): U⊥⊥V | [W ∪W ], with two transitive relations
[W, U, .., Y ] + [W, V, .., Y ], and Z ∈ {U, V, W},

(4): X⊥⊥Y | [Z], with inferred blocking node Z ∈ Z,
together with Zk ⇒ (Y ∪ S) from either case
(2) or case (4).

Case (2b) covers rule R7, and is so named because of
its similarity/overlap with case (2) for R1. Case (3)
covers all instances of rules R5, R9, and R10, and
case (4) accounts for tails from orientation rule R4a.
In most instances of case (3) the transitive relation re-
quires only a single minimal conditional independence,
even for long paths. Often, both transitive relations
can be captured together in a single independence, as
in Example 2.

A nice property is that all identifiable selection nodes
X ⇒ S also pop out ‘automatically’ by applying the
inference rules in lemma 1 on instances of case (3):

Corollary 10. In a PAG P, all identifiable selection
nodes X ⇒ S are covered by case (3), in the form of
a minimal independence with two transitive relations
back to itself.

That leaves just tails from three more orientation rules
to handle. However, these too follow implicitly from
the existing cases:

Corollary 11. In a PAG P, all invariant tails from
orientation rules R6, R8a, and R8b, are covered by
the causal logic rules applied to cases (1)-(4).
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Figure 3: Rules R5−R10, tail orientation rules



5 Reconstructing the PAG

In this section we look at the logical inference process
itself, and provide an efficient anytime algorithm for
deriving the PAG.

5.1 Inference procedure

A nice property is that the logical substitute/reduce
steps take on a particularly simple form: it only in-
volves statements that are a logical disjunction of at
most two causal relations and possible selection bias,
or a single term for the absence of a causal relation.
In other words, the list  L always keeps the form in
section 3.1. Each step consists of a substitution of
one statement in another followed by a reduction to
this standard form. Furthermore, as more information
becomes available, statements in the list can simplify
from three to two or even one term. Cf. example 1,
where inferred statement (3:) replaces (1:), as there is
no point in keeping the original.

The next result limits the independence search:

Lemma 12. In the logical causal inference (LoCI) ap-
proach, finding a single, arbitrary X⊥⊥Y | [Z], for each
pair of nodes (X, Y ) in the graph (if it exists) is suffi-
cient to find all invariant features of the PAG.

Fortunately, the current implementation of the FCI
algorithm already finds only minimal conditional in-
dependencies for each pair of nodes (if it exists), as it
looks for sets of increasing size until it finds one that
separates the two. (This is also the dominant factor in
the time-complexity of the algorithm.) For each pair
found, we still need to check for other nodes that can
destroy this independence (lemma 3, item 2), however,
this is negligible compared to the search itself.

Furthermore, the inferred blocking node from lemma
4, can be tackled efficiently, after all invariant arrow-
heads have been found from cases (1) and (2): it makes
it possible to establish the ‘non-ancestor’ conditions
in the sequence in one go. Together with a restric-
tion to a sequence of non-separated nodes (avoiding
the additional dependence tests), this greatly reduces
the number of candidates to check.

The final step is to use lemmas 5 and 6 to transfer
the logical information in the list  L to invariant edge
marks in the skeleton of P.

5.2 The LoCI algorithm

We can now give the outline of an algorithm that is
able to infer the complete PAG, using the logical causal
inference approach described in section 3.

Algorithm 2 borrows the initial search for (minimal)

Input : independence oracle for V
Output : complete PAG P over V

1: for all {X, Y } ∈ V do
2: search in some clever way for a X⊥⊥Y | [Z]
3: ∀Z ∈ Z :  L← Z ⇒ (X ∪ Y ∪ S)
4: ∀W, X⊥⊥�Y |Z ∪W :
5:  L←W ⇒� (X ∪ Y ∪ Z ∪ S)
6: repeat  L← substitute/reduce until finished
7: end for
8:  L← Z ⇒ (Zk ∪ Y ∪ S),∀Z : inferred block. node
9: repeat  L← substitute/reduce until finished

10: P ← fully ◦−◦ connected graph over V
11: eliminate X−��−Y , iff X⊥⊥Y | [∗]
12: orient X−−∗Y , iff X ⇒ (Y ∪ S) ∈  L
13: orient X←∗Y , iff X ⇒� Y ∈  L

Algorithm 2: Logical Causal Inference (LoCI) algo-
rithm

conditional independencies from the standard FCI al-
gorithm. If it finds one it is recorded in the list  L,
line 3, and checked for nodes that destroy this inde-
pendence (also recorded in  L). Each time a minimal
independence has been found, line 6 runs the infer-
ence rules to update the identifiable causal informa-
tion. This step could be run just once, after the inde-
pendence search has completed, but in practice the im-
pact on performance is negligble and far outweighed by
the fact that most causal information is already iden-
tifiable (available) in the early stages of the process.
At line 8, all non-ancestor relations (X ⇒� Y ) have
been found (see lemma 7), which makes it relatively
easy to find the remaining ‘inferred blocking nodes’
from lemma 4 in line 8. If any are found that contain
new information, then line 9 infers the remaining re-
lations. Finally, lines 10− 13 construct the equivalent
PAG representation from the list  L.

These results can now be summarized as:

Theorem 1. The Logical Causal Inference (LoCI) al-
gorithm is sound and complete.

6 Discussion and conclusion

In this paper we developed a new approach to
constraint-based causal discovery: observed minimal
(in)dependencies are converted into logical statements
about causal relations, and these statements are sub-
sequently combined using basic properties of causality.

It leads to a remarkably simple characterization, in
which all identifiable causal relations take the form of
an (inferred) minimal conditional independence with
either elimination of one alternative, or both alterna-
tives leading to the same conclusion.



The resulting logical causal inference (LoCI) method
was put to work in an efficient anytime algorithm,
the first alternative to the augmented FCI-algorithm
shown to be both sound and complete. The LoCI al-
gorithm is strikingly simpler than its counterpart in
section 2.3. Even though it is not necessarily faster,
as for both the overall complexity is dominated by the
independence search, the fact that the implementation
takes on this very simple and elegant form suggests it
is somehow more ‘natural’ to causal discovery.

The way in which the LoCI algorithm builds up this
causal information is markedly different from many
other constraint-based methods: instead of focussing
on combinations of node-pairs that may or may not be
separable (the essence of graphical orientation rules),
the LoCI algorithm focusses on the nodes that separate
them. In particular, as it does not need to search for
pairs of nodes that cannot be separated by any set (the
edges forming the skeleton of the PAG), the approach
taken by the algorithm could be dubbed ‘structure in-
dependent’. As a result, it can be adapted to search
for target causal relations in large models, updating
each time as new independence information becomes
available; of course, if we want to ensure completeness,
we still have to find all of them.

The simplicity of the LoCI algorithm raises the ques-
tion if a similar approach is viable in other applications
as well. For example, incorporation of causal infor-
mation from background knowledge or derived from
other properties of the distribution (Shimizu et al.,
2006; Mooij et al., 2010), is straightforward. The same
holds for additional assumptions, such as ‘no selection
bias’. Including interventional information also fits
nicely in this framework, and requires only minor mod-
ifications of the minimal independence lemma 2. An
extension to multiple models, similar to (Triantafillou
et al., 2010; Claassen and Heskes, 2010), seems feasi-
ble as well. To prove completeness, we had to rely on
the known completeness of the augmented FCI algo-
rithm, but we suspect that a more direct proof should
be possible.

Perhaps the most promising aspect of the LoCI ap-
proach lies in the flexibility it offers in deriving causal
information. For example, we are free to ignore any
suspect, ‘borderline’ (in)dependence decisions, by not
including them in the list  L in lines 3 and 5: all inferred
causal relations remain valid. This should definitely
increase the reliability of the output, even though it
is no longer guaranteed to be complete. Finally, the
‘structure independent’ aspect implies there are many
different ways to arrive at the same conclusion. This
makes it possible to choose the most reliable combina-
tion(s) of independencies for a more robust conclusion
and to detect inconsistencies. Tracking which logical

statements in  L are combined to identify new relations
could also improve accountability for the output, indi-
cating exactly why a causal relation was found.
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Appendix A. Proofs

This section contains the key steps of all proofs; for
details, see supplement (Claassen and Heskes, 2011).

Lemma 2.
Proof sketch. A variant of two well-known results, see
(Spirtes et al., 1999; Claassen and Heskes, 2010).
(1.) If Z blocks the (final) unblocked path between X
and Y given W, then it must be a noncollider on a
trek between two of the other nodes involved; hence a
directed path in GC , and so a causal relation.
(2.) A node can only unblock a path, if there are un-
blocked paths into that node given the others. There-
fore, if Z has a directed path to any (W ∪ S), then
conditioning on Z is not needed to unblock the path,
and if it has a directed path to X or Y then without
Z there is already an unblocked path (via Z).
The special case follows from (1.) and acyclicity.

Lemma 4
Proof. In words: if no node Zi has a causal relation
(directed path in GC) to either of its neighbors in
the sequence [X,Z1, . . . , Zk, Z, Y ], and all neighboring
nodes in the sequence are dependent given any subset
of Z, then Z has a causal relation to Zk, Y , and/or S.
By construction, in GC there is an unblocked path from
X to Z, given Z. If both Zk and Y have paths that
are into Z, then the sequence would represent an un-
blocked path between X and Y given Z ∪ Z in GC ,
which would make X and Y dependent, contrary the
given. By the second item (dependent neigbors), all
neighbors in the sequence, so also (Zk, Z) and (Z, Y ),
are connected by treks between them (or treks to S),
that are not blocked by any nodes from Z. Not both
these paths from Zk and Y are into Z, therefore Z
must either have a directed path to S in GC and/or be
an ancestor of Zk or Y .

Lemma 7
Proof sketch. Both cases are sound:
(1.) By lemma 3, item 2, the first gives
(Y ⇒� Z) ∧ (Y ⇒� S), which, by definition, implies that
if Y has an edge to Z in P, then the mark at Y is an
(invariant) arrowhead.
(2.) The second is an application of lemma 3, item



1, giving (Z ⇒ X) ∨ (Z ⇒ Y ) ∨ (Z ⇒ S), where the
first and third are eliminated by the arrowhead at
X ∗→Z (def). Therefore Z ⇒ Y , and so (acyclicity)
also Y ⇒� Z, but also Y ⇒� S, otherwise (transitivity)
Z ⇒ S. Therefore, if Y has an edge to Z in P, then
it has an arrowhead mark at Y .
The proof that they are also complete follows by in-
duction on the graphical orientation rules R0b−R4b,
showing that none of them introduces a violation of
lemma 7. As these rules are sufficient for arrowhead
completeness, it follows that the lemma holds for all
invariant arrowheads.

Corollary 8
Proof. The transitive relation implies:

1: Z1 ⇒ X ∨ Z1 ⇒ Z2 ∨ Z1 ⇒ S
k: Zk ⇒ Zk−1∨ Zk ⇒ V1 ∨ Zk ⇒ S
k+m: Vm ⇒ Y ∨ Vm ⇒ S

Back substituting in reverse order gives finally,
` Z1 ⇒ X ∨ Z1 ⇒ Y ∨ Z1 ⇒ S

to substitute in X ⇒ Z1 ∨X ⇒ S.

Lemma 9
Proof sketch. All three cases are sound:
(2b) By lemma 3, X ⊥⊥ Y | [W ∪ Z] gives (Z ⇒ X) ∨
(Z ⇒ Y )∨ (Z ⇒ S). Combined with X ⇒ Z ∨X ⇒ S
this reduces to (Z ⇒ Y )∨ (Z ⇒ S), and so a tail at Z
if it has an edge to Y in P.
(3) Idem, U⊥⊥V | [W ∪W ] gives (W ⇒ U) ∨ (W ⇒
V ) ∨ (W ⇒ S). From corollary 8, the transitive re-
lations give (W ⇒ {U ∪ S}) ` (W ⇒ {Y ∪ S}), and
(W ⇒ {V ∪S}) ` (W ⇒ {Y ∪S}). Substituting these
two in the first then gives (W ⇒ Y )∨ (W ⇒ S). This
holds for all nodes on the two transitive chains, hence
if Z ∈ {U, V, W}, then (Z ⇒ Y )∨ (Z ⇒ S), and there-
fore a tail Z−−∗Y , if they are connected in P.
(4) By lemma 4, as Z is an inferred blocking node be-
tween X and Y given Z, there is a Zk ∈ Z such that
Z ⇒ Zk ∨ Z ⇒ Y ∨ Z ⇒ S. Together with the given
Zk ⇒ Y ∨ Zk ⇒ S, this reduces to Z ⇒ Y ∨ Z ⇒ S,
and hence an invariant tail Z−→Y .
For completeness it is fairly straightforward to see that
in a PAG P, all instances of rule R7 match (2b), in-
stances of rules R5, R9, and R10 always match case
(3), and R4a matches case (4).

Corollary 10
Proof sketch. By corollary 8 a transitive relation
[W, U, .., W ] implies that W ⇒ (U ∪ S) ` W ⇒ S.
Idem for [W, V, .., W ]. Two such statements connected
by U ⊥⊥ V | [W ∪W ] then reduce (W ⇒ U) ∨ (W ⇒
V ) ∨ (W ⇒ S), from lemma 3, to (W ⇒ S), i.e. iden-
tifiable selection bias. That all nodes with identifiable
selection bias have this form follows from the fact that
only rules R5 − R7 can produce undirected edges on

nodes (corresponding to identifiable selection). The
uncovered circle path from R5 already has this form;
R6 can be ignored when identifying new nodes, andR7
can only produce undirected edges on transitive chains
connecting two distinct circle-path components.

Corollary 11
Proof. R8a and R8b do not take (in)dependence in-
formation as input, but only need lemma 1 to combine
two relations already found as a result of cases (1)-(4).
The tail from rule R6 only signifies that Z ⇒ S, which
will be found as case (3), by corollary 10.

Lemma 12
Proof sketch. We know from lemmas 7 and 9 that all
orientation rules are covered by some combination of
minimal independencies and subsequent dependencies.
From the graphical description, we see that the rules
orient tails/arrowheads between adjacent nodes that
either involve a noncollider between two nonadjacent
nodes, (and are therefore part of all minimal condi-
tional independencies between the two), or as one of
the separated nodes in the conditional independence
(so any will do), possibly with a direct link to a node
that destroys this independence (which will therefore
also be found). The only rule that is not entirely
straightforward is R2a, but this boils down to a simi-
lar case as for the invariant arrowheads in lemma 7, to
which the same argument can be applied, to show that
the node Z is a necessary part of at least some min-
imal independence that is destroyed by Y . Therefore
all rules are covered, if we have at least one minimal
independence for each pair of nonadjacent nodes, in
combination with the subsequent dependencie. As we
know that the set of graphical orientation rules is suffi-
cient to find all invariant features in the PAG (Zhang,
2008a), this proves the lemma.

Theorem 1
Proof sketch. Soundness follows from the validity of
the lemmas 3 and 4, that produce the logical state-
ments in the list  L, in combination with the causal
logic rules in lemma 1. Completeness follows from the
fact that all rules are instancess of cases (1)-(4) for a
single, arbitrary minimal independence between nodes,
in combination with subsequent dependencies (lemma
11), the fact that all logical inference in each of the
cases (1)-(4) is covered by lemma 3, the fact that case
(1) and (2) will find all required non-ancestor relations
(= invariant arrowheads, see Zhang, 2008a, lemma 6),
needed to obtain the only remaining piece of informa-
tion (inferred blocking node for case (4) from lemma
4). After running the logical rules on this set of state-
ments to completion, all invariant edge marks have
been found and can be transferred to the PAG.



References

R.A. Ali, T. Richardson, P. Spirtes, and J. Zhang.
Towards characterizing markov equivalence classes
for directed acyclic graphs with latent variables. In
Proc. of the 21st Conference on Uncertainty in Ar-
tificial Intelligence, pages 10–17, 2005.

D. Chickering. Optimal structure identification with
greedy search. Journal of Machine Learning Re-
search, 3(3):507–554, 2002.

T. Claassen and T. Heskes. Causal discovery in multi-
ple models from different experiments. In NIPS-23,
pages 415–423. 2010.

T. Claassen and T. Heskes. Proof supplement to ‘A
logical characterization of constraint-based causal
discovery’. Technical report, Faculty of Science,
Radboud University Nijmegen, 2011.

G. Cooper. A simple constraint-based algorithm for
efficiently mining observational databases for causal
relationships. Data Min. Knowl. Discov, 1(2):203–
224, 1997.

D. Heckerman, C. Meek, and G. Cooper. A Bayesian
approach to causal discovery. In Computation, Cau-
sation, and Discovery, pages 141–166. 1999.

D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. The MIT Press,
2009.

S. Mani, G. Cooper, and P. Spirtes. A theoretical
study of Y structures for causal discovery. In Proc.
of the 22nd Conference in Uncertainty in Artificial
Intelligence, pages 314–323, 2006.

J. M. Mooij, O. Stegle, D. Janzing, K. Zhang, and
B. Schölkopf. Probabilistic latent variable mod-
els for distinguishing between cause and effect. In
NIPS-23, pages 1687–1695, 2010.

J. Pearl. Causality: models, reasoning and inference.
Cambridge University Press, 2000.

J. Ramsey, J. Zhang, and P. Spirtes. Adjacency-
faithfulness and conservative causal inference. In
Proc. of the 22nd Conference on Uncertainty in Ar-
tificial Intelligence, pages 401–408, 2006.

T. Richardson and P. Spirtes. Ancestral graph Markov
models. Ann. Stat., 30(4):962–1030, 2002.

S. Shimizu, P. Hoyer, A. Hyvärinen, and A. Kerminen.
A linear non-Gaussian acyclic model for causal dis-
covery. Journal of Machine Learning Research, 7:
2003–2030, 2006.

P. Spirtes. An anytime algorithm for causal infer-
ence. In Proc. of the Eighth International Workshop
on Artificial Intelligence and Statistics (AISTATS),
pages 213–221, 2001.

P. Spirtes, C. Meek, and T. Richardson. An algorithm
for causal inference in the presence of latent vari-
ables and selection bias. In Computation, Causa-
tion, and Discovery, pages 211–252. 1999.

P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction, and Search. The MIT Press, Cambridge,
Massachusetts, 2nd edition, 2000.

S. Triantafillou, I. Tsamardinos, and I. Tollis. Learn-
ing causal structure from overlapping variable sets.
In Proc. of the 13th Int. Conference on Artificial
Intelligence and Statistics, pages 860–867, 2010.

J. Zhang. On the completeness of orientation rules
for causal discovery in the presence of latent con-
founders and selection bias. Artificial Intelligence,
172(16-17):1873 – 1896, 2008a.

J. Zhang. Causal reasoning with ancestral graphs.
Journal of Machine Learning Research, 9:1437 –
1474, 2008b.

J. Zhang and P. Spirtes. Detection of unfaithfulness
and robust causal inference. Minds and Machines,
2(18):239–271, 2008.


