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Sections and lemmas refer to the corresponding entry
in (Claassen and Heskes, 2011). Note: X, Y , Z, W,
etc. are disjoint (sets of) observed nodes in a causal
DAG GC , and S represents the (possibly empty) set of
selection nodes.

2 Background

The definition of a causal relation in a causal DAG,
rewritten in terms of standard logical properties:

Proposition 1. Causal relations in a DAG GC are:

irreflexive : X ⇒ X ` false
acyclic : X ⇒ Y ` Y ⇒� X
transitive : (X ⇒ Y ) ∧ (Y ⇒ Z) ` X ⇒ Z

Proof. As the edges in GC represent causal relations, a
path of length 0 (no edge) is not considered a causal re-
lation, and existence of a directed path from a variable
back to itself would contravene the causal DAG as-
sumption, hence: irreflexive and acyclic (or, more ac-
curate, asymmetric). Transitivity follows immediately,
by concatenation, from the sequence 〈X, .., Y, .., Z〉, in
which each node is parent of its successor, hence a di-
rected path from X to Z in GC .

3 Rules from minimal independencies

The first lemma is a familiar result, see (Spirtes et al.,
1999; Claassen and Heskes, 2010), that brings out the
symmetry between a node that creates an indepen-
dence, and a node that destroys an independence. For
illustration purposes we include the proof below.

Lemma 2 If a node Z changes an (in)dependence re-
lation between X and Y in a causal DAG, then:

1. X⊥⊥Y |W ∪ [Z] ` Z ⇒ (X ∪ Y ∪W ∪ S),

2. X⊥⊥�Y |W ∪ [Z] ` Z ⇒� (X ∪ Y ∪W ∪ S).

with special case X⊥⊥Y | [W ∪ Z] ` Z ⇒ (X∪Y ∪S).

Proof. (1.) To block, node Z must be a noncollider
on a path π = 〈X, .., Z, .., Y 〉 in GC that is unblocked
given W ∪ S. As Z is a noncollider it has at least
one outgoing arc along π. Follow π in this direction
until either a collider is encountered or the end of π is
reached. Every collider along π has to be an ancestor
of (W ∪ S), which implies that in either case Z has a
nonzero directed path in GC (=causal relation) to at
least one node from (X ∪ Y ∪W ∪ S).
(2.) To unblock, node Z must be (a descendant of)
at least one collider on a path π = 〈X, .., Y 〉 in GC

that is blocked given W∪S. Any directed path in GC

from Z to a node in W∪S implies that the collider(s)
would already be unblocked when conditioning on just
W ∪ S. No directed paths from Z to (W ∪ S) implies
that if there existed a directed path from Z to X or
Y , then it could not be blocked by any node (W∪S).
But then such a path would make Z a noncollider on
an unblocked path between X and Y given (W ∪ S):
starting from X, let θX be the first collider encoun-
tered along π that is unblocked by conditioning on
Z, and similarly θY the first collider along π starting
from Y , (possibly θX = θY , but {θX , θY } /∈ W (oth-
erwise Z not needed)); then the paths 〈X, θX , Z〉 and
〈Z, θY , Y 〉 are into Z and unblocked given W∪Z, so a
directed path Z ⇒ X would make Z a noncollider on
unblocked path 〈X, θX , Z, Y 〉 given W, contradicting
X⊥⊥Y |W; idem for Z ⇒ Y .
The special case for minimal X ⊥⊥ Y | [W ∪ Z] fol-
lows from (1.) and acyclicity. By contradiction: sup-
pose ∃U1 ∈ (W ∪ Z) : U1 ⇒� (X ∪ Y ∪ S), then,
as (1.) applies to all nodes (W ∪ Z), there must
be a node U2 ∈ (W ∪ Z) \ U1 (acyclicity) such that
U1 ⇒ U2. But (transitivity) U2 also cannot have a
directed path to (X ∪ Y ∪ S), and so there must be a
node U3 ∈ (W ∪ Z) \ {U1, U2} (acyclicity) such that
U2 ⇒ U3. This can continue until all nodes in (W∪Z)
have been allocated at which stage the last node can-
not have a directed path to any (X ∪ Y ∪W∪Z ∪S),
in contradiction with (1.).



Observed minimal independences can be converted
into logical statements on causal relations:

Lemma 3. For observed minimal (in)dependencies
between nodes in a causal DAG GC :

1. X⊥⊥Y | [W ∪ Z] ` Z ⇒ X ∨ Z ⇒ Y ∨ Z ⇒ S

2. X⊥⊥�Y |W ∪ [Z] ` Z ⇒� X ∧ Z ⇒� Y ∧
Z ⇒� W ∧ Z ⇒� S

Proof. Follows immediately from lemma 2, together
with the (absence of) causal relations to sets of nodes:
(1.) ≡ ∃U ∈ (X ∪ Y ∪ S) : Z ⇒ U ,
(2.) ≡ ∀U ∈ (X ∪ Y ∪W ∪ S) : Z ⇒� U .

Next two lemmas used in the proof of lemma 4.

Lemma 4.1 For two observed nodes, X and Y , in a
causal DAG GC : X ⊥⊥� Y , iff they are connected by a
trek in GC or they both have treks into S

Proof. Almost by definition. Assuming causal Markov
and faithfulness, two observed nodes X and Y are de-
pendent given a set Z, iff they are connected by a path
π in GC on which all noncolliders are not in Z and all
colliders are (ancestor of) nodes in (Z∪S). For Z = ∅
this reduces to a path π on which all colliders are in
An(S). Starting from X, follow π until the first col-
lider. Then X has a colliderless path to a node with
a directed path to S, which implies a trek from X to
S. If Y is reached, then π is by definition a colliderless
path, or trek, to Y . Idem for Y .

Lemma 4.2 In a causal DAG GC , if X ⊥⊥� Y , then
identifiable absence of a causal relation X ⇒� Y implies
absence of selection bias X ⇒� S.

Proof. For adjacent nodes in a PAG P, the proof is
trivial: identifiable absence of a causal relation means
identifiable non-ancestorship, and so an invariant ar-
rowhead X ←∗Y in P. By definition of the MAG,
see §4.2 in (Richardson and Spirtes, 2002), this means
that X /∈ An(Y ∪ S).
For nonadjacent nodes we can use Theorem 2 from
(Claassen and Heskes, 2010), which states that there
is identifiable absence of a causal relation X ⇒� Y , iff
it is impossible to go from X to Y in the graph P,
without going against an arrowhead. By contradic-
tion: suppose that X ⇒ S. This implies An(X)⇒ S,
so nodes that are ancestor of X have no (invariant) ar-
rowheads (only tails). By lemma 4.1, dependent nodes
either have a trek between them, or both have treks
to S. But if there is a trek between X and Y , then
no node between X and the source of that trek can
have an arrowhead, and all nodes between the source
and Y are going ‘with’ the arrowhead, so then not all

paths go against an arrowhead. Similarly for treks to
S. Therefore also for nonadjacent nodes X ⇒� S.

Lemma 4 (Inferred blocking node). In a causal
system GC , if X ⊥⊥ Y | [Z], and there is a subset
{Z1, . . . , Zk, Z} ⊆ Z, such that in the sequence [U] ≡
[U0, . . . , Uk+2] = [X,Z1, . . . , Zk, Z, Y ] it holds that:

- Ui ⇒� {Ui−1, Ui+1},
- Uj⊥⊥�Uj+1 |Z′,

with i = 1..k, and with j = 0..(k + 1) and ∀Z′ ⊆
Z \ {Uj , Uj+1}, then Z ⇒ (Zk ∪ Y ∪ S).

Proof. In words: if no node Zi in the minimal inde-
pendence X ⊥⊥Y | [Z] has a causal relation1 (directed
path in GC) to either of its neighbors in the sequence
[X,Z1, . . . , Zk, Z, Y ], and all neighboring nodes in the
sequence are dependent given any subset of Z, then Z
has a causal relation to Zk, Y , and/or S.

First we show that there is an unblocked path from X
to Z in GC relative to Z\Z . The first item, in combina-
tion with lemma 4.1 implies that there is no selection
bias on any of the nodes Zi. By lemma 2, this, to-
gether with the given Z1 ⇒� X, implies Z1 ⇒ Y , and
so it also follows that there is no selection bias on Y
(otherwise Z1 ⇒ (Y )⇒ S).
By the second item, all neighbors in the sequence [U]
are dependent (given empty set), and so by the pre-
vious observation in combination with lemma 4.1 this
implies that each successive pair is connected by a trek
(but not a directed path, by item 1) in GC , with the
possible exception of the edges to X and Z, that can
still correspond to directed paths and/or treks to S.
As each successive pair in the sequence is connected
by an unblocked (sub)path given Z\Z that is into both
Zi and Zi+1, it follows (by concatenating them) that
there is also an unblocked path from X to Z in GC

relative to Z\Z . Nodes Z and Y are also not sepa-
rated by any subset from Z, and so are connected by
an unblocked subpath relative to Z\Z .

In conclusion, by construction there are unblocked
paths from X (via Zk) and Y to Z in GC , given Z\Z .
If both paths from Zk and Y are into Z, then the
sequence [U] would represent an unblocked path be-
tween X and Y given Z in GC , which would make
X and Y dependent, contrary the given. Therefore
Z must be an ancestor of Zk and/or Y , and/or have
a directed path to S in GC . In other words, then:
Z ⇒ Zk ∨ Z ⇒ Y ∨ Z ⇒ S.

1The lemma is stated in terms of identifiable absence
of causal relations Ui ⇒� {Ui−1, Ui+1}, which, by lemma
4.2, implies that in the underlying GC it holds that
Ui ⇒� {Ui−1, Ui+1} ∪ S.
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Lemma 5. In a causal system GC , a (minimal) condi-
tional independence X⊥⊥Y |Z implies that all direct
causal paths X ⇒ Y or X ⇐ Y , or common causes of
X and Y in GC are mediated by nodes in Z.

Proof. See (Spirtes et al., 2000). Assumes that no
causal paths are blocked by selection nodes, which is
implicitly covered by the faithfulness assumption.

4 A logical characterization of causal
information
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Figure 1: Rules R0b−R4b, arrowhead orientation rules

Lemma 7 (Invariant arrowheads). In a PAG P,
all invariant arrowheads Z ∗→Y are instances of

(1): U⊥⊥�V |W ∪ [Y ], created from U⊥⊥V | [W],
with Z ∈ {U, V,W},

(2): X⊥⊥Y | [W ∪ Z], with Z ⇒� (X ∪S) from either
case (1) or case (2).

Proof sketch. Both cases are sound:
(1.) By lemma 1.2, the first gives (Y ⇒� Z) ∧ (Y ⇒� S),
which, by definition, implies that if Y has an edge to Z
in P, then the mark at Y is an (invariant) arrowhead.
(2.) The second is an application of corollary 2, giving
(Z ⇒ X) ∨ (Z ⇒ Y ) ∨ (Z ⇒ S), where the first and
third are eliminated by the arrowhead at X ∗ → Z
(def). Therefore Z ⇒ Y , and so (acyclicity) also
Y ⇒� Z, but also Y ⇒� S, otherwise (transitivity)
Z ⇒ S. Therefore, if Y has an edge to Z in P, then
it has an arrowhead mark at Y .

The proof that they are also complete follows from
the lemmas below, by induction on the graphical ori-
entation rules R0b−R4b, showing that none of them
introduces a violation of Lemma 7. As these rules are
sufficient for arrowhead completeness (Ali et al., 2005;

Zhang, 2008), it follows that the theorem holds for all
invariant arrowheads.

Lemma 7.1 The arrowheads at Z from rulesR0b,R3,
and R4b are covered by case (1) and the arrowhead at
Y from rule R1 is covered by case (2).

Proof. Implied directly by the corresponding patterns
in Figure 1:

R0b: If this rule fires, then it implies X⊥⊥Y | [W]
for some set W (possibly empty), with
X⊥⊥�Y |W ∪ Z. Therefore case (1) applies and
Z gets arrowheads on the edges from X and Y in
G, just as in the consequent of R0b in fig.1.

R1: Implies X⊥⊥Y | [Z] with Z ∈ Z and an arrowhead
at Z from a rule that fired before. If no violations
before R1 fires, then case (2) applies, and there
is an arrowhead at Z −→ Y in G, just as in the
consequent of R1.

R3: Implies X⊥⊥Y | [W] with W ∈W, and
X⊥⊥�Y |W ∪ Z. Therefore case (1) applies,
to give W ∗→Z in G, just as in R3.

R4b: By construction of the discriminating path, R4b
implies X ⊥⊥ Y | [Z], with {Z1, . . . , Zk} ∈ Z, but
Z /∈ Z as X ⊥⊥� Y |Z ∪ Z. Therefore case (1)
applies, resulting in the addition of Zk ∗→Z←∗Y
to G, just as in R4b.

Lemma 7.2 The arrowheads at Y from rules R2b,
R4a, and R4b are covered by cases (1) and (2).

Proof. First R2b. If no violations before this rule
fires, then the arrowhead at Z ∗ → X either ap-
peared by case (1) as a node X that creates the
dependency U⊥⊥�V |W ∪X from U ⊥⊥ V | [W], with
Z ∈ {U, V,W} (case 1a), or by case (2), as a mini-
mal conditional independence X ⊥⊥U | [W ∪ Z], with
a (somehow) established Z ⇒� (U ∪S), for which either
U and Y are also independent given W ∪Z (case 2a),
or not (case 2b). (Note: Y /∈W in case (2), otherwise
(from Y ⇒� X, lemma 2) Y ⇒ U , which, together with
Z ⇒ X and X ⇒ Y , would imply Z ⇒ U). For these
three instances:

1a) If conditioning on X creates U⊥⊥�V |W ∪X, then
conditioning on Y as a descendant of X implies
U ⊥⊥� V |W ∪ Y , and so case (1) also applies to
Z ∗→Y .

2a) If Y ⊥⊥U |W ∪ Z, then also Y ⊥⊥U | [W ∪ Z], as
no subset can block the path between Y and U
via X, and so case (2) applies to Z−→Y .

2b) If Y ⊥⊥�U |W ∪ Z, then there is an unblocked path
π between U and Y given W ∪ Z. The path π is
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into Y , since otherwise the path 〈X,Y 〉+π would
be an unblocked path between X and U given
W ∪ Z, contrary to X⊥⊥U | [W ∪ Z]. Therefore,
conditioning on collider Y on the path creates the
dependency X ⊥⊥�U |W ∪ Z ∪ Y , and so case (1)
applies.

In R4a and R4b, the arrowhead at Y is simply an
instance of R2b with Zk = X.

This leaves rule R2a as the only remaining case to
prove. For that we use the observation:

Lemma 7.3 If two nodes X and Y are conditionally
independent given a set of nodes Z, X ⊥⊥ Y |Z, then
an arbitrary node V is either:
(a) part of the conditional independence, i.e. V ∈

(X ∪ Y ∪ Z),

(b) conditionally independent of X and/or Y given
Z, i.e. (V ⊥⊥X |Z) ∨ (V ⊥⊥Y |Z), or

(c) (descendant of) a collider between U and V such
that X⊥⊥�Y | {Z ∪ V }.

Proof. If neither (a) nor (b), i.e. V /∈ (X ∪ Y ∪Z) and
V ⊥⊥�{X,Y } |Z, then there are paths πX = 〈X, . . . , V 〉
and πY = 〈Y, . . . , V 〉 in the corresponding graph that
are unblocked given Z. Node V has to be a collider on
the path π = πX +πY , otherwise π would be unblocked
given Z (as V /∈ Z), contrary to X⊥⊥Y |Z. But then
conditioning on Z ∪ V will make them dependent, i.e.
then (c).

Note that if Z is a minimal set that makes X and
Y independent, then case (b) does not imply that it
is also minimal for V ⊥⊥ X/Y |Z, as shown by the
example in fig.4: from X⊥⊥Y | [{Z1, Z2}], for node V
we find V ⊥⊥X | {Z1, Z2} (as none of the other options
in lemma 7.3 applies), ... but this is only minimal for
subset V ⊥⊥X | [Z2].

Figure 2: Example of case (b) in lemma 7.2 with ‘minimal’
only for subset

For the proof of R2a we also use:

Lemma 7.4 In an ancestral graph G, if a node Z
unblocks a blocked path π = 〈U, . . . , V 〉 between two
nodes U and V given some set W, then there are un-
blocked paths from both U and V into Z relative to
W, and so Z⊥⊥�{U, V } |W.

Proof. By definition, a path π is unblocked relative to
W if all noncolliders on the path are not in W and
all colliders are in An(W). Adding a node Z to the
conditioning set can never remove a noncollider, so it
can only unblock on a collider that is in (W∪Z), but
not in (W). So the node Z must be (a descendant of)
a collider C on the path (possibly C = Z). No node
W ∈ W\C blocks the path X ⇒ Z (otherwise condi-
tioning on Z would not be needed), therefore if π is
unblocked relative to W, then so are the two paths
πU = 〈U, ..(, X, ..), Z〉 and πV = 〈Z, (.., X, ).., V 〉,
which implies Z⊥⊥�{U, V } |W.

Finally we need the following result:

Lemma 7.5 In an ancestral graph G, if there are
(sets of) nodes U, Y, Z and W, such that U⊥⊥Z |W
and U⊥⊥�Z |W ∪ Y , with Z ∗→Y in G, then there is
a node W ∈ (U ∪W), and a set Q ⊆ W, such that
W ⊥⊥Z | [Q] and W ⊥⊥�Z |Q ∪ Y .
In words: if conditioning on a node Y destroys (un-
blocks) some conditional independence for a neigh-
bouring node Z, then the same holds for at least some
minimal conditional independence between Z and one
of the other nodes involved.

Proof. By definition, there is a W′ ⊆ W such that
U⊥⊥Z | [W′]. If then also U⊥⊥�Z |W′ ∪ Y , then the
lemma applies with W = U and Q = W′. If not, i.e.
if U⊥⊥Z |W′ ∪ Y , then we can show that there is a
node W ∈W for which the lemma holds.
Let G′ be the MAG obtained from G by marginaliz-
ing out all nodes in G that are not in {U, Y, Z} ∪W.
From the original U⊥⊥�Z |W ∪ Y , by lemma 7.4, there
is an unblocked path π = 〈U, . . . , Y 〉 in G′ that is
into Y given W. The path π contains one or more
(say k) colliders in G′, some of which are (ances-
tors of) nodes from W, but not from W′ (other-
wise the path to Y would also be unblocked given
W′, which, together with edge Z ∗→Y , would imply
U⊥⊥�Z |W′ ∪ Y , contrary to the assumed). Number
the colliders as W1, . . . ,Wk, as they are encountered
along π when starting from Y , such that π = U ∗→
Wk ←→ . . . ←→ W2 ←→ W1 ←→ Y . By induction: if
there is no edge between W1 and Z in G′, then they
are (minimally) conditionally independent given some
set Q1 ⊂ W (possibly empty), but dependent given
Y , as the paths from both W1 and Z into Y are not
blocked by any node from W (as a bi-directed edge
in G′, resp. (direct) edge into Y ), and so the lemma is
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satisfied. If not, i.e. if there is an edge in G′, then this
edge is out of W1, otherwise the path 〈U,Wk, ..,W1, Z〉
would be unblocked relative to W, making U and Z
dependent given W, contrary the given. But then for
W2, if there is no edge between W2 and Z in G′, then
W2 ⊥⊥ Z | [Q2], with W1 ∈ Q2, because it is the only
node from W that blocks the trek W2←→W1 −→ Z.
But that also means that the path from W2 to Y is
unblocked given Q2, and so W2⊥⊥�Z2 |Q2 ∪ Y . If not,
then the edge to Z is (again) out of W2, otherwise
U ⊥⊥� Z |W, contrary the given. This applies to all
successive colliders Wi on the path π. But if all, up
to and including Wk, have an edge in G′ into Z, then
no unblocked path between U and Z implies that Wk

is needed to block U ∗→Wk−→Z, and so all Wi on π
are in W′, implying an unblocked path to Y , and so
U⊥⊥�Z |W′ ∪ Y .

Now we can finally show:

Lemma 7.6 The arrowhead at Y from R2a is covered
by cases (1) and (2).

Proof. Assuming no violations before R2a fires, then
if the arrowhead at X ∗→Y originates from case (2),
then the edge appears as X −→ Y , and is therefore
also an instance of R2b, which we already found to be
valid. If X ∗→Y originates from case (1), then there
is a minimal U ⊥⊥ V | [W], with X ∈ (U ∪ V ∪W),
and the node Y creates U ⊥⊥� V |W ∪ Y . By lemma
7.3 there are now three cases for node Z:

(a) Z ∈ (U ∪ V ∪W),

(b) Z⊥⊥U |W, (and/or Z⊥⊥V |W)

(c) U⊥⊥�V |W ∪ Z.

For case (a), both X and Z are in (U ∪ V ∪ W),
and so if rule (1) applies to X ∗ → Y it also ap-
plies to Z ∗ → Y . Case (c) cannot occur, as that
would imply Z ⇒� (U ∪ V ∪W ∪ S) by lemma 1.2,
with X ∈ (U ∪ V ∪W), while R2a has Z−→X.
For the remaining case (b), w.l.o.g. we assume
U⊥⊥Z |W. Lemma 7.4 implies U ⊥⊥�Y |W which, to-
gether with Z ∗→Y , implies U ⊥⊥�Z |W ∪ Y , because
the unblocked path from U to Y given W cannot con-
tain Z, as that would create an unblocked path from U
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Figure 3: Configuration for Lemma 7.5

via Z to X given W, contrary U⊥⊥Z |W. Then from
lemma 7.5 it follows that there is at least one minimal
conditional independence between Z and some node
from (U ∪W) that is destroyed by conditioning on Y .
Therefore, the arrowhead Z ∗→ Y is then covered by
case (1).

Figure 4: Example of non-minimal case (b) in lemma 7.5.

Example. Figure 4 shows an instance of case (b) for
R2a where the initial separating set is not minimal.
Here, R2a applies to Z ∗→Y , after X ∗→Y is derived
via case (1) from U ⊥⊥ X | [W ] with U ⊥⊥� X |W ∪ Y
(the origin of the edge Z −→X is not depicted). By
lemma 7.3, for node Z indeed U ⊥⊥Z |W holds (case
b), but not as a minimal independence, as U⊥⊥Z | [∅].
As a result, edge Z ∗→Y does not follow from case (1)
applied to this combination of nodes as conditioning on
Y does not make U and Z dependent, i.e. U ⊥⊥Z |Y .
However, as in the proof of lemma 7.6, Z is minimally
conditionally independent of ‘eliminated’ node W , but
dependent when conditioning on Y . Therefore, case
(1) applies to W ⊥⊥Z | [∅] and W ⊥⊥�Z |Y , from which
follows that Z ∗→Y .

We can now complete the proof of the main invariant
arrowhead lemma:

Proof of lemma 7. Follows from the arrowhead com-
pleteness of rulesR0b-R4b, the fact that afterR0a the
theorem holds (no arrowheads), in combination with
the proof in lemmas 7.1-7.6 that none of the rulesR0b-
R4b introduces a violation of the lemma, if there was
no violation prior to firing of the rule.

Next we continue with the invariant tails.

Lemma 9 (Invariant tails). In a PAG P, all invari-
ant tails Z−−∗Y from graphical orientation rules R4a,
R5, R7, R9, and R10 are instances of:

(2b): X⊥⊥Y | [W ∪ Z], with X ⇒ (Z∪S) from either
case (3) or another instance of (2b),

(3): U⊥⊥V | [W ∪W ], with two transitive relations
[W,U, .., Y ] + [W,V, .., Y ], and Z ∈ {U, V,W},

(4): X⊥⊥Y | [Z ∪ Z], with a Z an inferred blocking
node in [X,Z1, .., Zk, Z, Y ], together with Zk ⇒
(Y ∪ S) from either case (2) or case (4).
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Proof. Case (2b) covers rule R7, and is so named be-
cause of its similarity/overlap with case(2) for R1.
Case (3) covers all instances of rules R5, R9, and R10,
and case (4) accounts for tails from orientation rule
R4a.

All three cases are sound:
(2b): By lemma 3, X⊥⊥Y | [W ∪ Z] gives
(Z ⇒ X) ∨ (Z ⇒ Y ) ∨ (Z ⇒ S). Combined with
(X ⇒ Z) ∨ (X ⇒ S) this gives (Z ⇒ Y ) ∨ (Z ⇒ S),
and so a tail at Z if it has an edge to Y in P.
(3): Idem, U⊥⊥V | [W ∪W ] gives (W ⇒ U) ∨ (W ⇒
V ) ∨ (W ⇒ S). From corollary 8, the transitive
relations give (W ⇒ {U ∪ S}) ` (W ⇒ {Y ∪ S}),
and (W ⇒ {V ∪ S}) ` (W ⇒ {Y ∪ S}). Substituting
these two in the first then gives (W ⇒ Y )∨ (W ⇒ S).
This holds for all nodes on the two transitive chains,
hence if Z ∈ {U, V,W}, then (Z ⇒ Y )∨ (Z ⇒ S), and
therefore a tail Z−−∗Y , if they are connected in P.
(4): By lemma 4, as Z is an inferred blocking node
between X and Y given Z, there is a Zk ∈ Z such that
Z ⇒ Zk ∨ Z ⇒ Y ∨ Z ⇒ S. Together with the given
Zk ⇒ Y ∨ Zk ⇒ S, this reduces to Z ⇒ Y ∨ Z ⇒ S,
and hence an invariant tail Z−→Y .

In rule R7, X and Y are nonadjacent, so condition-
ally independent given some set, and Z as a noncol-
lider between the two is needed in all such sets, hence
X⊥⊥Y | [W ∪ Z]. Only rules R6 and R7 can produce
the required X −− ◦Z edge to trigger R7, however,
every (chain of) R7 orientations needs to start from
an instance of R6. Rule R6 implies identifiable selec-
tion bias on X (undirected edges to other nodes), and
so, if it triggers R7 then this satisfies case (2b), and
therefore any subsequent tail oriented by R7 as well.

Rule R5 triggers on an uncovered circle path. In Fig-
ure 4, let U be the node next to X on the circle path
(U could be W ), so that we have Z ⊥⊥ U | [X ∪ ..],
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Figure 5: Rules R5−R10, tail orientation rules

as Z and U by definition not adjacent. Furthermore,
there are two transitive relations [X,U, ..,W, Y ] and
[X,Z, Y ] that are both from X to Y , and so R5 satis-
fies case (3) and gives (among others) Z−−Y .
Rule R9 similar: now Z⊥⊥W | [X ∪ ..], with two tran-
sitive relations [X,W, .., Y ] and [X,Z, Y ] that are both
from X into Y , and so R9 satisfies case (3) and will
orient Z−−Y .
Rule R10 idem: now V ⊥⊥S | [Z ∪ ..], with two transi-
tive relations [Z, S, ..,X, Y ] and [Z, V, ..,W, Y ] that are
both from Z into Y , and so R10 satisfies case (3) and
will orient Z−−Y .

In rule R4a, from the description of the graphical ori-
entation, it follows that X and Y are non-adjacent in
P, and that all nodes Z1, .., Zk, Z, see also Figure 1,
are needed to make them independent, and hence ap-
pear in the set X ⊥⊥ Y | [Z ∪ Z]. Furthermore, each
neighboring node in the sequence is adjacent in the
graph, so not separated by any set, let alone a subset
from Z. All nodes Zi have arrowheads at edges to their
neighbors in the sequence, implying non-ancestorship,
so no causal relation to either. Therefore Z is an in-
ferred blocking node. The tail at Zk −→ Y implies
Zk ⇒ (Y ∪ S), and so R4a satisfies case (4) (in fact,
even stronger, as identifiable Zk ⇒ Y )
By construction of the discriminating path, all nodes
Zi in the sequence, except perhaps Z1, also satisfy the
conditions in case (4). For Z2, the arc Z1 −→ Y fol-
lows from case (2). For Z3, the invariant arc Z2−→Y
therefore satisfies case (4) (although it may also be de-
rived in other ways as well). Similar for all subsequent
nodes up to Zk.

Corollary 10 (Identifiable selection). In a PAG
P, all identifiable selection nodes X ⇒ S are covered
by case (3), in the form of a minimal independence
with two transitive relations back to itself.

Proof. Identifiable selection bias X ⇒ S corresponds
to a node with an undirected edge. Only R5, R6, and
R7 can produce undirected edges.
When the transitive relations reach all the way
back to the node Z from the initial minimal con-
ditional independence, then the conclusion becomes
(Z ⇒ Z) ∨ (Z ⇒ S), which (irreflexivity) reduces to
(Z ⇒ S). In other words, then there is identifiable se-
lection bias on Z, and therefore also on all other nodes
involved in the transitive relation (including the Uis).
This is what happens in R5. Afterwards, if R6 is al-
ways executed before R7 when a new undirected edge
is found, then R6 will never (need to) identify a new
selection node, as it produces only tails on nodes that
are already established selection nodes. That leaves
just R7. It is possible that part of the transitive rela-
tion in case (3) is traversed in both ways (that is where
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the ‘not necessarily disjoint’ part in the definition of
transitive relation comes in). This occurs for single
nodes that separate two nonchordal undirected sub-
graphs in P. Then R7 will orient Z−−∗Y in the direc-
tion away from one undirected subgraph, and Y −−∗Z
when orienting in the direction away from the other
subgraph, resulting in Y −−Z, and so identifiable se-
lection bias on both Y and Z. These are also the only
ways in which undirected edges can be created by the
orientation rules.

6 Reconstructing the PAG

Lemma 12 (Single minimal independence). In
the structure independent approach, finding a single,
arbitrary X⊥⊥Y | [Z], for each pair of nodes (X,Y) in
the graph (if it exists) is sufficient to find all invariant
features of the PAG.

Proof sketch. This stems from the fact that the graph-
ical orientation rules are defined on sets of adjacent
nodes, which ensures that most nodes are almost al-
ways needed to separate two nonadjacent nodes in the
same rule, and so will be found as part of the separat-
ing set, no matter how large/variable the set of nodes
to block all paths between the two can be. Note: once
a minimal set is found for a pair of nodes, then all
remaining nodes are checked to see if including them
destroys the independence (so lemma 3, item 1 ap-
plies).

In the detailed proof per rule, we use the following
result for rule R2a:

Lemma 12.1. In an ancestral graph G, if there are
(sets of) nodes U, Y, Z and W, such that U⊥⊥Z | [W]
and U⊥⊥�Z |W ∪ Y , with Z ∗→Y in G, then there is a
node V (possibly V = U), such that for all sets Q for
which V ⊥⊥Z | [Q] it holds that V ⊥⊥�Z |Q ∪ Y .
In words: if conditioning on a node Y destroys (un-
blocks) some minimal conditional independence for a
neighbouring node Z, then it does so in all minimal
independencies between Z and at least one node in G.

Proof. Follows along the lines of lemma 7.5. From
that proof, there is an unblocked path π in G′ (the
graph G, marginalized over {U, Y, Z}∪W, of the form
π = U ∗→Wk←→ . . .←→W2←→W1←→Y that is into Y
given W, for some k ≥ 0. Here we consider the cor-
responding path(s) θ in G, where the colliders on the
path are now indicated by {U1, .., Um}. (Note that
edges in G′ may correspond to multiple unblocked
paths relative to W in G, and that θ may contain
different nodes than π, including other (ancestors of)
colliders from W).

So, let θ = U ∗→Um←→ . . .←→U2←→U1←→Y be an
unblocked path in G that is into Y given W. We
look at nodes V along θ, starting from Y , and try
to find one that does not have a link to Z. Sup-
pose V = V1 is encountered on the first leg (trek)
U1←∗ .. ∗→Y . If V1 does not have an edge to Z in G,
then there is some Q such that V1⊥⊥Z | [Q], while also
V1⊥⊥�Z |Q ∪ Y (both edges to Y ), and so the lemma
is satisfied. If there is a link, then it can only be of the
form U1←∗ .. ∗→ V1←∗Z, otherwise there would be
an unblocked path between U and Z given W.
For a second node, V2, a similar story holds: if there
is no edge V2 − Z in G, then there is some Q such
that V2 ⊥⊥ Z | [Q]; but note that now V1 /∈ Q, as the
edges from both V2 and Z are into V1, and therefore
also/again V2⊥⊥�Z |Q ∪ Y (unblocked path resp. edge
into Y given Q), and so the lemma is satisfied. If
there is an edge, then again it must be of the form
U1 ←∗ .. ∗→ V2 ←∗Z, otherwise there would be an
unblocked path to Z, and we can continue until we
reach U1. At that point, again, if U1 has no edge to
Z, then there is some U1⊥⊥Z | [Q], with none of the Vi

encountered on the first leg in Q (as Vj is not ances-
tor of either U1 or Z, from which, by Vj −→ ..−→V 1,
follows that neither are any of the other Vi), and so
there are unblocked paths from U1 and Z into Y given
Q. If it has an edge, then, contrary the edges from Z
into Vi (if any), it must be an edge out of U1 −→ Z,
otherwise there would be an unblocked path given W.
Continuing with the second leg, U2 ←∗ .. ∗→ U1, we
now find that a node V encountered in going from U1

to U2 along θ (if any) cannot have a direct edge to Z
without creating an unblocked path from U to Z rela-
tive to W (either as noncollider between U2 and Z, or
as collider that is ancestor of U1). So then V ⊥⊥Z | [Q],
with U1 ∈ Q (as it is the only node blocking the path
V ∗→ U1 −→ Z). But like before, none of the pre-
vious Vi (if any) are part of Q: by contradiction, if
Vi ∈ Q, then Vi −→ V (because Vi /∈ An(Z)), so
if U2 ←→ V −→ U1 along θ, then the ‘top’ Vj would
be ancestor of U1, contrary the arrowhead U1←→ Vj ,
and if U2 ←− V ∗→ U1 along θ, then the path via
U2←− V ←− Vi←∗Z would be unblocked (end-of-by-
contradiction). So, if none of the Vi are part of Q,
then the paths from both V and Z to Y are unblocked
given Q, and the lemma is satisfied.
If no node V on U2←→U1, then again, for U2 there is
either a minimal independence that satisfies the lemma
or an edge U2−→Z. This can be repeated along θ un-
til a node is found or the final node U is reached. At
that point, if no other node has been found before, it
can be applied to any set for which U⊥⊥Z | [Q], as all
other colliders Ui ∈ Q, are needed to separate U and
Z, but none of the Vi, and so the path to Y is always
unblocked.
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It turns out it is actually easier to use a more restricted
variant of lemma 7 to prove lemma 12:

Lemma 12.2 (Restricted lemma 7). In a PAG P,
all invariant arrowheads Z ∗→Y are instances of

(1′) U⊥⊥�V |W ∪ [Y ], created from U⊥⊥V | [W],
with Z ∈ {U, V,W}, and where for all sets
W′ : U ⊥⊥ V | [W′] the paths from U and V
to Y are unblocked relative to W′, and either
Z ∈ {U, V } or (necessarily) Z ∈W′.

(2′) X⊥⊥Y | [W] with Z ∈ W, and Z ⇒� (X ∪ S)
from either case (1′) or case (2′), and Z in all
sets W′ : X⊥⊥Y | [W′].

In words: case (1) only needs to be applied to instances
where Z is always part of the minimal conditional in-
dependence, and that will always be unblocked when
conditioning on Y . Case (2) also only needs to be ap-
plied to instances where Z is always part of the mini-
mal conditional independence.

Proof. For each arrowhead rule:
R0b fires on any (minimal) conditional independence

X⊥⊥Y |W between X and Y , and for any such
W, including Z will unblock the path 〈X,Z, Y 〉,
so case (1′) applies,

R1 node Z is part of any set (minimal or not) that
separates X and Y , and so case (2′) applies,

R3 similar to R0b, fires on a node W that is part
of all sets separating X and Y , and including Z
will unblock the path 〈X,Z, Y 〉, and so case (1′)
applies,

R4b (arrowheads at Z) all nodes Z1, . . . , Zk are part
of all sets separating X and Y , and including Z
then makes them dependent, so case (1′) applies,

R2b for instance (1a) in lemma 7.2, if case (1′) applies
to Z ∗→X, then it also applies to Z ∗→Y , as X
is never part of the minimal conditional indepen-
dence involving Z, and so unblocked paths to X
imply unblocked paths to Y ; for instance (2a), Z
is present in all sets that make X and U indepen-
dent, and so also in all sets that make Y and U
independent (as it implies Z −→ Y ), and so case
(2′) applies; for instance (2b), if Y ⊥⊥�U | [W ∪ Z]
holds for all sets for which X⊥⊥U | [W ∪ Z], then
it is an instance of case (1′) with V ≡ X and
W ≡ (W ∪ Z), and so for all W ∪ Z there are
unblocked paths from X and U into Y , result-
ing in X ⊥⊥� U |W ∪ Z ∪ Y . If not, then there
is some W′ for which X ⊥⊥U | [W′ ∪ Z] and not
Y ⊥⊥�U | [W′ ∪ Z]. But as Z is needed in all sets
that block a path π = U.. ∗→ Z −→ X between
U and X, it means that Z is also needed in all
sets that separate U and Y , because if there is
any remaining unblocked path π from U to either
X or Z, then π+ either X −→ Y or Z −→ Y is

an unblocked path from U into Y . Therefore Z
is also needed in all sets that separate U and Y ,
which, together with Z ⇒� (U ∪S), implies that it
is an instance of case (2′).

R4a/b (arrowhead at Y ) instances of R2b with Zk = Y ,
R2a if the arrowhead between X and Y originates from

case (2′) then X −→ Y , and so is an instance of
R2b. If not, then the arrowhead X ∗→ Y origi-
nates from case (1′) with node X in R2a in the
role of Z in (1′).
Now, if Z, like X, is also a necessary member
of the minimal independence U ⊥⊥ V | [W], i.e.
Z ∈ {U, V } or ∀W′, U ⊥⊥V | [W′] : Z ∈W′, then
case (1′) also applies immediately to Z.
If Z is not necessary, then there is some
U⊥⊥V | [W′], with Z /∈ (U ∪ V ∪W′), for which
U⊥⊥�V |W′ ∪ Y . For node Z then instance (b) in
lemma 7.3 applies, say as U⊥⊥Z |W′, as instance
(a) is excluded by the assumed Z /∈ (U ∪V ∪W′),
and instance (c) still cannot occur, as Z −→ X.
But then also U ⊥⊥� Z |W′ ∪ Y , as both U and
Z have unblocked paths into Y relative to W′

(by lemma 7.4, applied on the U ⊥⊥� V |W′ ∪ Y
from case (1′), together with edge Z ∗→Y ). But
then by lemma 7.5 there is also a W ⊥⊥ Z | [Q]
with W ⊥⊥� Z |Q ∪ Y , and therefore, by lemma
12.1 there is also some node Q for which for every
set Q⊥⊥Z | [Q′] also Q⊥⊥�Z |Q′ ∪ Y , i.e. then case
(1′) is also satisfied for the arrowhead Z ∗→Y .

(Note that R2b is not simply an instance of lemma
12.1, as that only says that X has a conditional inde-
pendence with some node V ∈W that will always be
destroyed by conditioning on Y . It does not guarantee
that Z is also always a part of this set.)

So all arrowhead rules are covered by lemma 12.2. As
the two cases in lemma 12.2 are just a restricted form
of the cases in lemma 7, it follows that all rules are
also covered by lemma 7 if just a (any) single minimal
independence is found between each pair (if it exists).
We can now complete the proof that a single minimal
independence suffices to find all invariant marks:

Proof of lemma 12. By lemma 12.2, all invariant ar-
rowheads are instances of cases (1′) and (2′), and so
will always be found if at least one minimal conditional
independence is found between each pair of nodes (if
it exists). For the remaining invariant tails: For each
rule:
R5 The circle path corresponds to a transitive chain

of minimal conditional independencies where each
node is necessarily part of any set that separates
its two neighbors.

R7 Similar to R1.
R9 Node X is part of every conditional independence
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between Z and W ; the same holds for the succes-
sive nodes in both transitive relations from X via
Z to Y and from X via W to Y .

R10 Similar to R5/R9.

Remaining rules R6, R8a, and R8b do not require
any separate independence statement. Therefore all
orientation rules that trigger on an instance of case
(1) do so for at least one that is part of a set that is
present in all minimal conditional independencies for
a given pair of nodes.

Theorem 1. The Logical Causal Inference (LoCI)
algorithm is sound and complete.

Proof. Soundness follows from the validity of the lem-
mas 3 and 4, that produce the logical statements in
the list  L, in combination with the causal logic rules
in proposition 1. Completeness follows from the fact
that all rules are instancess of cases (1)-(4) (lemmas 7
and 9), for a single, arbitrary minimal independence
between nodes, in combination with subsequent depen-
dencies (lemma 12), the fact that all logical inference
in each of the cases (1)-(4) is covered by proposition
1, the fact that case (1) and (2) will find all required
non-ancestor relations / invariant arrowheads (lemma
7, (Zhang, 2008)), needed to obtain the only remaining
piece of information (inferred blocking node for case
(4) from lemma 4). After running the logical rules on
this set of statements to completion, all invariant edge
marks have been found and can be transferred to the
PAG.

As a final step we demonstrate that for each case (1)-
(4), the logical inference steps in the LoCI algroithm
do indeed keep the simple form of the list of statements
in section 3.1 in (Claassen and Heskes, 2011), i.e. ei-
ther a statement on the absence of a specific causal
causal relation, or a disjunction of possible causal rela-
tions from one variable to at most two other variables,
and/or the selection set S.

Case (1): Follows directly from lemma 3, item 2.
(Note: the restriction to U⊥⊥V | [W] plays no role, as
it is only states that the (crucial) dependency by Y will
be found from a minimal conditional independence).

1: Y ⇒� Z ∧ Y ⇒� .. ∧ Y ⇒� S

Case (2): A minimal independence in combination
with already inferred information on the absence of a
causal relation.

1: Z ⇒ X ∨ Z ⇒ Y ∨ Z ⇒ S
2: Z ⇒� X ∧ ∧ Z ⇒� S
1′: Z ⇒ Y
3: Y ⇒� Z

Case (2b): Idem, but now in combination with an
already inferred causal relation and/or selection bias
on a specific node.

1: Z ⇒ X ∨ Z ⇒ Y ∨ Z ⇒ S
2: X ⇒ Z ∧ ∧ X ⇒ S
` Z ⇒ Z ∨ Z ⇒ Y ∨ Z ⇒ S
1′: Z ⇒ Y ∨ Z ⇒ S

Case (3): A minimal independence involving Z, with
both alternatives leading to Y .

1: W ⇒ U ∨ W ⇒ V ∨ W ⇒ S
2: U ⇒W ∨ U ⇒ Y ∨ U ⇒ S
3: V ⇒W ∨ V ⇒ Y ∨ V ⇒ S
` W ⇒ Y ∨ W ⇒ V ∨ W ⇒ S
` W ⇒ Y ∨ W ⇒ Y ∨ W ⇒ S
4: W ⇒ Y ∨ W ⇒ S

This for Z = W ; cases Z = U/V go the same.

Case (4): An inferred blocking node Z, with an ear-
lier/afterwards established causal relation to Y or se-
lection bias.

1: Z ⇒ Zk ∨ Z ⇒ Y ∨ Z ⇒ S
2: Zk ⇒ Y ∨ Zk ⇒ S
1′ Z ⇒ Y ∨ Z ⇒ S
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