Causal Discovery and Logic

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen,
op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann,
volgens besluit van het college van decanen

in het openbaar te verdedigen op vrijdag 14 juni 2013
om 10:00 uur precies

door

Thomas Claassen

geboren op 8 september 1969
te Sittard



Promotor:

Prof. dr. Tom Heskes

Manuscriptcommissie:

Prof. dr. Peter Lucas
Prof. dr. Thomas Richardson (University of Washington)
Dr. Ricardo Silva (University College London)

s TICS

SIKS Dissertation Series No. 2013-22

The research in this thesis has been carried out under the auspices of the Dutch Re-
search School for Information and Knowledge Systems (SIKS), and the Institute for
Computing and Information Sciences (iCIS) of the Radboud University Nijmegen.

Ny O

This research was supported by NWO Vici grant nr.639.023.604.

Copyright (© 2012 Tom Claassen

ISBN 978-90-820674-0-8
Cover design: TMQ



Contents

Title page
Table of Contents

1 Introduction
1.1 ‘Scientists have established a link between ...’
1.2 From dynamical systems to causal discovery
1.3 Outline of the thesis

2 Graphical Models and Causal Discovery
2.1 Mixed graphical models
2.2 Graphical models and probabilistic independence
2.3 Causal models and ancestral graphs
2.4 Constraint-based Causal Discovery

3 A Logical Characterization of Causal Discovery
3.1 Introduction
3.2 Invariant arrowheads and minimal independence
3.3 Inference from Causal Logic
3.3.1 Logical rules from minimal independence
3.3.2 Inferred statements
3.3.3 Direct and indirect causal relations
3.4 A Logical Characterization of Causal Information
3.4.1 Invariant tails
3.5 Logical Causal Discovery
3.5.1 Inference process
3.5.2  The LoCI algorithm
3.6 Discussion and Conclusion
3.A Proofs: causal relations from in/dependence
3.B Proofs: causal logic rules
3.C Proofs: logical characterization
3.D Proofs: LoCI and the complete PAG

iii

20

23
23
26
27
29

33
33
34
36
36
38
38
39
39
41
41
43
44
45
46
48
95



4 Causal discovery from different experiments

4.1 Introduction

4.2  Modeling the system

4.3 Causal relations in multiple models
4.3.1 Combining information from multiple models
4.3.2 Including interventions

4.4 The MCI algorithm

4.5 Experimental results

4.6 Conclusion

4.A Proofs

5 Bayesian Constraint-based Causal Discovery
5.1 Introduction: Robust Causal Discovery
5.2 The Best of Both Worlds
5.3 Sequential Causal Inference
5.3.1 A Modular Approach
5.3.2  Obtaining likelihood estimates
5.3.3 Inference from unfaithful DAGs
5.3.4 Consistent prior over structures
5.4 The BCCD algorithm
5.5 Experimental Evaluation
5.6 Discussion and future work
5.A Appendix: Probabilistic inference from uDAGs
5.B Causal statements from uDAGs
5.B.1 Minimal in/dependencies
5.B.2 Causal inference from optimal uDAGs

Bibliography
Samenvatting

Acknowledgments

61
62
64
66
66
68
70
72
74
75

7
77
80
82
83
84
85
87
87
89
94
96
103
103
106

111

117

119



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 ‘Scientists have established a link between ...’

On an almost daily basis one can hear about the latest scientific breakthroughs and
discoveries. News bulletins report on findings that can help us to better understand
the world, decide on new policies, or improve our quality of life. Popular media
are often interested in links related to physical and emotional well-being, such as
behavioural patterns associated with heart diseases, food supplements related to a
reduced risk on dementia, and steps to improve the chance on a successful career
or relationship; but also in other areas, such as the link between crime and so-
cioeconomical status, or the rise in unemployment figures since the latest austerity
measures. Scientific journals tend to report on more complex and detailed relations,
such as genes linked to cancer signalling pathways, the connection between nitrogen
levels and bio-diversity, and the link between solar activity and climate change.

Nearly always the link is understood to imply a causal connection, where the
first element somehow triggers, contributes to, or alters the chance on the second.
The importance of finding causal relations is universally understood: knowing what
influences what provides a level of control over one’s life or environment. But strictly
speaking the reported link only claims the discovery of a statistical correlation. And
by the famous adage ‘correlation does not imply causation’ this in itself is not enough
to warrant a causal interpretation. So how can we go from one to te other? That
is the subject of the field of causal discovery

Statistical vs. causal risk factors

In medicine, the gold standard in establishing the effect of a treatment is the double-
blind randomized controlled trial, where subjects are allocated to different treatment
groups at random, and both subjects and analysts do not know who belongs to which
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group: any statistically significant difference can then (only) be attributed to the
causal effect of that treatment.

However, the majority of research is not of this form: in many cases it would be
too expensive, unethical, or simply impossible to realize. Other types of experiments
range from single-blind to open or uncontrolled (no control group) trials, all the
way to purely observational studies. In such cases, finding variables that positively
correlate with the disease/condition under scrutiny are known as risk factors.
But no matter how strong the correlation is or how plausible the explanation may
seem, simply interpreting a risk factor as causal may have unexpected, possibly
even harmful consequences.
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Figure 1.1: Statistical vs. causal risk/prediction factors. (a) Lung cancer and smoking (b)
Hurrying and Arriving Late, (¢) Cannabis and Depression/Schizophrenia

For example, in Figure 1.1 Smoking is a well-established risk factor for Lung
cancer, as a higher proportion of smokers will develop lung cancer than of non-
smokers. Indeed, we know Smoking = Lung cancer, and so quitting smoking is an
effective way to reduce the risk on lung cancer. But in a classic example attributed
to Judea Pearl, by the same token Hurrying is a strong risk factor for Arriving Late,
as people that are late still try to arrive on time. But clearly, taking your time will
not help you arrive earlier. In fact, not hurrying is likely to increase the number
of times you arrive late - the exact opposite of what the link suggested - as both
factors result from, e.g. being delayed.

In this case the difference is obvious because we know from experience what
the causal relations are. But the point of causal discovery is to identify relations
we do not already know. So what to do if we find a link between Cannabis and
mental disorders such as Depression or psychosis? It is possible that cannabis has
a negative influence on the brain, and so banning it would be beneficial to the
public health. But it is also possible that people start using cannabis to cope with
depression, or that people who are susceptible to depression are also susceptible
to drug use. It could even be that cannabis relief offers some form of protection
against depression.

So, only if the risk factor is also a causal risk factor does a ban have a positive
effect on reducing depression: in all other cases the effect is either zero or negative.
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What makes a relation causal?

In order to decide which risk factors are causal, we need to know what exactly a
causal relation is. In everyday speak the term ‘cause’ (or absence thereof) is used
for many subtly different concepts. For example:

- a sedentary lifestyle can cause a heart attack (increase likelihood),

- the new fertilizer caused the grass to grow beautifully (significant factor),

- he fell into crime because he never finished school (most important),

- she won Olympic gold because she kept believing (necessary, not sufficient),
- no, you were not late because you had to wash-up your cup (insignificant),

- alcohol causes breast cancer through increased oestrogen levels (mechanism),
- he hit the jackpot because he kept betting on black (specific instance),

- what caused the system to break down? (explanation),

- the driver in the blue car caused the accident (blame).

Usually it is clear from the context what is meant, but that is not good enough
for implementation in an algorithm. Given this inherent ambiguity, we want to
capture the essence of what people mean when talking about causality, without
getting bogged down in the philosophical quagmire of the ‘correct’ definition, be it
through counterfactuals [Lewis, 1973], hypothetical interventions, structural equa-
tions models [Pearl, 2000], probability raising preceding factors, INUS conditions!,
or epistemological constructs [Williamson, 2005].

A key aspect behind a causal relation X = Y is the idea of effective ma-
nipulation. The manipulation part captures the notion that a cause can or must
influence its effect, which in turn suggests a degree of deliberate control of X, either
in size, number or likelihood, over Y. The effective part captures the notion of
relevance: if you cannot really notice an effect, it may as well not be there at all.
Together they emphasize a causal model as a ‘summary of influence’: concluding
that 2,500 out of 10,000 genes contribute to some degree to a disease is near use-
less (even if true); but finding five major markers constitutes an important medical
breakthrough. In other words: causal discovery should distinguish between the re-
lations that matter and the ones that don’t.

We can identify a few other properties of causal relations: they relate to the real,
physical world (mathematical equality and logical implication are not causal), they
are constant/persistent (relations do not stop/start being causal), time-dependent
(causation takes time), stable (in similar circumstances on average similar things
happen), transitive (if X = Y and Y = Z then X = Z7), and irreflexive (X # X,
unless time is explicitly ignored as in cyclic models).

Finally an example of the distinction between singular causation (‘what hap-
pened’) and generic causal relations In the famous Butterfly effect from chaos the-
ory [Lorenz, 1963], the flap of a hypothetical butterfly in Brazil causes a tornado

linsufficient but non-redundant part of a condition which is itself unneccessary but sufficient
for the occurrence of the effect, [Mackie, 1988]



4 CHAPTER 1

in Texas, in the sense that in the same conditions without the flap the tornado
does not appear. But this just illustrates sensitive dependence on initial conditions
in nonlinear systems in a specific instance: almost any change is likely to lead to
radical differences given sufficient time. In practice, training butterflies is not an
effective means to create hurricanes. In contrast, an expected consequence of global
warming is an increase in extreme weather, including the incidence of hurricanes
[IPCC, 2008]. Given the consensus that a large part of this trend can be attributed
to human activity, it follows that in terms of effective manipulation: human induced
climate change causes hurricanes ... butterflies do not.

Causal explanations for observed correlations

So far we found that a statistical risk factor is good for predicting likely cases, but
that you need a causal risk factor to find a good treatment. They look the same,
so how to distinguish. To do so it helps to know the basic causal configurations
that can produce a correlation. We will illustrate these by an example from an area
of research in micro-biology that has gained much attention in recent years: the
human gut flora.

After it was discovered that the human digestive tract, and in particular the
gut, contained a great many different types of bacteria (> 1000 species), researchers
quickly realized that the impact of presence, absence, or abundance of these organ-
isms on their environment, and so indirectly on the general state of health was
largely unknown. Inspired by the famous example of stomach ulcers that were
tought to be related to stress, but turned out to be result from an infection with
the Helicobacter Pilori bacterium, people started to look for associations between
such organisms and all kinds of intestinal conditions, in an attempt to identify
unknown risk factors, ultimately leading to new treatments.

Example 1.1. Figure 1.2 displays four basic causal configurations that can pro-
duce an observed association between abundance of a micro-organism (red) and the
condition of the gut (blue), resulting in certain abdominal symptoms.

Case (c) depicts that Helicobacter is a (direct) cause of ulcers, as mentioned
above. In (b) the dangerous hospital bacterium Clostridium difficile establishes itself
when competing organisms are killed off by antibiotics: C.diff flourishes as an effect
of changes in its environment. Fig.(d) displays how coeliac disease is caused by
an overreaction of the immune system to the presence of transglutaminase, which
results in inflammation of the villi lining the small intestine. It is not unlikely that
one or more of the hundreds of species of bacteria in the gut also suffers adversely
from this immune reaction as a common cause without having any direct impact
on/from the tissue inflammation.

Finally, in (e) the abundance presence of a certain bacteria is the result of
a high-fat diet that induces symptoms such as acid reflux and abdominal cramps
that are similar to certain inflammatory bowel diseases (IBDs). A study under
people with such symptoms will show a negative correlation, suggesting some sort of
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Figure 1.2: Four different causal configurations that produce an observed link between
abundance of a micro-organism and the state of health in the gut. (a) Gut flora (red) as
established risk factor for intestinal condition (blue) and resulting abdominal symptoms
(white), together with four possible causal explanations: (b) change in environment causes
C.diff to flourish, (c) Helicobacter infection causes ulcer, (d) immune system affects both
stomach lining and gut flora, (e) selection on symptoms suggests bacteriological link with
inflammatory bowel disease (IBD)

protective/preventative effect that could be commercially very attractive, even though
actively adding the bacterium to your diet would not make you any less susceptible
to IBDs. This spurious relation, resulting from focussing on cases with certain
symptoms, is known as selection bias.

Four possible associations, but only in one case was the organism the actual
cause of the condition. To establish which one we have we need to find additional
relations that can help to eliminate the others. How to do that efficiently is detailed
in chapter 3.
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Causal discovery

The basic challenge of causal discovery can now be depicted as in Figure 1.3: given
a data base of results from one or more experimental and/or observational studies,
and armed with the combined knowledge of previous research and literature, the
causal discovery algorithm should produce a precise and informative model of all
the causal relations (or absence thereof) it could or could not find. To make this
connection it needs information on how to distinguish between causal relations and
‘mere’ associations. Here we can do a little better than the famous ‘no causes in,
no causes out’ from [Cartwright, 1989] in the form of ‘no causal assumptions in, no
causal relations out’. The output can take any form, but in this thesis we primarily
focus on graphical causal models.

~ Assumptions

- U

Data
—
Causal
>—> Discovery

Algorithm

Background
knowledge

Figure 1.3: Causal discovery overview

Causal discovery is not about truth: we can never prove something about the
real world; all we can (and should) aim for is that it is valid in the sense that if the
conclusions turn out to be false, then the input (data, knowledge, or assumptions)
must be wrong.

Our ultimate goal is to make the entire process completely transparant, where
all relevant information is available to the algorithm prior to analysis, and every
subsequent causal conclusion can be traced back to the exact pieces of information
it was based on, irrespective of the nature of the experiments or the specific area
of research the causal model applies to. In practice, for now we still have to cut
a number of corners, but the results in this thesis should represent a decent step
towards that final goal.

In the remainder of this thesis we are no longer concerned with meaning and
interpretations of causality: for that the reader is referred to, e.g. Lewis [1973];
Dawid [2000]; Pearl [2000]; Cartwright [2004]; Williamson [2005]. However, before
we focus entirely on causal relations in abstract models we take a closer look at
how ‘effective manipulation’ translates to results from real-world observational and
experimental studies.
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1.2 From dynamical systems to causal discovery

In this section we take a look at a toy system to see if we can capture our intuitive
‘effective manipulation’ in a useful, objective definition, and what possible compli-
cations to expect when trying to discover them in practice. After all: if we want
to claim to understand causality and find ‘real’ causal relations from probabilistic
data we should at least be able to understand/indicate how and where they reside
in the representation of a simple real-world experiment.

After this section we will not go back to this level of detail, but instead work di-
rectly from the high-level abstract model representation of causal relations between
observed variables. But it is helpful to realize what actually underpins all the neat
and tidy graphical models in subsequent sections, and how certain assumptions and
simplifications relate to properties of underlying real-world systems.

The behaviour of many (if not all) physical systems can be described, at least
in principle, in terms of a dynamical system?:

Definition 1.2. A dynamical system is a tuple (T, M, ®), where

- T represents a set of time parameters,
- M is a manifold called the state space or phase space of the system,
- Ol (z): T x M — M is an evolution rule.

The evolution rule maps states x € M at ty to states ' at ¢y + t. Dynamical
systems have the memorylessness property, which means that a state x(¢ > t') is
independent of all states x(t < t’) given the (full) state x(¢'). It includes discrete
systems, such as the logistic map:

Tnt1 = 1Tn(1 — ), 7 €]0,4]

which maps the interval [0, 1] onto itself and shows chaotic behaviour for r > 3.57,
but also cellular automata like Conway’s Game of Life. However, in this thesis we
focus on the subclass known as real-time dynamical systems or flows, where
time is continuous: T = R, a state x € M is a d-dimensional vector of variables, and
the evolution rule ®! is the integrated solution to a set of d (coupled) differential
equations X = v(x) such as, for example, Newton’s equations of motion. A tra-
jectory x(t) = ®%(xo) is the path through phase-space traced out by the evolution
rule for a given initial point x(0) = xo. Note that constants are simply variables
with time-derivative ¢ = 0, and that reversible systems can be run backwards in
time with negative t.

2See, e.g. [Cvitanovié¢ et al., 2010] for a comprehensive introduction to this topic with ample
focus on describing and deriving (causal) properties of dynamical systems.
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Example: throwing a drawing pin

To see how the properties of real-world dynamical systems, observed probabilistic
in/dependencies, and inferred causal relations are related we take a look at one of
the simplest dynamical systems that displays all this interdependence: throwing a
drawing pin or thumbtack.
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026 : 3 )\J]
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Figure 1.4: (a) Stable outcomes of throwing a drawing pin: ‘pin up’ and ‘pin down’, (b)
Experimental setup, and time-lapse visualization of a sample throw, see text for details.

Figure 1.4 shows the general setup: a drawing pin is launched in a certain
direction from a certain height with a certain speed, bounces over a flat surface and
finally comes to rest with either pin up or pin down (a). Despite the simplicity of the
system it exhibits a rich and chaotic bouncing behaviour, including transitions high
speed/low rotational motion — low speed/high rotation (and vice versa), bouncing
backwards, sliding with friction — stick — flip over, static — dynamic contact
(slipping), balancing/bouncing near unstable equilibrium positions, etc.

We implemented a simulation algorithm in Matlab using a 4/5!" order Runge-
Kutta ode-solver with discontinuity detection and interpolation.® The physics mod-
eling for the pin was based on [Baraff and Witkin, 1997], where we implemented
static/dynamic friction at contact points according to [Bender and Schmitt, 2006],
and used the Guendelman et al. [2003] approach to handle bounces. To reduce the
computational complexity we limited the simulation to symmetric motion in the
x — z plane. Parameters for the simulation include:

3 Available physics engines for use in computer games do not accurately simulate this bouncing
behaviour, as they need to handle potentially very many objects in real-time.
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- constants pin dimensions h,;, etc., density p, inertial tensor I,;,, gravity g,
(rotational) drag v, static/dynamic friction js /4, bounce-restitution x;

- variables position vector x, orientation matrix R, speed v, rotation w, an-
gular momentum L, force F', torque T;

- initial values at ¢t = 0 for speed v, height z, orientation Ry, rotation wy;

- thresholds transition dynamic < static, bounce < contact, ode accuracy e

while the equations of motions are described as:

position X v

orientation : R = «R (1.1)
linear momentum p = F ’
angular momentum L = 7

with linear velocity v = p/M, and angular velocity given by w = R - I;iil -RT . L.
The total external force F' and torque 7 are summed contributions from gravity,
drag, friction, normal contact forces, etc., according to whether the pin is in free
flight, bounce, or contact mode.

Apart from the system parameters we define a number of additional observ-

ables (random variables), including:
- R : final result pin-up/down-left/-right, see Figure 1.4(a),
- X : final horizontal distance from starting point along z-axis,
- B : horizontal distance at first bounce,
- H : max. height along z-axis after first bounce, etc.

The r.h.s. of Figure 1.4(b) shows a sample bounce for an 8mm long copper pin (di-
ameter head = 1.0cm) on a flat vinyl surface (friction coefficient p = 0.5, restitution
k = 0.6), with vg = 2.1m/s, wy = 18rad/sec. Launched softly from zy = 0.1 at an
angle of 0.2rad from the vertical, the pin completes just over one full rotation before
it bounces backwards (due to friction) with much higher rotational velocity, from
distance B = 13.9cm to reach height H = 5.8cm. After a few hops and bounces the
pin slides to rest at X = —3.2cm with result R = ‘pin down (left)’. Trajectories for
slightly different initial values quickly diverge, for example vg = 2.0999m/s already
results in a different outcome R. But some random variables show coherence over
larger intervals, e.g. final horizontal distance X correlates strongly with the direc-
tion of the first bounce (determined by speed and orientation of the pin) which in
this case remains backwards for values w € [16.6 — 18.4].

Probability and proportions

As stated, in a real-world dynamical system each initial condition xo is mapped
unambiguously by the evolution rule ®* to future states xq(t), including the outcome
of any additionally defined random variable V. Just as we can consider the evolution
of a single point, we can also consider the evolution of an entire region M; through
phase-space, including the proportion of trajectories from that region that result in
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event V' = v at time ty,. The initial regions represent a state of knowledge 7 about
(the parameters of) the system. Some parameters are known/defined exactly, others
are assumed to be in a some interval, perhaps with certain values preferred over
others, possibly in complex combinations. We can represent this knowledge through
a normalized initial density p(x) over the region M;, such that [ M, dzp(x) =1

With this the probability (density) of outcome V = v given a state of knowl-
edge T = {p(x), M;} becomes:

p(V=v|I)= / | dx p(x)8(v — V(@' (x)) (1.2)

In words: in a dynamical system setting probabilities take the form of relative pro-
portions of (densities over) regions of initial values in phase-space that are mapped
to the given outcome.

Given a state of knowledge, the probability p(V = v|Z) is unambiguously de-
fined. If all parameters are known exactly, then the region M; reduces to a single
initial value x¢ and probability collapses to a trivial yes/no property.

(100,000%)

- Rotational speed at t=0 (rad/sec)

o 10 20 30 40 (10,000

— Pin length (cm)

Figure 1.5: Outcomes pin-up/down in the drawing pin experiment for pins with length
hpin varying from 0 (effectively a coin) to 4cm (nail), and initial rotation wo between
[16 — 20]rad/sec; each time for a copper pin with dheqa = lem, from height zo = 0.1m with
initial speed vo = 8m/s under an angle of 0.25rad with the vertical, and constant friction,
drag, etc. The zoom plots illustrate how the proportion p(R = ‘pin up’|Z) changes with
different regions of initial values.

The probability concept from eq.(1.2) is illustrated in Figure 1.5. As can be
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seen, the outcomes are highly dependent on tiny variations in initial conditions due
to the chaotic nature of trajectories in the system, resulting in seemingly random
distribution of possible outcomes. Some large-scale structure is recognizable, e.g.
the elliptical spiral pattern in top left, the diagonal streaks for longer pins in the
r.h.s., and the higher blue (pin up) component in the Lh.s. of the main figure.

However, the entire system is completely deterministic, and indeed if we zoom
in on any particular part we discover detailed structure, corresponding to similar
types of motion. Note that for the final diagram (at 100,000x zoom) the width of the
red diagonal band corresponds to a difference in length of about 40nm (well within
the manufacturing specifications of a real drawing pin), while all other parameters
remain exactly equal.

The successive zoomplots can be thought of as representing increasingly precise
(specific) states of knowledge. Note that:

- different states of knowledge correspond to different values for the probability,
- no convergence to a ‘true’ probability for more detailed information

In short: probabilities are a relative measure that quantify uncertainty about
an outcome w.r.t. a given state of knowledge. There is no objective or preferred
state of knowledge, but given a state of knowledge the probability is completely
and unambiguously defined. In real-world systems a small amount of uncertainty is
already sufficient to produce and explain all probabilistic properties and behaviour,
without the need to invoke ‘magical’ random or noise factors that do not satisfy the
equations of motion.

Perhaps surprisingly, we find that the a priori probability p(R = ‘pin-up’) does
not exist: only p(R = ‘pin-up’|Z) is meaningful in the sense that it corresponds
to an exact, unambiguous value. For systems with intrinsic symmetries, such as
fair coins and dice, the intuitive probabilities p(‘heads’) = 50% and p(‘siz’) = &
correspond to an implicit state of knowledge Z that is invariant w.r.t. the symmetry.
But for most real-world systems we cannot rely on such degeneracies, and we should
aim to quantify (make explicit) our assumptions / knowledge about the system.

For a more in-depth philosophical treatment of probabilities as relative measures
the reader is referred to Jaynes [2003]. As a final remark we simply note that most,
if not all real-world systems can be described (at least in principle) in terms of a
dynamical system, and that our interpretation of ‘random’ as arising from uncertain,
incomplete knowledge about the state of a system applies even down to the quantum

level.

Causal relation as effective manipulation

In a real-world dynamical system we can compute exactly what happens to the
outcome of a random variable V' as a function of a parameter x for a given initial
state xqg. If it changes then parameter x allows a level of control over the outcome of
V. Similar for (densities over) regions M, of phase-space, corresponding to states
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Figure 1.6: Causal relation as effective control (solid lines) vs. little to no control (dashed).
Depicts gliding averages of outcome ‘pin up’ as a function of pin length hpin = [0, 4]cm.
(solid lines) and initial rotation wo = [16, 20]rad/sec. (dashed). Solid {blue, green, red}
correspond to horizontal cross sections along resp. {top, middle, bottom} in Figure 1.5,
whereas the dashed lines correspond to vertical cuts across {left, mid, right}.

of knowledge Z about the system: if the probability p(V = v|Z) in eq.(1.2) changes
for states Z' that only differ in x € x, then parameter x provides some level of
deliberate control over V' given Z,,.

For two initial states of knowledge, 7 and Z' = Z + Az, that differ only in
parameter z such that [dz p’(x) = [ dz p(x), we can define the causal effect of =
on outcome V = v as:

clx=v|Z,Az) = / dx (p'(x) — p(x))6 (v — V(@™ (x)) (1.3)
M,

with ¢y > to and M; the union of non-zero regions of p(x),p'(x). In words: the
causal effect corresponds to the change in proportion (density) of outcomes V = v
given change Az in state Z.* Substituting random variable X as the value of pa-
rameter = at to, eq.(1.3) describes deliberate control between random variables.

4Note that, similar to standard probabilistic interpretations, causality is defined in terms of
co-changing probabilities, but the restriction [dz p’(x) = [ dz p(x) automatically isolates causal
influence from ‘mere’ correlation.
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We could then say there exists a causal relation X = V if there is some triple
{Z, Az, v} such that c(x = v|Z, Az) # 0. We can generalize to relations between
arbitrary random variables, with careful interpretation of AX in case X depends
on multiple parameters {z;,z;, ...}, and measures for the strength of the causal ef-
fect /relation by quantifying the difference in distribution over all possible outcomes
V relative to the difference in distribution over X, etc., but we do not pursue this
further here.

Instead we note that the definition via eq.(1.3) is still too broad to capture the
desired ‘effective manipulation’ in general: the required change in x may not be
feasible (too large or too specific), and/or the resulting change in p(V = v|Z) may
be deemed insignificant (absolute or relative). In both cases, the level of control
ceases to be effective in practice, and for all intents and purposes z is not different
from parameters that provide no control.

Example 1.3. Figure 1.6 illustrates effective manipulation: the solid lines de-
pict gliding averages for outcome ‘pin up’ as a function of pin length hp;, around
three initial rotation speeds wy. The proportion corresponds to probability p(R =
‘pin up’|T) in eq.(1.2), where the state of information I is a uniform rectangular
region M, around (hpin,wo) but all other parameters known exactly.

The zoomplots in Figure 1.5 showed that outcome R is sensitive to tiny changes
in both hpin and wo. At the macroscopic scale in Figure 1.0, the proportion ‘pin
up’ first increases with length to a mazimum at Ahpi, ~ 0.5cm., and subsequently
decreases towards zero as the pin gets longer and longer, irrespective of the value
for wy (or most other parameters). However, as Awq is increased (dashed lines)
the proportion fluctuates a bit, but remains essentially the same: even the 15%
increase for wg : 18.5 — 19.5 in very short pins (dashed blue) quickly cancels out
with some uncertainty in other initial values, and no effective control remains. Only
with extremely detailed knowledge and fine-grained control over the initial rotation
does it become an effective means to influence the outcome.

In short: in practice adjusting the pin-length hy:y, is an effective means of influ-
encing the probability on R = ‘pin up’, whereas adjusting the initial rotation wqy is
not. In terms of relevant causal relations: hpin = R, but not wy # R.

Undesired, irrelevant causal relations can be excluded by limiting 7 and Ax to
realistic scenarios and putting a threshold on the causal effect |c(x = v |Z, Az)| > e.
But this introduces a level of ambiguity in the sense that the ‘right’ network now
depends on the (discretionary) chosen thresholds, and may also lead to a break-
down of transitivity. But in practice, with limited data weak causal relations are
already very hard to distinguish from absent causal relations. Therefore, we inter-
pret ‘relevant/effective’ as ‘identifiable from the available information’. It means
that we purposely do not distinguish between very weak and absent causal
relations. This should allow for sufficiently sparse (= meaningful) causal models,
without the need to introduce questionable a priori thresholds on effect size. It en-
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sures that transitivity etc. remain satisified®, while the discretionary choice changes
to ‘how reliable do you want the inferred relations to be’.

In terms of random variables X,Y in a dynamical system: Let Zx,Z% represent
subsets of the available information Z on the system that correspond to regions in
state-space that only differ w.r.t. variable X. Then, in terms of the state-space
probability from eq.(1.2), there is an identifiable causal relation X = Y |7 if
we can establish that:

X=Y|T: p(Y =ylZx)#p(Y =y|Ty) (1.4)

In words: there is an identifiable causal relation X = Y |Z if we can derive from
Z that the proportion of outcomes Y = y varies with changes on/to X. Possibly
also indirect via transitivity, if we already established that: 37 : (X = Z|Z) A
(Z =Y |I). It is similar to the inferred effect of a do(X)-operator in Pearl [2000],
where the difference between Zx and T’ corresponds to a surgical intervention on
X. How to establish the condition in eq.(1.4) from available information and data
does not immediately follow from the definition: that is part of the subject of this
thesis. Also, for finite data the state-space probabilities given Z are approximated
by, but not equivalent to the observed sample proportions, which introduces another
level of ambiguity, see 5.1.

Identifiable absence of a causal relation X # Y |Z follows from establishing
that eq.(1.4) does not hold for any AX, which in general requires stronger as-
sumptions (e.g. faithfulness, see 2.2). We also obtain the class of not-identifiable
causal relations, X = Y | Z, where the available information is not (yet) sufficient
to decide whether there is a causal relation or not. In section 2.3 we find a similar
class of undecidable relations in the form of circle marks in the PAG.

In short, we incorporate the effective part of manipulation by assuming that all
identifiable causal relations are relevant. Whether or not a relation X = Y is
identifiable depends on the available information Z, including data and assumptions.
More information may lead to more causal relations, but can never alter relations
already found: if a causal relation turns out not to be true, then (part of) the
input information or assumptions must be false. When working with real, finite
data sets only probabilities remain, and the best we can hope for is something like
p(X = Y| I); chapter 5 makes a few tentative steps towards that goal.

Conditional independence in state space

Having defined identifiable causal relations, sofar all we found is that correlation
does not imply causation, but that we also cannot infer absence of such a relation
from a lack of dependence. So the question arises: how do we find causal relations?

5Weak direct causal paths from large data sets can always be filtered out after the entire
inference process has completed
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What is missing is something that captures the structural flow of manipulation:
do this and then that happens. Our intuition from the drawing pin example is
that the answer lies in the aforementioned memorylessness property of dynamical
systems, which says that states x(¢ > t’) are independent of states x(¢ < t') given
x(t"). This would manifest itself in the form of two variables that become indepen-
dent conditional on one or more others: these (actively) separating variables then
all play a role in intercepting/mediating the causal effects that produce the original
dependence. It is virtually impossible that such a conditional independence arises
by accident, as it would require variables that vary together without any coordinat-
ing mechanism. Note that the conclusion only holds if all separating variables are
needed for the independence, which will lead to our focus on minimal conditional
independencies, see section 2.2.

We do not necessarily need to find/cover the value of all parameters (dimensions)
of the separating state x(t'): often only a few parameters appear in the equations of
motion for another, e.g. for the drawing pin the time development of position only
depends on the speed x = v, which in turn depends on gravity, drag, etc. Which
ones are directly or indirectly in effect at a given stage can change with different
parts of state space, e.g. for the pin the translational and rotational components
only interact at bounce/contact, but not during free flight. In such transitions from
one active mechanism to another, just one or two variables can already screen off
the effect of another parameter on a third.

Figure 1.7 illustrates how screening off/conditional independence shows up in
state space mappings.® It depicts results from two different ‘double pin throw’
experiments, where in each case both a standard pin (1) and a long pin (2) are
thrown the same way under an angle with the vertical, except that in one experiment
(‘sequential’) the initial speed of pin 2 depends on the final horizontal distance X
achieved by pin 1, whereas in the other (‘simultaneous’) both initial speeds are the
same. Plots depict the final horizontal distances AX; 2 as a function of initial speed
v and rotation wg of pin 1 (and angle 6y in the r.h.s.), where all other parameters
are kept constant.

Plot (b), top-left-middle, shows not surprisingly that the horizontal distance
AX; of pin 1 tends to be larger (more reddish) for higher launch speeds vg. For
slightly different initial angles 6y, drag, friction, etc. the plot would be similar but
differ in detail (position of the bands). For ‘realistic’ experiments this would aver-
age out towards a roughly homogenous orange-cyan gradient from top to bottom,
corresponding to an identifiable dependence between distance and speed, denoted
X W v, but not (hardly) between distance and rotation: X 1l wg. The dependence
between distance and speed also holds for the longer pin 2 in the ‘simultaneous’ ex-
periment in plot (a). To a somewhat lesser degree it also holds for X5 in the

6Note that in real data from experiments the conditional independences are found through
appropriate statistical tests, e.g. a Chi-squared test for discrete variables or the kernel-based KCI-
test [Zhang et al., 2011] for continuous variables.
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Figure 1.7: Conditional independence in results for two ‘double pin throw’ experiments,
each with two pins with lengths h1 = 8mm., resp. h2 = 24mm., both launched under a
slight angle 8y = 0.25 with the vertical, and either otherwise identical initial conditions
(‘simultaneous’), or with initial speed of pin 2 depending on AX;: the final horizontal
distance of pin 1 (‘sequential’), ranging from about —20cm (deep-dark blue) to +80cm
(dark red). Plots (a)-(c): horizontal distances AX; 2 as function of initial speed vy and
rotation wo of pin 1; (a’)-(c’): idem, close-ups at higher rotation; (d): AX; as a function
of initial angle 6y and rotation wo; (e): idem, vs. 6y and vo; see main text for details

sequential version in plot (¢): more red/less blue in the top part. Furthermore, if
X is large (red) then in both versions of the ‘double pin’ experiment X5 on average
tends to be larger as well, and so vy, X1, X5 are all dependent.

However, in the close-up plot (a’) for the simultaneous experiment we can see
that knowing the outcome X7, corresponding to the color of the equivalent pixel in
plot (b'), gives little to no extra information on the value of X5 once vy is known:
the bands in plots (a’) and (b’) look qualitatively the same but appear in unrelated
locations, and so conditional on vy variables X; and X5 become independent, de-
noted X3 UL X3 |vg. In contrast, for the sequential version in plot (¢’) we see that
even though there is some additional ‘noise’ the bands with high-value X5 coincide
exactly with the high-value bands for X; in plot (b’). Therefore in the sequential
experiment: Xo 1l vg | X7.

Finally, from Figure 1.7(e) we see that X, varies with both the speed vy and
the launch angle 6y (with lowest values for straight up/down, and highest value for
slightly up and to the right, see also (d)). But we also see that given the distance
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X1, variables 0y and vy become dependent: if X; is small (blueish) and vy is high,
then 0y is likely close to vertical. In other words, in both experiments: vy W 0y | X;.

Causal information from conditional independence

So what does finding a variable that separates two others tell us about causal effects?
For that we need to know how screening off is accomplished in the flow through
high-dimensional state space: rather hard to visualize, but ultimately leading to
two simple conclusions. Remember that system parameters (incl. time) become
dimensions, and that random variables become functions on surfaces that inter-
cept trajectories from initial states, ranging from flat hyperplanes across the time
dimension to complex, even discontinuous manifolds. Data from an experiment cor-
responds to sampling from a distribution over a region of initial states mapped by
the evolution rule to values for random variables at the corresponding hypersurfaces.

Consider a dynamical system described by state q = {x,y, z,..}, with three
defined random variables {X, Y, Z} that correspond to resp. the value of parameters
{z,y, 2} at times {tx,ty,tz} in state space. Suppose we find that X and Y are
(probabilistically) dependent, X W Y, but independent given Z, so X 1LY | Z. The
dependence means that, whatever the distribution over initial region My, there
must exist at least two initial states qg and q that differ in both parameter = at tx
and in parameter y at ¢ty along their trajectories through state space (and so ‘vary
together in X and Y”). These two initial states then must also differ in parameter
z at tz, because the independence X 1LY | Z implies that two trajectories with the
same value for Z cannot differ in both X and Y. We now look at the possible
configurations in which two initial states can be mapped through state space to
produce the required combination of differences in parameters.

Assume that initial states qf, = qo + Aq at ty are mapped by the evolution
rule to states gy = qx + {Az,..} at tx, to dy = ay + {., Ay, ..} at ty, and to
dy =az +{.,., Az, ..} at tz, where {Ax,..} represents a change in parameter z,
and possibly changes in one or more other parameters as well. Without loss of
generality we assume (for now) that ¢ty < tx < ty, i.e. variable X obtains its value
at or before Y is reached. From the dependence, if tx < ty then qx is mapped to
qy, and so the difference {Az, ..} is mapped to {., Ay, ..}. By eq.(1.3), that implies
there is either a nonzero causal effect x = y in the system, or a nonzero causal effect
from one of the other differing parameters at tx to y, or both. In case tx = ty
then there are no causal effects between X and Y.

For the separating variable Z there are now three possible cases:

(1) tx <tz < ty: the difference {Ax,..} at tx is mapped to {.,.,Az,..} at tz,
which in turn is mapped to {.,Ay,..} at ty. If there are changes in other
parameters at tz that have a causal effect on y at ¢y, then in general there
can be states in the system that differ in both X and Y for a given value of Z.
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Therefore, the only remaining option is that the difference Az is responsible
for (mapped to) Ay, which by definiton implies a causal effect z = y.

(2) to < tz < tx: if there were any causal effect © = y then in general for two
initial states mapped to the same value for Z there can still be a difference
Az (through variation in other parameters at ¢t ) which gets mapped to a dif-
ference Ay, contrary the conditional independence. But if there is no causal
effect © # y, then a difference in some other parameter at ¢x must be respon-
sible for (mapped to) the variation Ay. Then like before, if there are changes
in parameters other than Az at ¢tz that together have a causal effect on both
x at tx and on y at ty, then X and Y can vary together for fixed Z, contrary
the given. The only remaining option is that at least one of the differences
Ax or Ay must originate from Az instead. By definition this implies a causal
effect z = x or z = y (or both).

(3) ty < tgz: if different changes {., Ay, ..} can lead to the same value for Az, then
(small) changes Ay can be compensated for by changes in other parameters
at ty to give Az = 0, leaving X and Y varying together for fixed Z, contrary
the given X 1l Y | Z, so this case cannot occur.

In short: if z intercepts all simultaneous variation in z and ¥, then whatever the
exact configuration, there is a causal effect z = x or z = y or both. We assumed
tx < ty, but this conclusion also holds true if ¢ty < tx. The argument can be
extended to random variables that are functions of multiple parameters on complex,
possibly intersecting manifolds. This suggests the conclusion that conditional
independence implies at least one causal relation applies generally:

(X WY)A(XLY|Z) implies (Z= X)V(Z=Y) (1.5)

The caveat mentioned in case (3) applies to the other cases as well: essentially it
assumes that there is no deterministic, one-to-one functional relationship X = f(Z2)
between random variables; see also [Zhang and Spirtes, 2008].

We can do a similar analysis for the case where X and Y are independent but
have a shared dependence with a third variable Z, such that X Il Y, X W Z and
Y I Z. Analogous to the previous argument: if any difference Az at tz would be
mapped by the evolution rule to a difference in Ax at tx or Ay at ty, then X and
Y would vary together, contrary X 1L Y, unless there was some other contribution
that just happened to cancel out the effect of Az exactly. This suggests case (3)
(above) as the only feasible configuration, which implies no causal effect from z
on either x or y. This configuration is described succinctly as:

(X LY)A (X KY|Z) implies (Z= X)A(Z%Y). (1.6)

The ‘no accidental cancellation’ clause returns as the faithfulness assumption in
section 2.3. The two rules can be combined to infer new causal information, e.g. by
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using (1.6) to eliminate one of the options in (1.5) to obtain a definite causal relation.

» This is the main idea behind the approach developed in this thesis: in real
dynamical systems, certain local independence patterns signify presence or absence
of causal relations, irrespective of what we know or do not know about the rest of
the system.

This idea is fundamentally different from many existing approaches to discover-
ing causal relations: instead of working from a global criterium (minimality) for
a network of relations over variables and using that to infer that certain relations
are causal, we look for local patterns that signify causal information and com-
bine these to build up an equivalent global picture. In chapter 3 we will provide a
more formal proof, based on graphical model theory. The end result is a method
that works well in practice: it competes with current state-of-the-art techniques,
but is also remarkably straightforward and flexible, as demonstrated in the subse-
quent applications in chapters 4 and 5. It suggests that this bottom-up approach
to causality, inspired by starting from an underlying dynamical system, is somehow
more ‘natural’ than the more conventional top-down approach.

& (@
%)

&)

Figure 1.8: Graphical causal model for sequential two-pin system

With a combination of conditional in/dependencies we can start to build up a
causal model. Suppose that we are presented with a data set from the sequential
‘double pin’ experiment from Figure 1.7 in which random variables {vg, 6o, X1, X2}
are measured for a reasonable number of throws, with initial parameters {vg, wo, 6o}
chosen independent at random. Clearly, from this we cannot infer anything on
the detailed bounce behaviour of the pins. But we are able to find that vy 1L 6y,
vo W o | X1, and Xy UL vy | X7, 0o, which is sufficient to construct the intuitive causal
model in Figure 1.8. From this we can read there is a causal relation X; = X
(which is indeed true in the sequential experiment), but definitely no causal rela-
tions from X7 or X5 to vy or Oy; see chapter 2 for details.

» From this point on we leave dynamical systems, differential equations, and
state-space diagrams behind and work directly from the graphical causal model rep-

resentation inferred from data/probabilistic independencies.

However, we keep the idea inspired by memorylessness that local independence
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patterns imply presence or absence of causal relations. We assume that all identifi-
able causal relations are relevant for a model, and that we can ignore pathological
cases, e.g. no ambiguities through deliberately ill-defined random variables etc.

1.3 Outline of the thesis

After the previous ‘zooming in’ on causal relations, where even a toy dynamical sys-
tem already leads to all kinds of technical intricacies and ambiguities, reasonably
inferring such relations for large real-world systems may seem like a daunting if not
impossible task. Fortunately, once cast in graphical model form ‘effective manipu-
lation’ is an intuitively clear and straightforward concept, and most complications
only arise from highly artificial cases that have no bearing on the large majority of
causal relations we are interested in.

Therefore, in the rest of this thesis we work directly from observed probabil-
ities generated from a clear-cut causal model over well-defined random variables.
We focus on probabilistic independencies and background knowledge as the source
for causal information, ignoring other (distributional) properties, such as non-
linear relations and non-Gaussianity. Only when apparent contradictions arise,
or when trying to answer fundamental questions like ‘What actually is the best
causal model/correct prior/true probability?’, or ‘How realistic is an acyclic model?’
should we need to go back to the ground-truth level of relevant relations in a real-
world dynamical system.

Chapter 2 starts with an overview of basic concept and definitions from stan-
dard graphical model theory, and may be skipped by readers familiar with this
topic. It focusses on the class of mized graphical models that are most suited to
represent the relation between causal models and probabilistic in/dependencies. It
defines the causal DAG as the basic underlying model and introduces a number of
key assumptions such as the causal Markov condition and faithfulness. For refer-
ence purposes the last part of this chapter details the Fast Causal Inference (FCT)
algorithm as the gold-standard in constraint-based causal discovery.

In Chapter 3 the main idea from our excursion into dynamical system terri-
tory in section 1.2 is developed: it shows that causal discovery can take the form of
straightforward deduction on a set of logical statements about causal relations that
are directly derived from in/dependence patterns observed in the data. It belongs
to the category of constraint-based approaches to causal discovery, but differs from
existing methods in that it splits up causal inference in a series of modular steps
that can be executed in arbitrary order. As a result, causal discovery becomes a
very flexible and intuitive process, with promising applications and extensions, il-
lustrated in the next two chapters. We first show that the 7 FCI rules to find all
identifiable absent causal relations X # Y, are instances of just two underlying
patterns. We extend this result to find three rules that translate inferred proba-
bilistic in/dependencies directly into logical statements about presence or absence
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of causal relations. We then show that straightforward logical deduction on these
statements is sufficient to find all invariant features in the underlying causal model,
corresponding to all identifable presence and/or absence of direct causal relations.
The proof for completeness relies on a mapping from all graphical orientation rules
in FCI to instances of our three logical rules. The method is implemented in the
anytime LoCl-algorithm and evaluated on behaviour and performance.

Chapter 4 deals with the problem of how to infer more causal information
from the combination of different experiments than just the sum of causal relations
from each separately. The two main problems faced in this task are that of partially
overlapping variables, i.e. not all variables are always measured, and that due to dif-
ferent experimental circumstances or interventions some dependencies are present
in one but not in another experiment. Pooling the data would be similar to learning
from incomplete data with values not missing at random, but existing techniques
are ill-equipped to handle data from different experiments. Here we show how the
logical framework from chapter 3 can be used to create a larger, more informative
model provided that no selection bias is present. We implement the approach into
the Multiple model Causal Inference (MCI) algorithm, and test against two refer-
ence methods to assess its efficacy.

Finally, Chapter 5 tackles the problem of robustness and reliability of causal
models inferred from data. Sometimes causal discovery algorithms confidently assert
relations that researchers know to be wrong, or produce very different conclusions
for slightly different data sets, which tends to make the entire output suspect. We
introduce a Bayesian approach to constraint-based causal discovery that obtains re-
liability estimates for the individual logical causal statements employed in the LoCI
algorithm. We score the Bayesian likelihood for possible DAG patterns over (small)
subsets of variables which, together with an appropriate prior, gives a posterior
probability for each pattern. Adding these probabilities for all patterns that imply
a logical causal statement then provides the reliability estimate. The statements
are then sorted and processed in decreasing order of reliability. One complicating
aspect is that the underlying causal relations between variables in these subsets
do not necessarily match a DAG: we derive some rules to ensure that even then
only valid causal statements are inferred. The resulting Bayesian Constraint-based
Causal Discovery (BCCD) algorithm outperforms all current state-of-the-art algo-
rithms in terms of the accuracy of inferred causal relations. On top of that it also
provides a reasonable estimate for the reliability of each causal conclusion in the
output, which should help to improve confidence in the overall model as well.
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Chapter 2

Graphical Models and Causal
Discovery

This chapter introduces basic concepts and definitions from graphical model theory,
with focus on the relation between causal models and probabilistic independence.
For more details the reader is referred to Koller and Friedman [2009]; Neapolitan
[2004]; Pearl [2000]; Spirtes et al. [2000].

Throughout this thesis we use upper-case letters X, V;, etc. to denote single
nodes or random variables, and matching lower-case letters x, v; for states or values
of those variables. Similarly we use boldface capitals X, V, etc. to denote sets
of variables, and corresponding blod lower-case letters x to denote values for each
variable in the set. Calligraphic G, B, M are used to denote structures or models.

2.1 Mixed graphical models

Definition 2.1. A graph G is an ordered pair (V,E) where V is a non-empty,
finite set of vertices or nodes, and E is a set of edges between pairs of nodes (X,Y) :
X, Y eV.

A graphical model is a graph where nodes represent variables, and edges
represent direct interactions or relations between variables. A directed graph G
contains only edges (arcs) of the form X — Y, where the end marks at the nodes
are known as tails ‘—’ and arrowheads ‘>’. We use ‘x’ to indicate an arbitrary edge
mark. A mixed graph M is a graph that can contain more than one type of edge
between different pairs of nodes, e.g. directed — and bi-directed < edges.

In a graph G, a path 7 = (X3,..., X,,) is a sequence of distinct nodes such that
for 1 <i<n-—1, X; and X;;1 are adjacent (connected by an edge) in G. We
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sometimes use X <Y to indicate non-adjacency (absence of an edge between X
and Y). An edge or path is into (or out of) a node X if it has an arrowhead (or
tail) at X. If X — Y in G, then X is a parent of Y, and Y is a child of X; if
X < Yisin G, then X and Y are called a spouse of the other; if X — Y, then
they are neighbours. The skeleton of a graph G is the set of adjacencies in G (all
edges between nodes without distinguishing end marks).

A directed path from X; to X, is a path along which each node X; is a parent
of its successor X;; in G. A node X is ancestor of Y (and Y is a descendant of
X), if there is a directed path from X to Y in G, or if X =Y. A (directed) cycle
is a (directed) path from a node back to itself. In a mixed graph M there is an
almost directed cycle if there is a directed path from some node X to some node
Y, and X < Y is also in M. A directed acyclic graph (DAG) G is a graph
containing only arcs — as edges, but without any directed cycles.

A vertex Z is a collider on a path # = (..., X, Z)Y,...) if 7 contains the
subpath X +— Z <Y, i.e. if both edges from X and Y are into Z; otherwise Z is a
non-collider. A trek is a path that does not contain any collider. A (sub)path over
a triple (X, Z,Y) is unshielded if X and Y are not adjacent in G. An unshielded
collider X — Z « Y is also known as a v-structure. A path 7 = (X3,..., X,,) is
uncovered if each successive triple along 7 is unshielded.

For disjoint (sets of) nodes X, Y, and Z in a DAG G, X is d-connected to Y
given Z, denoted X WgY |Z, iff there exists an unblocked path = = (X,...,Y)
in G on which every collider is ancestor of some Z € Z and every non-collider is not
in Z. If not, then all such paths are blocked, and X is said to be d-separated
from Y given Z in the graph G, denoted X 1l gY |Z. When applied to a mized
graph, the notion of d-separation is known as m-separation, sometimes explicitly
indicated as X 1l Y | Z.

Definition 2.2. An ancestral graph is a mized graph containing directed (— ),
bi-directed (<), and/or undirected (—) edges, and in which:

- there is no (almost) directed cycle,

- there are no arrowheads at nodes on undirected edges.

The graph is called ancestral because arrowheads on an edge signify ‘non-
ancestorship’. A maximal ancestral graph (MAG) M is an ancestral graph in
which any two non-adjacent vertices (X,Y’) in M can be m-separated by some set
Z. Note that DAGs are just a special subclass of MAGs.

Two MAGs (or DAGSs) are Markov equivalent if they imply the same set of
m-separations. The (Markov) equivalence class of a graph M, denoted [M],
is the set of all graphs that are Markov equivalent to M. In a MAG M, a path
m=(X,...,W,Z)Y) is a discriminating path for a disciminated node Z, if X is
not adjacent to Y, and every node between X and Y is both a collider along 7 and
a parent of Y.

With this the equivalence class can be characterized as:
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Proposition 2.3. Two MAGs are Markov equivalent if and only if:

- they have the same skeleton,

- they have the same v-structures, and

- they have the same discriminated nodes with the same non/collider property
along corresponding discriminating paths.

Proof. See Richardson and Spirtes [2002]. O

For DAGs equivalence reduces to the first two items, i.e. the same skeleton
and wv-structures. For MAGs/DAGs the corresponding equivalence class can be
represented intuitively by a mixed graph with circles ‘o’ — signifying ‘undecided’ —
as third type of edge mark, resulting in six possible edges.

Definition 2.4. A partial ancestral graph (PAG) P is a mized graph that
represents the equivalence class [M] of a MAG M, such that:

- it has the same skeleton as M,
- all non-circle edge marks (tails and arrowheads) in P correspond to invariant
edge marks in [M].

The PAG is complete (cPAG) if all circle marks in P correspond to variant
(non-invariant) edge marks in [M]. A cPAG is maximally informative in the
sense that it explicitly captures all invariant features of the equivalence class of M
(shared by all members of [M]).

For representation purposes we also introduce a generalized version:

Definition 2.5. A causal PAG P is an ancestral graph, possibly with circle marks
‘o’ on edges to denote ‘unknown tail or arrowhead’, that represents all known causal
information on a MAG M, such that:

- all edges in M are also in P,
- all implied ancestral relations in P correspond to ancestral relations in M.

If the skeletons of M and P are the same then all tails and arrowheads on edges
in P are also in M. As a result, any (complete) PAG is also a causal PAG, but not
the other way around as a causal PAG may contain more or less information than
necessary to specify the equivalence class, e.g. from background information or ex-
ternal interventions. A fully connected o—o graph is a causal PAG P representing
no known causal information at all.

Finally, in a PAG P a path m = (X1, ..., X,,) is said to be a possibly directed
(p.d.) path, if no edge X; *—= X, ; has an arrowhead at X; or a tail at X, 4.
If each successive triple along 7 is also unshielded it is an uncovered possibly
directed (u.p.d.) path. If all edges on a u.p.d. path are of the form o—o, then
the path is called an uncovered circle (u.c.) path.
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2.2 Graphical models and probabilistic indepen-
dence

In a graphical model G, we assume that the set of random variables V can be
partitioned into three subsets: V.= 0O ULUS, in which O represents the subset of
observed variables, L the set of hidden or latent variables, and S the set of selection
variables that determine inclusion (selection) into a data set D. If the distinction
is not made explicitly we simply assume V = O.

Definition 2.6. A Bayesian network (BN) is a pair B = (G,0), where G =
(V,A) is DAG over V, and the parameters 8y C © represent the conditional
probability of variable V- € V given its parents Pa(V') in the graph G.

A joint probability distribution p(V) over random variables V factors according
to a Bayesian network:

p(Xi1=xl,..., X, =ap) = HP(Xi = z; | Pa(X;) = pa;, 0;) (2.1)
i=1

We use X 1L, Y |Z to denote that two variables X,Y are probabilistically
independent given (or conditional on) a (possibly empty) subset Z. Idem, we use
X W, Y |Z to denote that X and Y are probabilistically dependent given Z.

An important concept is that of a minimal conditional in/dependence,
capturing the notion that all variables in the set indicated by square brackets are
needed to make or break an independence:

- XU, YIWU[Z] = VZ/ICZ: X W, Y|WUZ,

- X W, YIWU[Z] = VZCZ: X U, Y|WUZ.

The following property links the structure of a Bayesian network to a set of
probabilistic independence relations:

Definition 2.7. A probability distribution p(V) satisfies the Markov condition
w.r.t. a DAG G, iff each variable V. € V is (probabilistically) independent of its
non-descendants, given its parents in G.

A probability distribution that factorizes according to (2.1), e.g. a Bayesian net-
work, satisfies the Markov condition, cf. Pearl [2000]. To complete the connection
between the structure of a Bayesian network and implied probabilistic independen-
cies we define the following property

Definition 2.8. A probability distribution p(V) is faithful w.r.t. a DAG G, iff there
are no (probabilistic) independencies between variables in 'V that are not entailed
by the Markov condition applied to G.

We say that a distribution p(V) is faithful if there exists a DAG to which it is
faithful. Similarly, we use shorthand ‘a faithful DAG G’ to indicate that it is faithful
w.r.t. some implied distribution.
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Assuming the Markov condition and faithfulness hold, then graphical d-separation
and probabilistic independence become equivalent:

Theorem 2.9. Let X, Y, and Z be disjoint (subsets of) variables in a Bayesian
network with faithful DAG G, then:

(X UgY|Z) & (X 1L,Y|Z)
Proof. See, e.g. Pearl [1988]. O

If we only consider the marginal distribution over a subset of variables V! C 'V
from a faithful Bayesian network B, then the resulting distribution p(V’) may no
longer correspond to a faithful DAG G’ over V’. In that case the independence
relations between the observed variables can be represented in the form of a mazimal
ancestral graph (MAG), see Definition 2.2. MAGs form an extension of the class of
DAGs that is closed under marginalization and conditioning.

We say that a MAG M is faithful to a distribution over p(V') if they can both be
obtained from a faithful DAG G, resp. distribution p(V), through marginalization
and/or conditioning. With this the ancestral analog of Theorem 2.9 becomes:

Proposition 2.10. Let X, Y, and Z be disjoint (subsets of ) variables in a faithful
MAG M, then:
X UuY|Z)e (X 1,Y|Z)

Proof. See Richardson and Spirtes [2002]. O

2.3 Causal models and ancestral graphs

This section introduces the model for the causal relations we try to find, and spec-
ifies the assumptions we are willing to/have to make in order to ‘get it to work’.

A popular and intuitive way of representing a causal system is in the form of
a causal DAG G, a graphical model where the arrows represent direct causal
interactions between the variables in the system [Zhang, 2008; Pearl, 2000].

Definition 2.11. In a causal DAG G¢ there is a causal relation X =Y | iff there
is a directed path from X toY in Go. Absence of such a path is denoted X # Y .

With this definition causal relations are transitive (X = Y)A (Y = Z)
(X = Z), irreflexive (X % X), and acyclic (X = Y) F (Y % X). Every edge
X =Y in a causal DAG G¢ represents a direct causal relation. A relation X = Y
that is mediated by other nodes in the network is an indirect causal relation.

In order to link observed probabilistic in/dependencies to causal relation in the
underlying system, we make the following assumptions:

- the Causal DAG assumption implies that the systems we consider in this
thesis can be described by some underlying causal DAG G¢,
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- the Causal Markov assumption implies that each variable in a causal DAG
Gc is (probabilistically) independent of its non-descendants, given its parents,

- the Causal Faithfulness assumption states that there are no independencies
between variables that are not entailed by the Causal Markov assumption.

Note: we do not rely on causal sufficiency in this thesis, that is we do not
want to make the simplifying assumption that there are no unobserved common
causes between variables in the system.

Under these assumptions the probabilistic independence relations between ob-
served variables are described by a (faithful) maximal ancestral graph (MAG) M.
All MAGs that can encode the same set of independence relations through Propo-
sition 2.10 are indistinguishable in terms of (Markov) implied independencies.’.
Invariant features in the corresponding equivalence class [M¢] can then be repre-
sented in the form of a complete partial ancestral graph (PAG) P, see Definition
2.4. These invariant features contain all valid causal information that is identifiable

from observed independence constraints, [Zhang, 2008].

Reading the PAG
A few pointers on how to read causal/independence relations from a PAG P:

- probabilistic in/dependence follows from standard m-separation,

- a definite causal relation X = Y if there is a directed edge/path from X to
Y and U +— X in P for some node U (to exclude selection bias),

- identifiable absence X = Y iff there is no p.d. path from X to Y in P.

Figure 2.1: 1) Causal DAG G¢ with hidden variables; 2) MAG over observed nodes; 3)
complete PAG

Example 2. Figure 2.1 illustrates the relation between: (1) the (unknown) under-
lying causal DAG, (2) the MAG of ancestral relations between observed variables,
and (3) the corresponding PAG of all causal information from in/dependencies.

IWe follow the standard assumption that Markov equivalence implies statistical equivalence
[Spirtes, 2010].
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Figure (1) shows a causal DAG G¢ over six observed nodes {A, B, C, D, E, F'}, with
a number of hidden variables including selection node S. There is a direct causal
link A = C and indirect causal link A = F, while there is no causal relation
B % C. In (2) direct causal dependencies have become arcs in the MAG, but
there are also some new edges: the bi-directed link C' <» B signals the presence of
confounder V| and the arc A — D appears because conditioning on C' unblocks the
path (A,C,U, D). The PAG equivalence class in (3) shows all invariant marks: it
tells us that D is definitely not an ancestor of B, so D % B, but that we cannot
be sure about the reverse, nor about the causal relation between D and C'. We can
infer C' = E = F, but not B = F, as there is no invariant arrowhead at B in (3).

2.4 Constraint-based Causal Discovery

From the previous section, our goal in causal discovery is to reconstruct as much as
possible of the complete PAG from observed independence relations. A large class of
causal discovery algorithms, known as constraint-based methods, is based directly
on the Markov and faithfulness assumptions: iff an independence X 1L Y |Z can be
found for any set of variables Z then there is no direct causal relation between X
and Y in the underlying causal graph G, and hence no edge between X and Y in
the equivalence class P.

Members of this group include the IC-algorithm [Pearl and Verma, 1991], PC
[Spirtes et al., 2000], Grow-Shrink [Margaritis and Thrun, 1999], TC [Pellet and
Elisseef, 2008], and many others. All involve repeated independence tests in the
adjacency-search phase to uncover the skeleton of P, followed by an orientation-
phase using rules such as in [Meek, 1995] to find invariant tails and arrowheads.
The differences lie mainly in the search strategy employed, size of the conditioning
sets, and additional assumptions imposed.

Of these, the Fast Causal Inference (FCI) algorithm [Spirtes et al., 2000] in
conjunction with the additional orientation rules in [Zhang, 2008] was the first to
be shown sound and complete in the large-sample limit, even when hidden common
causes and/or selection bias may be present. As such, it has become the de facto
gold standard for constraint-based causal inference. For future reference we provide
a brief description of the elements that are most important to our work below.?

Loosely speaking, the augmented FCI algorithm consists of an ingenious adja-
cency search based on conditional independencies (details of which will not concern
us here) to find the skeleton of the PAG P, followed by an orientation phase based
on a the graphical rules detailed in Table 1, where we follow the numbering from
[Zhang, 2008]. A graphical depiction of the rules is shown in Figures 2.2 and 2.3.
Inspection reveals a certain hierarchy in which rules can trigger which others, re-
flected in the basic structure of FCI in Algorithm 2.1.

2An implementation of FCI is available from www.phil.cmu.edu/projects/tetrad/current.
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ROa If X 1LY |Z, then X XY, Sep(X,Y) — Z.

ROb  If X x—+Zo—xY and X <Y, then if Z ¢ Sep(X,Y), then X +— Z Y.
R1 If X*—Zo—«Y,and X XY, then Z—Y.

R2a If Z— X*—Y and Zx—oY, then Z*x—Y.

R2b If Zx—X—Y and Z*—oY, then Z*x—Y.

R3 fX*x—Z«Y, X —oWo—xY, XY, and W x—o Z, then W x— Z.
Rda Tfu=(X,..,Zy,Z,Y) is adiscr. path between X and Y for Z, and Z o—x Y,

then if Z € Sep(X,Y), then Z —Y.

R4b  Idem, if Z ¢ Sep(X,Y) then Z«— Z«—Y.

R Hu=(ZX,. WY, Z X)isan u.c. path, then Z—Y (= all edges on u).
R6 If X — Zo—xY, then orient as Z —xY.

R7 X —o0Zo—xY,and X XV, then Z—+Y.

R8 If Z— X —Y and Zo—Y, then Z—Y.

R8 If Z—o0X—Y and Zo—Y, then Z—Y.

R9 U Zo—Y,u=(Z X ,W,.,Y)isan up.d. path,and X <Y, then Z—Y.
R0 If Zo—Y, X —Y «— W, and w3 = (Z,S,..,X), us = (Z,V,..., W) are

u.p.d. paths (possibly S=X and/or V=W), then if S><V, then Z —Y.

Table 2.1: Graphical edge orientation rules in augmented FCI.

Algorithm 2.1 Augmented FCI algorithm

_ =
= O

Input : independence oracle for V
Output : complete PAG P over V
P «— fully o—o connected graph over V
for all {X,Y} €V do
search in some clever way foraZ: X 1,Y |Z
P — ROa (eliminate X > Y)
record Sep(X,Y) «— Z
end for
P «— ROb (unshielded colliders)
repeat P — R1 — R4b until finished
P — R5 (uncovered circle paths)
repeat P «— R6 — R7 until finished
repeat P «— R8a—R10 until finished

Starting from the fully o—o connected graph in line 1, R0a eliminates all edges

between conditionally independent nodes to obtain the skeleton of P with only o—o
edges (line 4). Then rules ROb-R4b (lines 7-8) obtain all invariant arrowheads (as
well as some tails). Rules R5 —R10 (lines 9-11) then suffice to identify all and only
the remaining invariant tails. For example, in Figure 2.1, the arrowheads at C' from
A and B are identified by ROb, and the tailmark at B— F follows from R9.
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Chapter 3

A Logical Characterization of
Causal Discovery

We present a novel approach to constraint-based causal discovery, that takes the
form of straightforward logical inference, applied to a list of simple, logical state-
ments about causal relations that are derived directly from observed (in)dependencies.
We show that two logical inference rules can find all invariant arrowheads in a causal
model — signifying absence of causal relations — where before a set of seven graphical
orientation rules were needed. An additional third rule then suffices to make the
method both sound and complete, in the sense that all invariant features of the
corresponding partial ancestral graph (PAG) are identified, even in the presence
of latent variables and selection bias. The approach shows that identifiable causal
relations can be reduced to one of just two fundamental forms. More importantly,
as the basic building blocks of the method do not rely on the detailed (graphical)
structure of the PAG, it opens up a range of new opportunities, including breaking
up the inference process in modular, bite-size steps, and application to multiple
models (see sections 4 and 5).

3.1 Introduction

Discovering causal relationships from data has long been an active area of research.
From earlier, heated discussions in the 80’s and before on whether it was possible
at all to infer causality from observations alone, the debate has now shifted to

This chapter is based on: [Claassen and Heskes, 2011a] “A Logical Characterization of
Constraint-Based Causal Discovery”, published at the 27th Conference on Uncertainty in Ar-
tificial Intelligence, and [Claassen and Heskes, 2011b] “A Structure Independent Algorithm for
Causal Discovery”, published at the 19th European Symposium on Artificial Neural Networks.
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means and methods to infer as much causal information from any source of data as
possible, using the fewest, least restrictive assumptions.

The famous Fast Causal Inference (FCI) algorithm [Spirtes et al., 2000], see
section 2.4, was one of the first algorithms that was able to validly infer causal
relations from conditional independence statements in the large sample limit, even
in the presence of latent and selection variables. It consists of an efficient search for
a conditional independence between each pair of variables to identify the skeleton of
the underlying causal MAG, followed by an orientation stage to identify invariant
tail and arrowhead marks.

It was shown to be sound in the large sample limit [Spirtes et al., 1999], although
not yet complete. Ali et al. [2005] proved that the seven graphical orientation rules
employed by FCI, see Figure 2.2, were sufficient to identify all invariant arrow-
heads in the equivalence class [M], given a single MAG M. Later, Zhang [2008]
introduced another set of seven rules (Figure 2.3) to orient all remaining invariant
tails. Augmented with this set of rules the FCI algorithm is also provably complete.
The resulting maximally informative PAG P contains all causal relations identifi-
able from the set of observed independencies (see section 2.3 on how to read causal
information from a PAG).

In this chapter we introduce three rules to convert minimal in/dependencies into
logical statements about causal relations. We show that straightforward inference
on these logical statements, using standard properties of causality, is sufficient to
obtain all identifiable causal information. The result is the first provably sound
and complete alternative to the augmented FCI algorithm. The logical approach
produces a much simpler, arguably more natural method for causal inference, that
is used as the basis in subsequent chapters to handle results from different exper-
iments, and to develop a new method that outcompetes existing algorithms for
causal discovery from real-world data sets.

Section 3.2 in this chapter shows that all invariant arrowheads are instances of
just two fundamental cases. Section 3.3 extends this into a theory for inference from
causal logic. Section 3.4 shows that the method is sound and complete, after which
section 3.5 shows an implementation into the so-called LoCI algorithm. Proofs
are relegated to the appendices (except for two results in 3.2 that can be found
in [Claassen and Heskes, 2010a]). For a quick overview of standard concepts and
terminology in causal modeling and ancestral graphs see chapter 2.

3.2 Invariant arrowheads and minimal independence

This section derives the fairly remarkable property that the seven graphical ori-
entation rules in Figure 2.2 to find all invariant arrowheads are, in fact, different
manifestations of just two fundamental rules. Invariant arrowheads correspond to
identifiable absence of causal relations X # Y. Ruling out possible causes or con-
tributing factors can in many cases be almost as important as finding factors that
do contribute. Note again that below G always refers to the unknown but faithful
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underlying causal DAG, and that S indicates the (possibly empty) set of selection
variables in G¢; see also Example 1.1 and section 2.2.

We start from the following observation that brings out the fundamental con-
nection between a node that makes or breaks a conditional independence, and the
presence or absence of certain causal relations:

Lemma 3.1. Let X, Y, Z, and W be four disjoint (sets of) observed nodes in a
causal DAG Ge, and S be a set of (unobserved) selection nodes. If a node Z makes
or breaks an independence relation between X and Y given W, then:

1L X1,Y|WU[Z] + Z=(XUYUWUS),

2. X W, YIWU[Z] F Z= (XUYUWUS).
with special case

X 1,Y|[WuZ] + Z=(XUYUS).

Together, the rules allow to infer causal relations, even in the presence of latent
variables and selection bias: find a minimal conditional independence X 1L, Y |[Z],
and for some Z € Z eliminate Z >~ X and Z > S by a conditional dependence
X W, U|W U|[Z] to infer Z = Y. With this we can derive the following result
(where the notation is chosen to match the graphical rules in Figure 2.2):

Proposition 3.2. In a faithful PAG P, all invariant arrowheads are instances of:

rule (1): Y x— Z, obtained from a dependence U W,V |W U[Z] created by Z
from a minimal independence U 1L,V | [W], with Y € {U,V, W}, or

rule (2): Z—Y, from a minimal X 1LY |[W U Z], with an arrowhead X «— Z
from either rule (1) or rule (2).

Proof sketch. Both rules are sound, as they are direct applications of Lemma 3.1.
The proof that they are also complete follows by induction on the graphical ori-
entation rules ROb—R4b (see Figure 2.2), showing that each time one of these is
triggered, they always satisfy rules (1) and (2) above. As ROb—R4b are sufficient
for arrowhead completeness, rules (1) and (2) hold for all invariant arrowheads. For
the full proof see lemmas 5-10 for Theorem 1 in [Claassen and Heskes, 2010a]. O

So all invariant arrowheads start from a minimal independence. Fortunately, we
do not need to find all minimal independencies:

Lemma 3.3. In a faithful PAG P, checking rules (1) and (2) for a single, arbitrary
minimal independence for each pair of nodes {X,Y} (if it exists) is sufficient to
orient all invariant arrowheads.

Proof. See lemmas 11-13 in [Claassen and Heskes, 2010a]. O

1Many thanks to Peter Spirtes for pointing out that this case was already mentioned in Spirtes
et al. [1999] (corollary to lemma 14) to prove correctness of the FCIl-algorithm, although never
used as an orientation rule.
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The standard implementation of FCI, see Algorithm 2.1, already finds such single
minimal sets, as it looks for separating sets Z of increasing size (lines 2-3). That
means that for a (new) algorithm to find all invariant arrowheads we can take lines
1-8 of FCI, and replace the seven orientation rules from Figure 2.2 with just the
two(!) rules from Proposition 3.2, where rule (1) executes once on each minimal
dependence, and then rule (2) executes until no more arrowheads are found. But
the next sections show we can do much better. Note that, when starting from the
full set of independence statements in lemma 3.1, it is not necessary to consider
discriminating paths in order to guarantee arrowhead completeness, contrary to
when starting from a MAG as in [Ali et al., 2005].2

3.3 Inference from Causal Logic

Instead of trying to match invariant features in the graph (PAG), we can also
use Lemma 3.1 to translate observed minimal in/dependencies directly into logical
statements about the presence or absence of certain causal relations. We can then
reason with these by logical deduction on standard causal properties to obtain new
information. This turns out to be a very natural and efficacious method for causal
discovery.

Note: we again use X, Y, Z, etc. to denote disjoint (sets of) observed variables,
and S to denote the (possibly empty) set of selection nodes in a causal DAG G¢.

3.3.1 Logical rules from minimal independence

First we state the standard properties of causal relations from section 2.3 into causal
logic form:

Proposition 3.4. Causal relations in a DAG G¢ are:
irreflezive : (X = X) F false
acyclic (X =Y) FYxX
transitive : (X =AY =>2) F X=2Z

Next we cast Lemma 3.1 in a form that translates observed minimal (in)dependencies
directly into logical statements about causal relations:

Lemma 3.5. For minimal in/dependencies between nodes in a causal DAG Ge:
1. X L, Y|[WUZ] F (Z=X)V (Z=Y) V (Z=18)

2. X W, YIWU[Z] F (Z#X)A(Z5Y) A (Z# W) A (Z+S)

2This may seem contradictory, as a MAG is just an encoding of an independence model, but
it is not possible to read which set separates X and Y in R4a/b from the MAG, without actually
checking for the discriminating path.
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By establishing which minimal in/dependencies hold in a distribution, a list of
logical statements L can be compiled, of the form:

1. Z=X) v (Z=Y) v (Z=15)
2 (X=Y)
3 Y=X) VvV Y¥Y=W)V (Y=-8),etc

Each line states a truth, for one specific node, about the causal relations it has with
one or more others. New statements can be inferred by substituting the subject of
one line in another, and then reducing via X % Y = =(X = Y) and the standard
causal properties in Proposition 3.4. The following two examples illustrate the

inference process in deriving (new) causal information:

Example 3.6. Suppose in a causal system G both X 11,Y | [Z] and X W, U|W U [Z]
have been observed, for some Z € Z, then

1: (Z=X)V (Z=Y)V (Z=15)

22 I=X)N(Z=U)AN(Z=S) N(Z=W)
Using (2:) to eliminate Z = X and Z = S from (1:) then gives (3:)

= (1) V({Z=Y)Vv (1)

3: (Z=Y)

This case corresponds to the embedded Y-structure from Mani et al. [2006], and
matches the conditions for orientation rule R1 in Table 2.1.

Example 3.7. Now suppose both Z 1L, W |[Uzw U X] and X 1LY |[Uxy UZ U W]
have been observed, with Uxy and Ugzw two possibly empty/overlapping sets of
nodes. Then for the inference list this gives (amongst others) statement (1:) from
the first independence, and (2:) and (3:) from the second:

I: X=2Z)v(X=W)V vV (X =8)
2: (Z=X)V V(Z=Y)V (Z=8)
3: W=X)v (W=Y)v (W=28)

Using transitivity to substitute (1:) in (2:) this reduces by acyclicity to (4:)
F Z=2)Vv (Z=W) Vv (Z=Y)V (Z=1S)

4: (Z=W) vV (Z=Y)V (Z=18)
Idem, (1:) in (3:) gives (5:), which after substitution in (4:) reduces to (6:)
5 W=2Z)v v (W=Y)v (W=28)
F Z=2)Vv (Z=Y) VvV (Z=Y)V (Z=19S)
6: (Z=Y) VvV (Z=198)

This case matches R9 in Figure 2.3, where all alternatives for Z from the second
minimal independence necessarily lead to a causal relation to node Y (or S). Note
that now selection bias cannot be eliminated. The latter is illustrated by Fig. 2.1(3),
with nodes (B, F,C, E) in the role of resp. (Z,Y, X, W) in Example 3.7, leading to
conclusion (B = F)V (B = S), but it is possible that only B = S holds true in
the (unknown) underlying causal DAG G¢, as seen in (1).
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3.3.2 Inferred statements

Remarkably enough, Lemma 3.1 is already sufficient to identify almost all causal
information that can be discovered from probabilistic independencies.There is just
one more piece of information needed to complete the puzzle.

Lemma 3.8 (Inferred blocking node). In a causal system Gc, if X 1,V |[Z]
and there is a subset {Z1, ..., Zy, Z} C Z, such that in the sequence [Uy, ..., Ukt2] =
(X, Z1,..., 2k, Z,Y] it holds that:

- Ui {Ui—1, Ui},

- U Wy Ui | 2,
with i = 1.k, j = 0..(k + 1), and VZ' C Z\ {U;,U; 11}, then Z = (Z, UY US).

In other words, if we find an ‘inferred blocking node’, then we can add the
following statement to the list L:
n: (Z=2Zy) VvV (Z=Y)V (Z=198)

Lemma 3.8 is clearly a generalization of rule R4a: if the nodes in the sequence
[U] are adjacent in P, then it corresponds to a discriminating path for Z, and the
non-independence tests in the second item can be omitted. Note that resulting
statement (n:) reveals that the discriminating path for Z in R4a behaves identical
to a node Z observed in a minimal independence between Z; and Y. As a result,
whether or not we observe Z;, L Y |[.. U Z], the fact that in the given conditions Z
does not create a dependency between X and Y, allows us to infer that Z blocks
some path between Z; and Y'; hence ‘inferred blocking node’.

One remark: the set of independence relations possibly involved in lemma 3.8
may seem quite daunting. However, in section 3.5 we will see that ultimately only
a handful need to be checked.

3.3.3 Direct and indirect causal relations

Reasoning with presence or absence of causal relations implies that we are not
limited to direct causal influences only, but can draw on other, indirect sources of
causal information as well: both can be used to derive new information in exactly
the same way. But often it is very informative to know what direct and what
indirect causes are, and so we would like to be able to distinguish between them:

Lemma 3.9. In a causal system Ge, a conditional independence X WY | Z implies
that all causal paths between X and Y in Go are mediated by nodes in Z.

All causal paths mediated by other (observed) nodes implies no direct causal link
(or confounder) between X and Y, so then X = Y is an indirect causal relation.
For independent nodes X 11 Y | & it also implies that neither is a cause of the other:
(X=Y)A (Y= X).

Lemma 3.9 gives the skeleton (structure) of the PAG, where a missing edge
represents absence of a direct cause or confounding link. If we want to distinguish
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between direct and indirect causal relations in our list L, we can simply ‘project’
the causal information onto the PAG skeleton:

Lemma 3.10. The causal information in the list L can be transferred to invariant
edge marks between adjacent nodes in the corresponding PAG P:

-if (X Y)el, then X Y,
-if (X =Y) and/or (X = S) € L, then X —« Y,

Proof. Follows from MAG definition for tail/arrowhead marks in [Richardson and
Spirtes, 2002, §4.2) O

In the next section we find that reasoning on logical statements obtained from
(inferred) minimal in/dependencies is not only sound but also complete. It means
that after the logical causal inference (LoCI) process has completed, we can choose
to reproduce the complete PAG by projecting all ancestral information (tails and
arrowheads) onto the global skeleton. If only a subset of independence relations is
available, for example because the size of the conditioning sets is restricted as in
Anytime FCI [Spirtes, 2001], or because unreliable decisions are rejected, then the
skeleton may contains superfluous edges. But even then all inferred causal relations
in the list L remain valid, and so does the resulting causal PAG, even when the
orientation rules in Table 2.1 can no longer be applied.

3.4 A Logical Characterization of Causal Informa-
tion

From the two previous sections we know that all invariant arrowheads in a PAG are
instances of two cases that are covered by the two rules in Lemma 3.1 in combination
with logical deduction on Proposition 3.4. In this section we show that, together
with a third rule from Lemma 3.8, they are also sufficient to find all invariant tails
in the PAG. We do this by matching each graphical orientation rule in Table 2.1 to
specific instances of the lemmas and already inferred information, where we rely on
the known completeness of the FCI algorithm. As this covers all invariant features
in the PAG, lemmas 3.1 and 3.8 also cover all identifiable causal information from
independence relations.

3.4.1 Invariant tails

The rules in section 3.2 will not only find all arrowheads, but also a number of
invariant tails, as rule (2) in Proposition 3.2 already covers all instances of rule R1,
including the tail Z — Y. In this section we show that all remaining invariant
tails from rules R5 —R10 in Figure 2.3 correspond to three cases that can be found
from minimal in/dependencies in combination with the standard causal rules in
Proposition 3.4.
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We want to emphasize that there is no need to search for any of the specific
cases that match individual orientation rules discussed here or in the proofs of this
section or that of section 3.2: they automatically ‘pop up’ when running the causal
logic rules in Proposition 3.4 on the list of statements L. We only need/use them
here to characterize the causal information that can be identified in this way, and
thus, since the augmented FCI algorithm is complete, by any algorithm for causal
discovery.

To do that, we first introduce the following concept:

Definition 3.11. A sequence [X,Z1,...,Zk,V1,...,Vin, Y] is a transitive rela-
tion from X toY if it holds that:

S YZ,,3U; : Zy WL Ziy | [U; U Z4),

WYV, = (Vi US),
with Zo = X, Zx41 = V1, Vipy1 =Y, for k,m > 0.

In words: a series of overlapping minimal conditional independencies, followed
by a causal relation. A transitive relation can be as short as a single independence
X WY |[Z1], or arelation X = Y. As such, it is a generalization of the u.p.d. path
in section 2.1. The reason for this introduction is the property:

Corollary 3.12. In a causal system Gc, if there is a transitive relation [X, Zy,...,Y],
then:

-X=(Z;US) F X=(YUuS).

With this we can state:

Proposition 3.13. In a PAG P, all invariant tails Z —xY from graphical orien-
tation rules Rda, R5, R7, R9, and R10 are instances of:

(2b): X LY |[WUZ], with X = (ZUS) from either case (3) or another (2b),

(8): U 1LV |[W U W], with two transitive relations [W,U, .., Y|+ [W,V, .., Y], and
Ze{u,v,w},

(4): X WY |[Z], with inferred blocking node Z € Z, together with Z, = (Y US)
from either case (2) or case (4).

Case (2b) covers rule R7, and is so named because of its similarity /overlap with
case (2) for R1. Case (3) covers all instances of rules R5, R9, and R10, and case
(4) accounts for tails from orientation rule R4a. In most instances of case (3) the
transitive relation requires only a single minimal conditional independence, even for
long paths. Often, both transitive relations can be captured together in a single
independence, as in Example 3.7.

As a bonus all identifiable selection nodes X = S also pop out ‘automatically’
by applying the rules in Proposition 3.4 on instances of case (3):

Corollary 3.14. In a PAG P, all identifiable selection nodes X = S are covered
by case (3), in the form of a minimal independence with two transitive relations
back to itself.
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That leaves just tails from three more orientation rules to handle. However,
these too follow implicitly from the existing cases:

Corollary 3.15. In a PAG P, all invariant tails from orientation rules R6, R8a,
and R8b, are covered by the causal logic rules applied to cases (1)-(4).

3.5 Logical Causal Discovery

In this section we turn the logical causal inference rules into an efficient anytime
algorithm for deriving both all explicit causal relations and the complete PAG.

3.5.1 Inference process

A nice property is that the logical substitute/reduce steps take on a particularly
simple form: it only involves statements that are either a logical disjunction of at
most two causal relations and possible selection bias, or a single term for the absence
of a causal relation. In other words, the list of logical causal statements L always
keeps the simple form shown in section 3.3.1. Each step consists of a substitution of
one statement in another followed by a reduction to this standard form, see Corol-
lary 3.30 in Appendix 3.D. Furthermore, as more information becomes available,
statements in the list can simplify from three to two or even one term. Cf. Example
3.6, where inferred statement (3:) replaces (1:), as there is no point in keeping the
original.
The next result limits the independence search:

Lemma 3.16. In the logical causal inference (LoCI) approach, finding a single,
arbitrary X 1LY |[Z], for each pair of nodes (X,Y) in the graph (if it exists) is
sufficient to find all invariant features of the PAG.

Fortunately, the current implementation of the FCI algorithm already finds only
minimal conditional independencies for each pair of nodes (if it exists), as it looks
for sets of increasing size until it finds one that separates the two. This is also the
dominant factor in the time-complexity of the algorithm. For each pair found, we
still need to check for other nodes that can destroy this independence (Lemma 3.1,
item 2), however, this is negligible compared to the independece search itself.

Furthermore, the inferred blocking node from lemma 3.8, can be tackled effi-
ciently after all invariant arrowheads have been found from cases (1) and (2): it
makes it possible to establish all ‘non-ancestor’ conditions in the sequence in one
go. Together with a restriction to a sequence of non-separated nodes (avoiding
the additional dependence tests), this greatly reduces the number of candidates to
check. The rest of the inference process is straightforward logical deduction to ul-
timately obtain a matrix M¢ of in/direct causal relations, stating for each ordered
pair (X,Y) of variables whether: X =Y, X = Y, or “don’t know”.
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Figure 3.1: a) 3D map of list L of logical causal statements; b) idem, after exhaustive
application of causal rules 3; ¢) matrix M¢ of inferred causal relations (diagonal plane)

Example 3.17. The remaining inference process on the logical list L can be visu-
alized as filling in a 3D-cube, in Figure 3.1. We only need logical statements of at
most three terms, that either indicate (possible) presence, or absence of relations.
Using coordinates (Z,X,Y) = (top — down,left — right, front — back) in Figure
3.1(a), this becomes:

-(Z,X,Y) =41 encodes (Z = X)V(Z=Y)V(Z=8),
-(Z,X,X) =41 encodes (Z = X))V (Z = 8S),
-(Z,X,X)=—1 encodes (Z # X),

- (X, X, X) =+1 encodes (X = S).

- (X, X,X) = -1 encodes (X # S).

where green equals +1, red equals —1, and white represents empty cells with default
value 0, that could not be inferred (yet).

Proposition 3.4 now fills in new cells, until no more can be found, Figure 3.1(b).
At that point the diagonal plane (from,to—1 = to—2) represents the causal matriz
Mc¢ in Figure 3.1(c). This matriz can be ‘projected’ onto the skeleton (green=tail,
red=arrowhead, white=circle) to obtain the corresponding PAG in Figure 2.1(c).

Note that the causal matriz Mc in (c) clearly shows that C = E = F represent
definite causal relations, as (C,C) = (E,E) = —1 (red), whereas the link B — F
cannot exclude selection bias, given that cell (B, B) = 0 is still white.

In practice, the inference process illustrated in Figure 3.1 is so fast compared to
the independence search that it makes sense to execute it each time a new minimal
in/dependence is found, to turn it into an efficient anytime algorithm. The final
step uses lemmas 3.9 and 3.10 to transfer the logical information in the list L to
invariant edge marks in the skeleton of P.
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3.5.2 The LoCI algorithm

We can now give the outline of the so-called LoCI algorithm that is able to infer the
complete PAG, using the logical causal inference approach described in the previous
sections.

Algorithm 3.1 Logical Causal Inference (LoCI) algorithm

Input : independence oracle for V
Output : complete PAG P over V
for all {X,Y} €V do
search in some clever way for a X 1LY | [Z]
VZeZ:L—Z=(XUYUS)
YW, X WY |ZUW :
L—Wx (XUYUZUS)
repeat L « substitute/reduce until finished
end for
L—Z=(Z,UY US),VZ : inferred block. node
repeat L < substitute/reduce until finished
P «— fully o—o connected graph over V
eliminate X >V, iff X 1LY | [#]
orient X —« Y, iff X = (Y US) € L
orient X «—*Y,iff XY eL

i e
LN P

Algorithm 3.1 borrows the initial search for (minimal) conditional independen-
cies from the standard FCI algorithm. If it finds one it is recorded in the list L,
line 3, and checked for nodes that destroy this independence (also recorded in L).
Each time a minimal independence has been found, line 6 runs the inference rules to
update the identifiable causal information. This step could be run just once, after
the independence search has completed, but in practice the impact on performance
is negligble and far outweighed by the fact that most causal information is already
identifiable (available) in the early stages of the process. At line 8, all non-ancestor
relations (X > Y') have been found (see lemma 7), which makes it relatively easy
to find the remaining ‘inferred blocking nodes’ from lemma 3.8 in line 8. If any
are found that contain new information, then line 9 infers the remaining relations.
Finally, lines 10 — 13 construct the equivalent PAG representation from the list L.

The LoCI algorithm above finds a minimal separating set for each pair of nodes
(if it exists). By Lemma 3.16 that means that it can reconstruct the PAG, which
from [Zhang, 2008] is known to be a sound and complete representation of all
identifiable (absence of) causal relations from independencies. With this the main
result of this section can now be summarized as:

Theorem 3.18. The Logical Causal Inference (LoCI) algorithm is sound and com-
plete for causal discovery from probabilistic independence relations.
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3.6 Discussion and Conclusion

In this chapter we developed a new approach to constraint-based causal discov-
ery: observed minimal (in)dependencies are converted into logical statements about
causal relations, and these statements are subsequently combined using basic prop-
erties of causality.

It leads to a remarkably simple characterization, in which all identifiable causal
relations take the form of an (inferred) minimal conditional independence with either
elimination of one alternative, or both alternatives leading to the same conclusion.

The resulting logical causal inference (LoCI) method was put to work in an
efficient anytime algorithm, the first alternative to the augmented FCI-algorithm
shown to be both sound and complete. The LoCI algorithm is strikingly simpler
than its counterpart in section 2.4. Even though it is not necessarily faster, as
for both the overall complexity is dominated by the independence search, the fact
that the implementation takes on this very simple and elegant form suggests it is
somehow more ‘natural’ to causal discovery.

The way in which the LoCI algorithm builds up this causal information is
markedly different from many other constraint-based methods: instead of focussing
on combinations of node pairs that may or may not be separable (the essence of
graphical orientation rules), the LoCT algorithm focusses on the nodes that separate
them. In particular, as it does not need to search for pairs of nodes that cannot
be separated by any set (the edges forming the skeleton of the PAG), the approach
taken by the algorithm could be dubbed ‘structure independent’. As a result, it
can be adapted to search for target causal relations in large models, updating each
time as new independence information becomes available; of course, if we want to
ensure completeness, we still have to find all of them.

The simplicity of the LoCI algorithm raises the question if a similar approach is
viable in other applications as well. For example, incorporation of causal informa-
tion from background knowledge or derived from other properties of the distribution
[Shimizu et al., 2006; Mooij et al., 2010], is straightforward. The same holds for
additional assumptions, such as ‘no selection bias’. Including interventional infor-
mation also fits nicely in this framework, and requires only minor modifications of
the minimal independence lemma 3.1. An extension to multiple models, similar to
[Triantafillou et al., 2010; Claassen and Heskes, 2010b], seems feasible as well. To
prove completeness, we had to rely on the known completeness of the augmented
FCI algorithm, but we suspect that a more direct proof should be possible.

Perhaps the most promising aspect of the LoCI approach lies in the flexibility
it offers in deriving causal information. For example, we are free to ignore any
suspect, ‘borderline’ (in)dependence decisions, by not including them in the list L
in lines 3 and 5: all inferred causal relations remain valid. This should definitely
increase the reliability of the output, even though it is no longer guaranteed to
be complete. Finally, the ‘structure independent’ aspect implies there are many
different ways to arrive at the same conclusion. This makes it possible to choose
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the most reliable combination(s) of independencies for a more robust conclusion and
to detect inconsistencies. Tracking which logical statements in L are combined to
identify new relations could also improve accountability for the output, indicating
exactly why a causal relation was found.

3.A Proofs: causal relations from in/dependence

The first lemma is derived from familiar results, see [Spirtes et al., 1999; Claassen
and Heskes, 2010b], to bring out the symmetry between a node that makes and a
node that breaks an independence relation.

Lemma 3.1 Let X, Y, Z, and W be four disjoint (sets of) observed nodes in a
causal DAG Ge, and S be a set of (unobserved) selection nodes. If a node Z makes
or breaks an independence relation between X and Y given W, then:

1L X1,Y|WU[Z] + Z=(XUYUWUS),
2. X W, Y|WU[Z] F Z% (XUYUWUS).

with special case

X 1,Y[[WUZ] F Z=(XUYUS)

Proof. (1.) To block, node Z must be a noncollider on a path 7 = (X, .., Z,..,Y) in
Ge that is unblocked given WUS. As Z is a noncollider it has at least one outgoing
arc along 7. Follow 7 in this direction until either a collider is encountered or the
end of 7 is reached. Every collider along 7 has to be an ancestor of (W US), which
implies that in either case Z has a directed path in Go (=causal relation) to at least
one node from (X UY UW US).

(2.) To unblock, node Z must be (a descendant of) at least one collider on a path
7 =(X,.,Y) in G¢ that is blocked given W US. Any directed path in G from Z
to a node in W U S implies that the collider(s) would already be unblocked when
conditioning on just W U S. No directed paths from Z to (W U S) implies that
if there existed a directed path from Z to X or Y, then it could not be blocked
by any node (W U S). But then such a path would make Z a noncollider on an
unblocked path between X and Y given (W U S): starting from X, let 0x be
the first collider encountered along 7 that is unblocked by conditioning on Z, and
similarly 6y the first collider along 7 starting from Y, (possibly 0x = 6y, but
{0x,0y} ¢ W (otherwise Z not needed)); then the paths (X,0x,Z) and (Z,0y,Y")
are into Z and unblocked given W U Z| so a directed path Z = X would make Z a
noncollider on unblocked path (X, 0x,Z,Y) given W, contradicting X 11,Y | W;
idem for Z =Y.

The special case (1) for minimal X 1, Y | [W U Z] follows from (1.) and acyclicity.
By contradiction: suppose 3U; € (WU Z) : Uy = (XUY US), then, as (1.) applies
to all nodes (WU Z), there must be a node Uz € (WU Z)\U; (acyclicity) such that
Uy = Us. But (transitivity) Us also cannot have a directed path to (X UY US), and
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so there must be a node Us € (W U Z) \ {Uy, Us} (acyclicity) such that Uy = Us.
This can continue until all nodes in (W U Z) have been allocated at which stage the
last node cannot have a directed path to any (X UY UW U Z US), in contradiction
with (1.). O

3.B Proofs: causal logic rules

Observed probabilistic minimal conditional in/dependences can be converted into
logical statements about causal relations:

Lemma 3.5 For minimal in/dependencies between nodes in a causal DAG G¢:
1. X U, Y|[WUZ] F (Z=X)V (Z=Y)V (Z=18)
2. X W, YIWUIZ] F (Z#-X)N (Z+Y) AN (Z+W) A (Z#Y9)

Proof. Just rewriting Lemma 3.1 with the definition of (absence of) causal relations
to sets of nodes, where:

- rule 1. corresponds to U € (X UY US): Z =T,
- rule 2. corresponds to VU € (X UYUWUS): Z>=U.

Next two lemmas used in the proof of Lemma 3.8.

Lemma 3.19. For two observed nodes, X and Y, in a causal DAG Go: X WY,
iff they are connected by a trek in Go or they both have treks into S

Proof. Almost by definition. Assuming causal Markov and faithfulness, two ob-
served nodes X and Y are dependent given a set Z, iff they are connected by a path
7 in Go on which all noncolliders are not in Z and all colliders are (ancestor of)
nodes in (Z U S). For Z = & this reduces to a path 7 on which all colliders are in
An(S). Starting from X, follow 7 until the first collider. Then X has a colliderless
path to a node with a directed path to S, which implies a trek from X to S. If Y is
reached, then 7 is by definition a colliderless path, or trek, to Y. Idem for Y. O

Lemma 3.20. In a causal DAG G¢, if X 'Y, then identifiable absence of a causal
relation X Y implies absence of selection bias X = S.

Proof. For adjacent nodes in a PAG P, the proof is trivial: identifiable absence of a
causal relation means identifiable non-ancestorship, and so an invariant arrowhead
X <Y in P. By definition of the MAG, see §4.2 in [Richardson and Spirtes, 2002],
this means that X ¢ An(Y US).

For nonadjacent nodes we can use Theorem 2 from [Claassen and Heskes, 2010b],
which states that there is identifiable absence of a causal relation X >~ Y, iff it is
impossible to go from X to Y in the graph P, without going against an arrowhead.
By contradiction: suppose that X = S. This implies An(X) = S, so nodes that are
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ancestor of X have no (invariant) arrowheads (only tails). By lemma 4.1, dependent
nodes either have a trek between them, or both have treks to S. But if there is a
trek between X and Y, then no node between X and the source of that trek can
have an arrowhead, and all nodes between the source and Y are going ‘with’ the
arrowhead, so then not all paths go against an arrowhead. Similarly for treks to S.
Therefore also for nonadjacent nodes X > S. O

Lemma 3.8 (Inferred blocking node). In a causal system Go, if X 1, Y |[Z]
and there is a subset {Z, ..., Zy, Z} C Z, such that in the sequence [Uy, ..., Ugta] =
(X, Z1,..., 2k, Z,Y] we know that:

- Ui {Ui—1, Uit },
-U; WpUjn | 2,
withi=1.k, j =0..(k+1), and VZ' CZ\{U;,U;11}, then Z = (Z,, UY US).

Proof. In words: if no node Z; in the minimal independence X 1L Y |[Z] has a
causal relation (directed path in G¢) to either of its neighbors in the sequence
(X, Z1,..., 2k, Z,Y] , and all neighboring nodes in the sequence are dependent
given any subset of Z, then Z has a causal relation to Z, Y, and/or S.

First we show that there is an unblocked path from X to Z in G¢ relative to
Z\z. The first item, in combination with Lemma 3.20 implies that there is no
selection bias on any of the nodes Z;. By Lemma 3.1, this, together with the given
71 >~ X, implies Z; = Y, and so it also follows that there is no selection bias on
Y (otherwise Z; = (V) = S).

By the second item, all neighbors in the sequence [U] are dependent (given empty
set), and so by the previous observation in combination with Lemma 3.19 this
implies that each successive pair is connected by a trek (but not a directed path,
by item 1) in G, with the possible exception of the edges to X and Z, that can
still correspond to directed paths and/or treks to S.

As each successive pair in the sequence is connected by an unblocked (sub)path
given Z\ z that is into both Z; and Z;, 1, it follows (by concatenating them) that
there is also an unblocked path from X to Z in G¢ relative to Z\Z. Nodes Z and Y
are also not separated by any subset from Z, and so are connected by an unblocked
subpath relative to Z z.

In conclusion, by construction there are unblocked paths from X (via Zj) and Y
to Z in Gc, given Zy z. If both paths from Zj and Y are into Z, then the sequence
[U] would represent an unblocked path between X and Y given Z in G¢, which
would make X and Y dependent, contrary to the given. Therefore Z must be an
ancestor of Z and/or Y, and/or have a directed path to S in G¢o. In other words,
then: 7 = Z,VZ =YV Z=S. O

Lemma 3.9. In a causal system Go, a conditional independence X 1LY | Z implies
that all causal paths between X and Y in Go are mediated by nodes in Z.
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Proof. See [Spirtes et al., 2000]. Assumes that no causal paths are blocked by selec-
tion nodes, which is implicitly covered by the faithfulness assumption. Implies that
(unconditionally) independent nodes have no in/direct causal relation or confounder
between them. O

3.C Proofs: logical characterization

Proposition 3.2. In a faithful PAG P, all invariant arrowheads are instances of:

rule (1): Y «— Z, obtained from a dependence U W,V |W U[Z] created by Z
from a minimal independence U 1L,V | [W], with Y € {U,V, W}, or

rule (2): Z—Y, from a minimal X 1LY | [W U Z], with an arrowhead X +— Z
from either rule (1) or rule (2).

Proof sketch. Both cases are sound:

(1.) By Lemma 3.1, the first gives (Z > Y) A (Z > S), which, by definition, im-
plies that if Y has an edge to Z in P, then the mark at Z is an (invariant) arrowhead.
(2.) The second likewise through elimination, giving (Z = X)V (Z =Y)V (Z = 8S),
where the first and third are eliminated by the arrowhead at X «— Z (by definition).
Therefore Z = Y, and so (acyclicity) also Y > Z, but also Y > S, otherwise (tran-
sitivity) Z = S. Therefore, if Y has an edge to Z in P, then it has an arrowhead
mark at Y.

The proof that they are also complete follows from the lemmas below, by in-
duction on the graphical orientation rules ROb—7R4b, showing that none of them
introduces a violation of Lemma 3.2. As these rules are sufficient for arrowhead
completeness [Ali et al., 2005; Zhang, 2008], it follows that the theorem holds for
all invariant arrowheads. 0

The next lemmas show that none of the arrowhead orientation rules in Table
2.1 introduce a violation of Proposition 3.2.

Lemma 3.21. The arrowheads at Z from rules ROb, R3, and R4b are covered by
case (1) and the arrowhead at'Y from rule R1 is covered by case (2).

Proof. Implied directly by the corresponding patterns, see also Figure 2.2:

ROb: If this rule fires, then it implies X 1L Y | [W] for some set W (possibly empty),
with X WY |W U Z. Therefore case (1) applies and Z gets arrowheads on
the edges from X and Y in G, just as in the consequent of ROb in fig.2.2.

R1: Implies X I Y |[Z] with Z € Z and an arrowhead at Z from a rule that fired
before. If no violations before R1 fires, then case (2) applies, and there is an
arrowhead at Z—Y in G, just as in the consequent of R1.

R3: Implies X LY |[W] with W e W, and X Y |W U Z. Therefore case (1)
applies, to give W x— Z in G, just as in R3.
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R4b: By construction of the discriminating path, R4b implies X 1l Y| [Z], with
{Z1,...,2} €Z,but Z ¢ Z as X WY |Z U Z. Therefore case (1) applies,
resulting in the addition of Z; x— Z <Y to G, just as in R4b.

O

Lemma 3.22. The arrowheads at'Y from rules R2b, R4a, and R4b are covered by
cases (1) and (2).

Proof. First R2b. The arrowhead at Zx— X either appeared by case (1) as a
node X that creates the dependency U WV |[W U X from U LV |[W], with Z €
{U,V,W} (case 1a), or by case (2), as a minimal conditional independence X 1
U|[W U Z], with a (somehow) established Z > (U US), for which either U and Y
are also independent given W U Z (case 2a), or not (case 2b). (Note: ¥ ¢ W in
case (2), otherwise (from Y > X, lemma 2) Y = U, which, together with Z = X
and X =Y, would imply Z = U). For these three instances:

la) If conditioning on X creates U 1 V| W U X, then conditioning on Y as
a descendant of X implies U 'V |W UY, and so case (1) also applies to
Z x—Y.

2a) Y LU |W U Z, then also Y 1L U | [W U Z], as no subset can block the path
between Y and U via X, and so case (2) applies to Z —Y.

2b) 'Y WU | W U Z, then there is an unblocked path 7 between U and Y given
WUZ. The path 7 is into Y, since otherwise the path (X,Y)+m would be an
unblocked path between X and U given WU Z, contrary to X 1L U | [W U Z].
Therefore, conditioning on collider Y on the path creates the dependency
X WU |WUZUY, and so case (1) applies.

In R4a and R4b, the arrowhead at Y is simply an instance of R2b with Z, = X. O

This leaves rule R2a as the only remaining case to prove. For that we use the
observation:

Lemma 3.23. If two nodes X and Y are conditionally independent given a set of
nodes Z, X WY | Z, then an arbitrary node V is either:

(a) part of the conditional independence, i.e. V € (X UY UZ),

(b) conditionally independent of X and/orY given Z, i.e. logical statement
(VILX|Z)V (VLY |Z), or

(¢) (descendant of) a collider between U and V such that X WY |{ZUV}.

Proof. If neither (a) nor (b), i.e. V ¢ (X UY UZ) and V Y {X,Y}|Z, then there
are paths 7x = (X,..., V) and my = (Y,...,V) in the corresponding graph that
are unblocked given Z. Node V has to be a collider on the path m = nx + 7y,
otherwise m would be unblocked given Z (as V' ¢ Z), contrary to X 1L Y |Z. But
then conditioning on Z UV will make them dependent, i.e. then (c). O
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Note that if Z is a minimal set that makes X and Y independent, then case (b)
does not imply that it is also minimal for V 1L X/Y | Z, as shown by the example in
Figure 3.2: from X 1LY |[{Z1, Z2}], for node V we find V UL X |{Z;, Z>} (as none
of the other options in Lemma 3.23 applies), but this is only minimal for subset
V1L X |[Zs)].

z)

Figure 3.2: Example of case (b) in Lemma 3.23 with ‘minimal’ only for subset

For the proof of R2a we also use:

Lemma 3.24. In an ancestral graph G, if a node Z unblocks a blocked path m =
(U,..., V) between two nodes U and V' given some set W, then there are unblocked
paths from both U and V into Z relative to W, and so Z W{U,V}|W.

Proof. By definition, a path w is unblocked relative to W if all noncolliders on
the path are not in W and all colliders are in An(W). Adding a node Z to the
conditioning set can never remove a noncollider, so it can only unblock on a collider
that is in An(W U Z), but not in An(W). So the node Z must be (a descendant
of) a collider C' on the path (possibly C' = Z). No node W € W, blocks the
path X = Z (otherwise conditioning on Z would not be needed), therefore if =
is unblocked relative to W, then so are the two paths 7y = (U, ..(, X, ..), Z) and
v =(Z,(..,X,)..,V), which implies Z W {U,V}|W. O

Finally we need the following result (see also Figure 3.3, below):

Lemma 3.25. In an ancestral graph G, if there are (sets of ) nodes U, Y, Z and W,
such that UL Z|W and U WX Z|W UY, with Z+«—Y in G, then there is a node
W e (UUW), and a set Q C W, such that W 1L Z|[Q] and W X Z|QUY .

Proof. In words: if conditioning on a node Y destroys some conditional indepen-
dence for a neighbouring node Z (unblocks a path), then the same holds for at least
some minimal conditional independence between Z and one of the other nodes in-
volved.

By definition, there isa W’ C W such that U 1L Z | [W']. If then alsoU W Z | W' UY,
then the lemma applies with W = U and Q = W'. If not, i.e. f UL Z|W'UY,
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then we can show that there is a node W € W for which the lemma holds.

Let G’ be the MAG obtained from G by marginalizing out all nodes in G that are
not in {U,Y, Z}UW. From the original U W Z | W UY, by Lemma 3.24, there is an
unblocked path 7 = (U,...,Y) in G’ that is into Y given W. The path 7 contains
one or more (say k) colliders in G’, some of which are (ancestors of) nodes from
W, but not from W’ (otherwise the path to Y would also be unblocked given W',
which, together with edge Z*—Y, would imply U W Z | W' UY, contrary to the
assumed). Number the colliders as W7y, ..., Wy, as they are encountered along
when starting from Y, such that 7 = Ux— Wy «— ... «— Wy «— W «— Y. By
induction: if there is no edge between Wy and Z in G’, then they are (minimally)
conditionally independent given some set Q; C W (possibly empty), but depen-
dent given Y, as the paths from both W and Z into Y are not blocked by any
node from W (as a bi-directed edge in G’, resp. (direct) edge into V), and so the
lemma is satisfied. If not, i.e. if there is an edge in G’, then this edge is out of W1,
otherwise the path (U, Wy, .., Wi, Z) would be unblocked relative to W, making U
and Z dependent given W, contrary the given. But then for Wa, if there is no edge
between W5 and Z in G', then Ws 1L Z | [Q2], with W € Qg, because it is the only
node from W that blocks the trek Wy «— W7 — Z. But that also means that the
path from W5 to Y is unblocked given Qq, and so Wo ¥ Z5 | Q2 UY. If not, then
the edge to Z is (again) out of Wa, otherwise U W Z | W, contrary the given. This
applies to all successive colliders W; on the path 7. But if all, up to and including
Wy, have an edge in G’ into Z, then no unblocked path between U and Z implies
that Wy, is needed to block U x— Wy, — Z, and so all W; on 7 are in W', implying
an unblocked path to Y, and so U W Z| W' UY. O

Figure 3.3: Configuration for Lemma 3.25

Now at last we can show:
Lemma 3.26. The arrowhead at' Y from R2a is covered by cases (1) and (2).

Proof. 1f the arrowhead at X *—Y originates from case (2), then the edge appears
as X — Y, and is therefore also an instance of R2b, which we already found to
be valid. If X «—Y originates from case (1), then there is a minimal U 1L V' | [W],
with X € (U UV UW), and the node Y creates U XV |W UY. By Lemma 3.23
there are now three cases for node Z:
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(a) Ze (UUVUW),
(b) ZLLU|W, (and/or Z LV | W)
() UKV |WUZ.

For case (a), both X and Z are in (U UV U W), and so if rule (1) applies to
X x— Y it also applies to Z*— Y. Case (c) cannot occur, as that would im-
ply Z (UUV UWUS) by Lemma 3.1, with X € (UUV UW), while R2a has
Z — X.

For the remaining case (b), w.l.o.g. we assume U 1L Z|W. Lemma 3.24 implies
U WY |W which, together with Z*— Y, implies U 1 Z | W UY, because the
unblocked path from U to Y given W cannot contain Z, as that would create an
unblocked path from U via Z to X given W, contrary U 1l Z|W. Then from
Lemma 3.25 it follows that there is at least one minimal conditional independence
between Z and some node from (U U W) that is destroyed by conditioning on Y.
Therefore, the arrowhead Z «—Y is then covered by case (1). O

’
1

v

Figure 3.4: Example of non-minimal case (b) in Lemma 3.26.

Example 3.27. Figure 3.4 shows an instance of case (b) for R2a where the initial
separating set is not minimal. Here, R2a applies to Z+— Y, after X x— Y is
derived via case (1) from U 1L X | [W] with U W X |W UY (the origin of the edge
Z — X is not depicted). By Lemma 3.23, for node Z indeed U 1L Z | W holds (case
b), but not as a minimal independence, as U I Z | [@]. As a result, edge Z x—Y
does not follow from case (1) applied to this combination of nodes as conditioning
on'Y does not make U and Z dependent, i.e. U 1L Z|Y. However, as in the proof
of Lemma 3.26, Z is minimally conditionally independent of ‘eliminated’ node W,
but dependent when conditioning on'Y . Therefore, case (1) applies to W 1L Z | [&]
and W W Z Y, from which follows that Z x—Y .

We can now complete the proof of the main invariant arrowhead result:

Proof of Proposition 3.2. Follows from the arrowhead completeness of rules ROb-
R4b, the fact that after R0a the theorem holds (no arrowheads), in combination
with the proof in lemmas 3.21-3.26 that none of the rules ROb-R4b introduces a
violation of Proposition 3.2. O
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Note that rule (1) covers all X o—Y and X «—Y edges (see section on reading
PAGs). Next we continue with the invariant tails.

Proposition 3.13 (Invariant tails). In a PAG P, all invariant tails Z —+Y
from graphical orientation rules Rda, R5, R7, R9, and R10 are instances of:

(2b): X LY |[WUZ], with X = (ZUS) from either case (3) or another (2b),

(3): ULV |[W U W], with two transitive relations [W,U, .., Y]+ [W,V,..,Y], and
Ze{u,v,wh,

(4): X 1LY |[Z], with inferred blocking node Z € Z, together with Z; = (Y US)
from either case (2) or case (4).

Proof. Case (2b) covers rule R7, and is so named because of its similarity /overlap
with case(2) for R1. Case (3) covers all instances of rules R5, R9, and R10, and
case (4) accounts for tails from orientation rule R4a.

All three cases are sound:

(2b): By Lemma 3.1, X LY |[WUZ] gives (Z=X)V(Z=Y)V(Z=18).
Combined with (X = Z)V (X = S) this gives (Z = Y) V (Z = S), and so a tail
at Z if it has an edge to Y in P.

(3): Idem, ULV |[WUW] gives (W = U)V (W = V)Vv (W = S). From
Corollary 3.12, the transitive relations give (W = {U US}) F (W = {Y US}), and
(W = {VUS}) F (W = {Y US}). Substituting these two in the first then gives
(W =Y)V (W = 8). This holds for all nodes on the two transitive chains, hence
if Z € {U,V,W}, then (Z = Y)V (Z = S), and therefore a tail Z —*Y, if they
are connected in P.

(4): By Lemma 3.8, as Z is an inferred blocking node between X and Y given

Z, there is a Zy € Z such that Z = Z;,VZ = Y V Z = S. Together with the given
Zi =YV Z, = S, this reduces to Z = Y V Z = S, and hence an invariant tail
Z—Y.
In rule R7, X and Y are nonadjacent, so conditionally independent given some
set, and Z as a noncollider between the two is needed in all such sets, hence
XUY|[WUZ]. Only rules R6 and R7 can produce the required X —o Z edge
to trigger R7, however, every (chain of) R7 orientations needs to start from an
instance of R6. Rule R6 implies identifiable selection bias on X (undirected edges
to other nodes), and so, if it triggers R7 then this satisfies case (2b), and therefore
any subsequent tail oriented by R7 as well.

Rule R5 triggers on an uncovered circle path. In Figure 2.3, let U be the
node next to X on the circle path (U could be W, in which case dashed line
X — W becomes edge), so that we have Z L U |[X U..], as Z and U by definition
not adjacent. Furthermore, there are two transitive relations [X,U,..,W,Y] and
[X, Z,Y] that are both from X to Y, and so R5 satisfies case (3) and gives (among
others) Z —Y.
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Rule R9 similarly: now Z 1L W |[X U ..], with two transitive relations [X, W, .., Y]
and [X, Z,Y] that are both from X into Y, and so R9 satisfies case (3) and will
orient Z —Y.

Rule R10 idem: now V 1L.S'|[Z U ..], with two transitive relations [Z, S, .., X, Y]
and [Z,V,..,W,Y] that are both from Z into Y, and so R10 satisfies case (3) and
will orient Z —Y.

In rule R4a, from the description of the graphical orientation, it follows that X
and Y are non-adjacent in P, and that all nodes 71, .., Zx, Z, see also Figure 2.2,
are needed to make them independent, and hence appear in the set X 1LY |[Z U Z].
Furthermore, each neighboring node in the sequence is adjacent in the graph, so
not separated by any set, let alone a subset from Z. All nodes Z; have arrowheads
at edges to their neighbors in the sequence, implying non-ancestorship, so no causal
relation to either. Therefore Z is an inferred blocking node. The tail at Z — Y
implies Z, = (Y US), and so R4a satisfies case (4) (in fact, even stronger, as
identifiable Z = Y').

By construction of the discriminating path, all nodes Z; in the sequence, except
perhaps 7, also satisfy the conditions in case (4). For Zs, the arc Z; —Y follows
from case (2). For Zs, the invariant arc Zs — Y therefore satisfies case (4) (although
it may also be derived in other ways as well). Similar for all subsequent nodes up
to Zk. O

Corollary 3.14 (Identifiable selection). In a PAG P, all identifiable selection
nodes X = S are covered by case (3), in the form of a minimal independence with
two transitive relations back to itself.

Proof. Identifiable selection bias X =- S corresponds to a node with an undirected
edge. Only R5, R6, and R7 can produce undirected edges. When the transitive
relations reach all the way back to the node Z from the initial minimal conditional
independence, then the conclusion becomes (Z = Z) V (Z = S), which (irreflexiv-
ity) reduces to (Z = S). In other words, then there is identifiable selection bias on
Z, and therefore also on all other nodes involved in the transitive relation (including
the U;s).

This is what happens in R5. Afterwards, if R6 is always executed before R7
when a new undirected edge is found, then R6 will never (need to) identify a
new selection node, as it produces only tails on nodes that are already established
selection nodes.

That leaves just R7. It is possible that part of the transitive relation in case
(3) is traversed in both ways (that is where the ‘not necessarily disjoint’ part in
the definition of transitive relation comes in). This occurs for single nodes that
separate two nonchordal undirected subgraphs in P. Then R7 will orient Z —%Y
in the direction away from one undirected subgraph, and Y —x Z when orienting in
the direction away from the other subgraph, resulting in Y — Z, and so identifiable
selection bias on both Y and Z. These are also the only ways in which undirected
edges can be created by the orientation rules. O



CHAPTER 3. A LOGICAL CHARACTERIZATION OF CAUSAL DISCOVERY 55

3.D Proofs: LoCI and the complete PAG

Lemma 3.16 (Single minimal independence). In the logical causal inference
(LoCI) approach, finding a single, arbitrary X 1Y |[Z], for each pair of nodes
(X,Y) in the graph (if it exists) is sufficient to find all invariant features of the
PAG.

Proof sketch. This stems from the fact that the graphical orientation rules are de-
fined on sets of adjacent nodes, which ensures that most nodes are almost always
needed to separate two nonadjacent nodes in the same rule, and so will be found as
part of the separating set, no matter how large/variable the set of nodes to block
all paths between the two can be. Note: once a minimal set is found for a pair of
nodes, then all remaining nodes are checked to see if including them destroys the
independence (so lemma 3, item 1 applies). O

In the proof of rule R2a we use that if conditioning on a node Y destroys
(unblocks) some minimal conditional independence for a neighbouring node Z, then
it does so in all minimal independencies between Z and at least one node in G:

Lemma 3.28. In an ancestral graph G, if there are (sets of ) nodes U, Y, Z and W,
such that U L Z|[W] and U W Z|W UY, with Z*—Y in G, then there is a node
V' (possibly V.= U), such that for all sets Q for which V 1L Z|[Q] it holds that
VIXZ|QUY.

Proof. Follows along the lines of Lemma 3.25. From that proof, there is an un-
blocked path 7 in G’ (the graph G, marginalized over {U,Y,Z} U W, of the form
T=Usx>Wye—...«—Wy«—W;+—=Y that is into Y given W, for some k > 0.
Here we consider the corresponding path(s) 6 in G, where the colliders on the path
are now indicated by {Uq,..,U,,}. (Note that edges in G’ may correspond to mul-
tiple unblocked paths relative to W in G, and that 6 may contain different nodes
than 7, including other (ancestors of) colliders from W).

So, let § = U x—U,,«—...«—Uy«—U; «—Y be an unblocked path in G that is
into Y given W. We look at nodes V along 6, starting from Y, and try to find one
that does not have a link to Z. Suppose V' = V] is encountered on the first leg (trek)
U —+..x—Y. If V] does not have an edge to Z in G, then there is some Q such
that V1 1L Z | [Q], while also V1 W Z|QUY (both edges to Y), and so the lemma
is satisfied. If there is a link, then it can only be of the form U; «—.. x— Vj «x Z,
otherwise there would be an unblocked path between U and Z given W.

For a second node, V3, a similar story holds: if there is no edge Vo — Z in G,
then there is some Q such that V5 1L Z|[Q]; but note that now Vi ¢ Q, as the
edges from both V5 and Z are into Vi, and therefore also/again Vo ¥ Z|QUY
(unblocked path resp. edge into Y given Q), and so the lemma is satisfied. If there
is an edge, then again it must be of the form Uy «—x .. x— V5 < Z, otherwise there
would be an unblocked path to Z, and we can continue until we reach U;. At that
point, again, if U; has no edge to Z, then there is some Uy 1L Z | [Q], with none of
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the V; encountered on the first leg in Q (as V; is not ancestor of either U; or Z,
from which, by V; —..— V1, follows that neither are any of the other V;), and so
there are unblocked paths from U; and Z into Y given Q. If it has an edge, then,
contrary the edges from Z into V; (if any), it must be an edge out of Uy — Z,
otherwise there would be an unblocked path given W.

Continuing with the second leg, Uy «x*..*— Uj, we now find that a node V'
encountered in going from U; to Us along 6 (if any) cannot have a direct edge to Z
without creating an unblocked path from U to Z relative to W (either as noncollider
between U, and Z, or as collider that is ancestor of Uy). So then V 1L Z|[Q], with
U; € Q (as it is the only node blocking the path V «+— U; — Z). But like before,
none of the previous V; (if any) are part of Q: by contradiction, if V; € Q, then
Vi — V (because V; ¢ An(Z)), so if Uy «— V — U, along 0, then the ‘top’ V;
would be ancestor of Uy, contrary the arrowhead Uy «— V}, and if Up «— V *— U,
along 6, then the path via Us «— V «— V; «—* Z would be unblocked (end-of-by-
contradiction). So, if none of the V; are part of Q, then the paths from both V' and
Z to Y are unblocked given Q, and the lemma is satisfied.

If no node V on Us «— Uy, then again, for Uy there is either a minimal inde-
pendence that satisfies the lemma or an edge U, — Z. This can be repeated along
0 until a node is found or the final node U is reached. At that point, if no other
node has been found before, it can be applied to any set for which U 1L Z | [Q)], as
all other colliders U; € Q, are needed to separate U and Z, but none of the V;, and
so the path to Y is always unblocked. O

To prove Lemma 3.16 it is actually easier to use a more restricted variant of
Proposition 3.2, where case (1) only needs to be applied to instances where Z is
always part of the minimal conditional independence, and that will always be
unblocked when conditioning on Y’; idem for case (2):

Lemma 3.29. In a PAG P, all invariant arrowheads Z x—Y are instances of:

case (1'): UXV|WUIY], Z € {U,V,W}, and for all sets W' : U 1L V| [W']
the paths from U and V to Y are unblocked relative to W', and either
Z € {U,V'} or (necessarily) Z € W',

case (2): X WY |[W] with Z € W, and Z >~ (X US) from either case (1') or
case (2'), and Z in all sets W' : X LY | [W'].

Proof. We now show this holds for each arrowhead rule:

ROb fires on any (minimal) conditional independence X Il Y | W between X and
Y, and for any such W, including Z will unblock the path (X, Z,Y’), so case
(1') applies,
R1 node Z is part of any set (minimal or not) that separates X and Y, and so
case (2') applies,
R3 similar to ROb, fires on a node W that is part of all sets separating X and Y,
and including Z will unblock the path (X, Z,Y'), and so case (1’) applies,
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R4b

R2b

R4a/b
R2a

(arrowheads at Z) all nodes Z1, ..., Zy are part of all sets separating X and
Y, and including Z then makes them dependent, so case (1’) applies,

for instance (1a) in Lemma 3.22, if case (1) applies to Z *— X, then it also
applies to Z *—Y, as X is never part of the minimal conditional independence
involving Z, and so unblocked paths to X imply unblocked paths to Y; for
instance (2a), Z is present in all sets that make X and U independent, and so
also in all sets that make Y and U independent (as it implies Z —Y'), and
so case (2') applies; for instance (2b), if Y WU | [W U Z] holds for all sets for
which X 1L U|[W U Z], then it is an instance of case (1') with V' = X and
W = (WU Z), and so for all W U Z there are unblocked paths from X and
U into Y, resulting in X WU |W U Z UY. If not, then there is some W’ for
which X LU |[W'UZ] and not Y WU | [W' U Z]. But as Z is needed in all
sets that block a path 7 = U.. *— Z — X between U and X, it means that
Z is also needed in all sets that separate U and Y, because if there is any
remaining unblocked path 7 from U to either X or Z, then n+ either X —Y
or Z —Y is an unblocked path from U into Y. Therefore Z is also needed
in all sets that separate U and Y, which, together with Z > (U US), implies
that it is an instance of case (2').

(arrowhead at Y') instances of R2b with Z, =Y,

if the arrowhead between X and Y originates from case (2') then X — Y,
and so is an instance of R2b. If not, then the arrowhead X x— Y originates
from case (1) with node X in R2a in the role of Z in (1').

Now, if Z, like X, is also a necessary member of the minimal independence
ULV |[W],ie. Ze{UV}or VW ULVI|[W']:Zec W, then case (1)
also applies immediately to Z.

If Z is not necessary, then there is some U 1LV | [W'], with Z ¢ (UUV UW'),
for which U ¥ V|W’'UY. For node Z then instance (b) in Lemma 3.23
applies, say as U 1L Z | W', as instance (a) is excluded by the assumed Z ¢
(UUV UW’), and instance (c) still cannot occur, as Z — X. But then also
UL Z|W'UY, as both U and Z have unblocked paths into Y relative to
W' (by Lemma 3.24, applied on the U W'V |W'UY from case (1’), together
with edge Z «+—Y"). But then by Lemma 3.25 there is also a W 1L Z | [Q] with
W W Z|QUY, and therefore, by Lemma 3.28 there is also some node @ for
which for every set Q1L Z | [Q'] also Q W Z | Q' UY, i.e. then case (1') is also
satisfied for the arrowhead Z x— Y. 0

(Note that R2b is not simply an instance of Lemma 3.28, as that only says that
X has a conditional independence with some node V' € W that will always be
destroyed by conditioning on Y, but not that Z is necessarily part of this set.)

So all arrowhead rules are covered by Lemma 3.29. As the two cases in Lemma
3.29 are just a restricted form of the cases in Proposition 3.2, it follows that all rules
are also covered by Proposition 3.2 if just a (any) single minimal independence is
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found between each pair (if it exists). We now complete the proof that a single
minimal independence suffices to find all invariant marks:

Proof of Lemma 3.16. By Lemma 3.29, all invariant arrowheads are instances of
cases (1') and (2'), and so will always be found if at least one minimal conditional
independence is found between each pair of nodes (if it exists). For the remaining
invariant tails: For each rule:

R5 The circle path corresponds to a transitive chain of minimal conditional in-
dependencies where each node is necessarily part of any set that separates its
two neighbors.

R7 Similar to R1.

R9 Node X is part of every conditional independence between Z and W; the
same holds for the successive nodes in both transitive relations from X via Z
to Y and from X via W to Y.

R10 Similar to R5/R9.

Remaining rules R6, R8a, and R8b do not require any separate independence
statement. Therefore all orientation rules that trigger on an instance of case (1) do
so for at least one that is part of a set that is present in all minimal conditional
independencies for a given pair of nodes. O

Theorem 3.18 The Logical Causal Inference (LoCI) algorithm is sound and com-
plete for causal discovery from probabilistic independence relations.

Proof. Soundness follows from the validity of the lemmas 3.5 and 3.8, that produce
the logical statements in the list L, in combination with the causal logic rules in
Proposition 3.4. Completeness follows from the fact that all rules are instances of
cases (1)-(4) (Propositions 3.2 and 3.13), for a single, arbitrary minimal indepen-
dence between nodes and in combination with subsequent dependencies (Lemma
3.16), the fact that all logical inference in each of the cases (1)-(4) is covered by
Proposition 3.4, the fact that case (1) and (2) will find all required non-ancestor
relations / invariant arrowheads (Proposition 3.2, see also [Zhang, 2008]), needed
to obtain the only remaining piece of information (inferred blocking node for case
(4) from Lemma 3.8). After running the logical rules on this set of statements to
completion, all invariant edge marks have been found and can be transferred to the
PAG. O

As a final step we demonstrate that for each case (1)-(4), the logical inference
steps in the LoCI algorithm do indeed keep the simple form of the list of statements
in section 3.3.1, i.e. either a statement on the absence of a specific causal causal
relation, or a disjunction of possible causal relations from one variable to at most
two other variables, and/or the selection set S.

Corollary 3.30. Keeping only statements of at most two disjunctive positive (pres-
ence) causal relations or a single negative (absence) causal relations in the list L is
sufficient.
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Proof. We do the proof by demonstration for each of the cases (1)-(4) for invariant
arrowheads and tails in Propositions 3.2 and 3.13:
Case (1): Follows directly from Lemma 3.5, item 2.

1: Y~Z ANYx. AYXS

Case (2): A minimal independence in combination with already inferred informa-
tion on the absence of a causal relation.

1: Z =X vV Z=Y Vv Z=S8

2: Z=X A N Z>S
= Z =Y
3: Y Z

Note that (1:) becomes obsolete with the consequence Z = Y in the third line, so
that the latter effectively replaces the first in the list L.

Case (2b): Idem, but now in combination with an already inferred causal relation
and/or selection bias on a specific node.

1: Z=X VvV Z=Y V Z=S8S
2 X=7Z A ANX=8S
= Z =7 VZ=Y V Z=S8
3: Z=Y V Z=S8

Again, (3:) replaces (1:) in L.

Case (3): A minimal independence for Z, with both alternatives leading to Y.
1: W=U VW=V VvW=S8

2: U=W VvU=Y VvU=S
3: V=W VvV=Y Vv V=S
= W=Y VW=V vW=S8
F W=Y VW=Y v W=S8
4: W=Y v W=S8

This demonstrates the case for Z = W; cases Z = U/V go the same.

Case (4): An inferred blocking node Z, with an earlier/afterwards established
causal relation to Y or selection bias.

1: Z=2Zy NV Z=Y V Z=8
2: Zy=Y V Zp=S
3: Z=Y V Z=S

With (3:) replacing (1:) in L.

This shows that all cases can be found from straightforward deduction on the simple
list structure L. O
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Chapter 4

Causal discovery from different
experiments

A long-standing open research problem is how to use information from multiple,
overlapping observational and experimental studies, including background knowl-
edge, to infer new causal relations. It is well-known that simply pooling such data
sets together may lead to spurious relations and erroneous conclusions that have no
bearing on the actual underlying causal system at the heart of these experiments.
Recent developments have shown ways to use multiple, partially overlapping data
sets, but they have to rely on the assumption that all data sets originate from
essentially identical experiments (with different observed variables).

In this chapter we present a new approach, embodied by the Multiple Causal
Inference (MCI) algorithm, that is the first method that can infer provably valid
causal relations in the large sample limit from different experiments.

It extends results from the previous chapter that show that constraint-based
causal discovery is decomposable into a candidate pair identification and subse-
quent elimination step. Introducing the framework of an invariant causal system
in different external contexts, a key observation is that these steps can be applied
separately from different models. We test the algorithm on a variety of synthetic
input model sets to assess its behavior and the quality of the output. It produces
fast, reliable, and easily interpretable output. The method shows promising signs
that it can be adapted to suit causal discovery in real-world application areas as
well.

This chapter is based on: [Claassen and Heskes, 2010b] “Causal discovery in multiple models
from different experiments” in “Adv. in Neural Information Processing Systems 23”, and [Claassen
and Heskes, 2010c] “Learning causal network structure from multiple (in)dependence models”,
published at the Fifth European Workshop on Probabilistic Graphical Models.
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4.1 Introduction

Discovering causal relations from observational data is an important, ubiquitous
problem in science. In many application areas there is a multitude of data from
different but related experiments. Often the set of measured variables is not the
same between trials, or the circumstances under which they were conducted differed,
making it difficult to compare and evaluate results, especially when they seem to
contradict each other, e.g. when a certain dependency is observed in one experiment,
but not in another.

Figure 1.4: Age-standardised (European) incidence rates,
oesophageal cancer, by sex, Great Britain, 1975-2007
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Figure 4.1: Incidence rates of oesophageal cancer (Source: Cancer Research UK, press
release 25 August, 2010)

Example 4.1. Oesophageal cancer rates in men have risen by 50 per cent over
the last 25 years, see Figure 4.1. It is thought that the rise in obesity is to blame,
in combination with people eating less fruit and vegatables. Many related studies
are available, but how or why body fat would raise risk is not clear. Key question
1s: if people exercise more to reduce obestiy, would that reduce the incidence of
oesophageal cancer? A complicating factor is that different studies find contradictory
information. For example, some show a clear link between drinking hot beverages
and squamous cell carcinoma (a type of oesophageal cancer), whereas others do not.

Results obtained from one data set are often used to either corroborate or chal-
lenge results from another, but we would like to learn more from the combination
of experiments. In general, simply pooling results from different tests into a sin-
gle large data set is not a good idea: this is long known, see [Yule, 1903], to lead
to complications through possible spurious associations, i.e. variables that are in-
dependent in two data sets can exhibit an apparent dependency in the combined
data set. One option is to present several alternative causal explanations to the
end-user, but this is can be confusing and hard to interpret when many models
are presented. A pragmatical approach could be to combine the different results
through some kind of majority voting, e.g. where arcs in the output are kept if they
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appear in all or most models from the separate experiments. But this still cannot
adequately explain why sometimes dependencies are observed in one experiment,
but not in another. Being able to use and combine results from different, but related
experiments, studies, and existing background knowledge would be very desirable.
However, there is currently no principled framework that allows us to do so, which
means that even if lots of important information (data) is available, the answers to
key causal questions could still be missed.

High Fat Diet

cid Reflux o

o
Barret's
Metaplasia

Figure 4.2: Independence models, e.g. as learned by the FCI-algorithm in section 2.4, from
two different (hypothetical) studies into oesophageal cancer risk factors.

Example 4.2. Suppose that, in relation to example 4.1, there are two separate
(hypothetical) studies into riks factors. Results of these two studies are depicted as
the models in Figure 4.2. Neither of these models really explains the relation between
obesity and adenocarcinoma (a type of oesophageal cancer in the region close to the
stomach). Only a proper combination of both models can reveal that it is not so
much body fat, as people’s eating behaviour (via acid refluz) that is likely behind
much of this increase.

In short, methods to relate results from different studies must be able to:
- handle data from partly overlapping sets of measured variables,
- handle different types of input information, e.g. causal (from background
knowledge) and probabilistic,
- explain apparent contradictions: risk factors identified by one study, but not
by another,
- produce coherent, clear, and concise output

Constraint-based methods like the PC-algorithm [Spirtes et al., 2000] are provably
correct in the large sample limit, as are Bayesian methods like the greedy search
algorithm GES [Chickering, 2002] (with additional post-processing steps to handle
hidden confounders). Both are defined in terms of modeling a single data set and
have no principled means to relate to results from other sources in the process.
Recent developments show how, under certain strict assumptions, multiple par-
tially overlapping data sets can be combined by searching through possible solutions
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over all variables in the combined set. For example the ION-algorithm by Tillman
et al. [2008], looks through all possible PAGs that are consistent with the PAG
models that describe each data set. It uses local information from each model to
restrict the search space as much as possible, but is still limited to a few nodes
in practice. A more efficient version is available that can handle up to 20 nodes,
but the number of possible PAG classes in the output quickly becomes prohibitive
and difficult to interpret. An interesting approach, focussing on pairwise causal
relations instead of the PAG, is taken by [Triantafillou et al., 2010] who translate
this problem into a series of SAT problems to which powerful standard SAT solvers
can be applied. With preprocessing the resulting ¢cSAT+ algorithm can be scaled
up to about 50 nodes.

However all these algorithms are still essentially single model learners in the
sense that they assume there is one, single encapsulating structure that accounts
for all observed dependencies in the different models. In practice, observed depen-
dencies often differ between data sets, precisely because the experimental circum-
stances were not identical in different experiments, even when the causal system at
the heart of it was the same. The method we develop in this article shows how to
distinguish between causal dependencies internal to the system under investigation
and merely contextual dependencies.

In chapter 3 we recognized the modular aspect of causal discovery: causal rela-
tions can be derived from combinations of minimal in/dependencies between certain
variables, without having to know or uncover anything else about the entire graph.
In section 4.3 we take this one step further by showing that such causal discovery
can be decomposed into two separate steps: a conditional independency to identify
a pair of possible causal relations (one of which is true), and then a conditional
dependency that eliminates one option, that can be taken from different models,
as the corresponding logical causal statements do not depend on the context. This
forms the basis underpinning the MClI-algorithm in section 4.4.

Our goal in this chapter is to find a model that can explain and use in/dependence
information from multiple experiments in order to derive new, valid causal relations
(sections 4.2 and 4.3). It is implemented in section 4.4 as the MCI algorithm, and
evaluated in section 4.5.

4.2 Modeling the system

Random variation in a system corresponds to the impact of unknown external vari-
ables, see [Pearl, 2000]. Some of these external factors may be actively controlled,
e.g. in clinical trials, or passively observed as the natural embedding of a system in
its environment. We refer to both observational and controlled studies as experi-
ments. External factors that affect two or more variables in a system simultaneously,
can lead to dependencies that are not part of the system. Different external fac-
tors may bring about observed dependencies that differ between models, seemingly
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contradicting each other. By modeling this external environment explicitly as a set
of unobserved (hypothetical) context nodes that causally affect the system under
scrutiny we can account for this effect.

Definition 4.3. The external context G of a causal DAG G¢ is a set of inde-
pendent nodes U in combination with links from every U € U to one or more nodes
in Go. The total causal structure of an experiment then becomes Gr = {Gg + Gc'}-

Figure 4.3 depicts a causal system in three different experiments (double lined
arrows indicate direct causal relations; dashed circles represent unobserved vari-
ables). The second and third experiment will result in an observed dependency
between variables A and B, whereas the first one will not. The context only intro-
duces arrows from nodes in Gg to Go which can never result in a cycle, therefore
the structure of an experiment Gr is also a causal DAG. Note that differences in
dependencies can only arise from different structures of the external context.

o~ o~ .~
uh U 0

AN O O 0 v 0
gE\&/X/m g\&/\ i

G

Figure 4.3: A causal system G¢ over six variables {4, B,C, D, E, F}, in three different
experiments corresponding to contexts Gg, Gr, and G

In this paradigm different experiments become variations in the context of a
constant causal system. The goal of causal discovery from multiple models can then
be stated as: “Given experiments with unknown total causal structures Gr = {Gg+
Ge}, G = {05 + Ge}, ete., and known joint probability distributions p(V C Gr),
p (V' C Gf), etc., which variables are connected by a directed path in Go?”.

We assume that the large sample limit distributions p(V) are known and can
be used to obtain categorical statements about probabilistic (in)dependencies be-
tween sets of nodes in each experiment. In this chapter we largely ignore selection
bias, which should follow straightforward from these and previous results, see also
[Spirtes et al., 1999]. Finally, section 4.3.2 discusses how to handle interventions,
i.e. experimental context nodes that externally force a variable to a particular value.
These effectively alter the structure of the causal system G by eliminating (block-
ing) all incoming causal paths into the intervention node, and can be a great source
of causal information. However, as our benchmark reference methods in section 4.5
cannot handle these properly, we do not consider interventions in the evaluation,
and assume there are no such ‘unknown’ blocking interventions.
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4.3 Causal relations in multiple models

From chapter 3 we know there is a close connection between minimal in/dependencies
and presence/absence of a causal relation between variables. Restating the key re-
sults from section 3.2 in terms of a causal system Go in an external context Gg
(ignoring selection bias) gives the following three rules:

Lemma 4.4. Let X, Y, Z, and W be four disjoint (sets of) observed nodes in an
experiment with causal structure Gr = {Gg + Gc '}, then for arbitrary context Gg:

(1) X 1, Y ||Z] implies causal paths Z = X and/or Z =Y from every Z € Z
to X and/orY in Go,

(2) X W, Y |ZU[W] implies no causal paths W % X, W %Y, or W % Z for
any Z € Z in Ge,

(3) X 1LY implies absence of causal paths X # Y andY # X in G¢.

The in/dependence patterns above have a causal origin, independent of the
(unobserved) external background: rule (1) identifies a candidate pair of causal
relations, rule (2) identifies the absence of causal paths, and rule (3) eliminates
direct causal links between variables. Causal discovery from multiple models now
takes the obvious form:

Corollary 4.5. Let X, Y and Z € Z be disjoint (sets of ) variables in two experi-
ments with causal structures resp. Gr = {Gr + Gc}, and G = {Gf + Gc}, then if
there exists both:

— @ manimal conditional independence X 1L, Y |[Z] in Gr, and

— established absence of a causal path Z > X from G,
then there is a causal link (directed path) Z =Y in Gc.

In fact, the origin of the information Z > X isirrelevant: be it from in/dependen-
cies via rule (2), other properties of the distribution, e.g. non-Gaussianity [Shimizu
et al., 2006] or nonlinear features [Hoyer et al., 2009], or existing background knowl-
edge. The only prerequisite for bringing results from various sources together is that
the causal system at the centre is invariant, i.e. that the causal structure Go remains
the same across the different experiments Gr, G/ etc.

4.3.1 Combining information from multiple models

In this section we focus on efficiently combining multiple conditional independence
models represented by (complete) PAGs. We want to use these models to convey
as much about the underlying causal structure G as possible. For that we choose
a causal PAG as the target output model: similar in form and interpretation to
a PAG, where tails and arrowheads now represent all known (non)causal relations,
see Definition 2.5. Note this is not necessarily an equivalence class in accordance
with the rules in [Zhang, 2008], as it may contain additional explicit information.
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Ingredients for extracting this information are the rules in Lemma 4.4, in combi-
nation with the standard properties of causal relations: acyclic (if X = Y then
Y % X) and transitivity (if X = Y and Y = Z then X = Z), see Proposition
3.4. As the causal system is assumed invariant, the established (absence of) causal
relations in one model are valid in all models.

Algorithm 4.1 Brute force implementation of rules (1)-(3)
Input : set of complete PAGs P;, fully o—o connected graph G
Output : causal PAG G

1: for all P; do

2: G «— eliminate all edges not appearing between nodes in P;
3: G < (non)causal connections between nodes in P;

4: end for

5: repeat

6: for all P; do

7: for all {X,Y,Z, W} € P; do

8: §—Z=x{X,YYW}),if X W, Y|WU[Z]

9: G—(Z=Y)fX U, Y|[WUZ]and (Zx X)€G
10: end for

11: end for

12: until no more new non/causal information found

A straightforward brute-force implementation is given by Algorithm 4.1. The
input is a set of PAG models P;, representing the conditional (in)dependence in-
formation between a set of observed variables, e.g. as learned by the augmented
FCI-algorithm from section 2.4, from a number of different experiments Q(Ti) on an
invariant causal system Go. The output is the single causal PAG G over the union
of all nodes in the input models P;.

Figure 4.4: Three different experiments, one causal model

Example 4.6. Consider the three PAG models in the l.h.s. of figure 4.4. None
of these identifies a causal relation, yet despite the different (in)dependence rela-
tions, it is easily verified that Algorithm /4.1 terminates after two loops with the
nearly complete causal PAG on the r.h.s. as the final output. Figure 4.3 shows
corresponding experiments that explain the observed dependencies above.
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To the best of our knowledge, Algorithm 4.1 is the first algorithm ever to per-
form such a derivation. Nevertheless, this brute-force approach exhibits a number
of serious shortcomings. In the first place, the computational complexity of the
repeated loop over all subsets in line 7 makes it not scalable: for small models
like the ones in figure 4.4 the derivation is almost immediate, but for larger mod-
els it quickly becomes unfeasible. Secondly, for sparsely overlapping models, i.e.
when the observed variables differ substantially between the models, the algorithm
can miss certain relations: when a causal relation is found to be absent between
two non-adjacent nodes, then this information cannot be recorded in G, and subse-
quent causal information identifiable by rule (1) may be lost. These problems are
addressed in the section 4.4, resulting in the MCI-algorithm.

4.3.2 Including interventions

In many experiments certain factors are actively influenced instead of just observed.
When one or more variables are externally forced to specific values, irrespective
of the value of their parents in the underlying causal graph G¢, this is known
as a (hard) intervention. Examples are setting the amount of artificial light
in greenhouse trials, administering medicine ‘X’, or enforcing a work-out regime.
Soft interventions are when the relevant variables are not set but only stimulated,
e.g. reducing carbon emissions through taxation, or providing only an incentive to
exercise: these change probabilities but not the (internal) structure of G, and are
covered by the standard context model in section 4.2.

If the hard intervention is on a variable X with parents in G, the result is a
distribution that is faithful to a modified causal system G, where all causal links to
X in the original G- have been severed and replaced by an additional control node
Ups (M for manipulation) in the context, or at least ‘external to the system G, with
X as its child; see also [Pearl, 2000] for an extensive discussion. If we are certain that
the intervention on X does not directly affect any other variables that are (parents
of) nodes in G, then it is known as a surgical intervention. If not, i.e. if we do a
hard intervention on X but cannot rule out that we accidentally affected /influenced
other variables in the system, then we have to account for possible side effects
of the intervention. Assuming that any possible side effects (if present) at most
correspond to soft interventions (no ‘accidental’ hard interventions), then these
take the form of (unknown) additional links from Uy to one or more other nodes
in Gf,. Despite the fact that in such cases the (internal) causal system has changed
from Gc to G, knowing which variable(s) were the target of intervention(s) can
provide valuable information about the original causal structure G¢o.

We can use experimental knowledge through modified inference rules, depending
on the role of the intervention node in the minimal independence, and whether or
not side effects can be excluded. The key observation here is that interventions do
not introduce causal relations between variables within the system Go, but only
block (overrule) certain ones from having an effect. Therefore, any positive causal
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relation (or disjunctive pair of possible causal relations) identified in the modified
system Gf. is also valid in the original one. Note this remains true for multiple
interventions, leading to the following modified inference rule:

Lemma 4.7. Let X, Y and Z be three disjoint non-empty (sets of) variables in
an experiment with causal structure Gr = {Gg + Gc'}, then an observed minimal
independence X 11,Y | [Z], in combination with (hard) intervention on a node ...

(1) X, without side effects, implies causal links X =Y, Z =Y and X = Z for
some Z € 7,

(2) X, with possible side effects, implies causal links Z =Y for all Z € Z in Go,

(3) Z, without side effects, implies the familiar (Z = X)V (Z =Y), and that Z
is the source of some trek between two nodes from {X,Y,Z\ 7} in Go,

(4) Z, with possible side effects, implies only the familiar (Z = X)V (Z = Y).

Proof. Follows from rule 1 in Lemma 3.5, in combination with the observation that
all causal relations in the intervened system G, are present in the underlying Go. O

If Z is just a single node Z, then this reduces to:

Corollary 4.8. Let X, Y and Z be three distinct variables in an experiment with
causal structure Gr = {Gg + Gc}, then an observed minimal conditional indepen-
dence X 1L, Y |[Z], in combination with intervention on node ...

(1) X, without side effects, implies causal links X = Z =Y in G¢,

(2) X, with possible side effects, implies a causal link Z =Y in G¢,

(3) Z, without side effects, implies causal links X < Z =Y (and X =Y ) in G¢,
(4) Z, with possible side effects: no change.

Proof. Follows immediately from Lemma 4.7. O

This does not apply to absence of certain causal relations from unconditional
independence or conditional dependence. For example, X = Y with intervention
on Y makes them independent in the interventional distribution, and eliminates
option Y = X, but does not preclude the possibility X = Y. Similarly, for a
causal system Go with X = Z =W =Y, Z <« U = Y, and intervention on W,
we can find X W, Y |[Z], from which we can conclude by Lemma 3.5 that Z # Y
in G, but not automatically that the same also holds in the underlying G¢, unless
we can somehow rule out Z = W.

We will not pursue inference from interventional distributions further in this
chapter: for a full treatment the promising new ‘nested Markov model’ theory from
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Shpitser et al. [2012] (based on latent projections instead of ancestral graphs, see
[Verma and Pearl, 1991]), is more appropriate.

Case (2) in Corollary 4.8, intervention on X with possible side effects, forms
the basis of the Local Causal Discovery (LCD) algorithm in [Cooper, 1997], who
already employed a notion of a context of possible causal graphs (although in slightly
different form) for the observed independency given intervention on X. There it
was based on an exhaustive enumeration of all possible configurations over three
nodes including possible confounders, but we see that it also follows immediately
from theorem 1, rule (1) via the elimination of strict conditional independencies
involving causal links to X. The first case (intervention on X without side effects)
is similar to the situation exploited by the Trigger algorithm in Chen et al. [2007],
where X corresponds to the known, uncaused locus L; (location on a gene) for a
transcription factor T;, that separates variable L; from another transcription factor
T; in a randomized trial, from which L; = T; = T} is inferred.

Note that interventions can detect/create minimal independencies that do not
exist in the underlying causal graph Go. Example: for a model with X = 7; =Y
plus X < Zs =Y, we have X 11,Y |[Z1, Zo], but with intervention on X we find
X U,Y|[Z1],and so Z; = Y.

4.4 The MCI algorithm

To tackle the computational complexity noted at the end of section 4.3.1 we have
the following result, in which we use the notion of a possibly directed (p.d.) path in
a PAG! to indicate a path that can be converted into a directed path by changing
circle marks into appropriate tails and arrowheads, see section 2.1.

Proposition 4.9. Let X and Y be two wvariables in an experiment with causal
structure Gr = {Gg + Gco'}, and let Pig) be the corresponding PAG over a subset of
observed nodes from Gr. Then the absence of a causal link X > Y is detectable
from the conditional in/dependence structure in this experiment iff there exists no
p.d. path from X toY in Piq.

In other words: X cannot be a cause (ancestor) of Y if all paths from X to Y in
the graph Pj¢) go against an invariant arrowhead (signifying non-ancestorship) and
vice versa. We refer to this as inference rule (4). Calculating which variables are
connected by a p.d. path from a given PAG is straightforward: turn the graph into
a {0, 1} adjacency matrix by setting all arrowheads to zero and all tails and circle
marks to one, and compute the resulting reachability matrix. As this will uncover
all detectable ‘non-causal’ relations in a PAG in one go, it needs to be done only
once for each model, and can be aggregated into a matrix M to make all tests for
rule (2) in line 8 of Algorithm 4.1 superfluous. If we also record all other established

1From here on we ignore the distinction between a PAG and a complete PAG, as any PAG can
be easily checked for/converted into completeness by executing the orientation rules in Table 2.1.
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(non)causal relations in the matrix M¢ as the algorithm progresses, then indirect
causal relations are no longer lost when they cannot be transferred to the output
graph G. The next lemma propagates indirect (non)causal information from Mg
to edge marks in the graph:

Lemma 4.10. Let X, Y and Z be disjoint sets of variables in an experiment with
causal structure Gr = {Gg + G¢c}, then for every X 1LY |[Z]:

— every (indirect) causal relation X =Y implies causal links Z =Y,

— every absence of (indirect) causal relation X Y implies no links X =~ Z.

The first makes it possible to orient indirect causal chains, the second shortens
indirect non-causal links. We refer to these as rules (5) and (6), respectively. As a
final improvement it is worth noting that for rules (1), (5) and (6) it is only relevant
to know that a node Z occurs in some Z in a minimal conditional independence
relation X A, Y |[Z] separating X and Y, but not what the other nodes in Z
are or in what model(s) it occurred. We can introduce a structure S¢y to record
all nodes Z that occur in some minimal conditional independency in one of the
models P; for each combination of nodes (X,Y"), before any of the rules (1), (5) or
(6) is processed. As a result, in the repeated causal inference loop no conditional
independence / m-separation tests need to be performed at all.

Algorithm 4.2 MCI algorithm
Input : set of PAGs P;, fully o—o connected graph G
Output : causal graph G, causal relations matrix M¢

1: Mg+ 0

2: for all P; do

3: G « eliminate all edges not appearing between nodes in P;

4: M¢ « (X = Y), if no p.d. path (X,...,Y) € P;

5: Me «— (X =Y), if causal path (X = ... =Y) e P; > transitivity
6: for all (X,Y,Z) € P; do

7: Scr « triple (X,Y, Z), if Z € Z for which X 11,,Y | [Z]

8: end for

9: end for

10: repeat

11: for all (X,Y,Z) € G do

12: Me «— (Z =Y), for unused (X,Y,Z) € Scr with (Z X) € M¢
13: Me — (X = Z), for unused (X = Y) € M¢ with (X,Y,Z) € Scr
14: M¢ « (Z =Y), for unused (X = Y) € M¢ with (X,Y,Z) € S¢s
15: end for

16: until no more new causal information found

[y
-3

: G < non/causal info in M¢ > tails/arrowheads

With these results we can now give an improved version of the brute-force ap-
proach: the Multiple model Causal Inference (MCI) algorithm, above. The input is
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still a set of PAG models from different experiments, but the output is now twofold:
the graph G, containing the causal structure uncovered for the underlying system
Ge, as well as the matrix Mo with an explicit representation of all (non)causal
relations between observed variables, including remaining indirect information that
cannot be read from the graph G.

The first stage (lines 2-9) is a pre-processing step to extract all necessary in-
formation for the second stage from each of the models separately. Building the
Scr matrix is the most expensive step as it involves testing for conditional inde-
pendencies (m-separation) for increasing sets of variables. This can be efficiently
implemented by noting that nodes connected by an edge will not be separated and
that many other combinations will not have to be tested as they contain a subset
for which a (minimal) conditional independency has already been established. If
a (non)causal relation is found between adjacent variables in G, or one that can
be used to infer other intermediate relations (lines 13-14), then it can be marked
as ‘processed’ to avoid unnecessary checks. Similar for the entries recorded in the
minimal conditional independence structure Sco;.

The MCI algorithm is provably sound in the sense that if all input PAG models
P; are valid, then all (absence of) causal relations identified by the algorithm in
the output graph G and (non)causal relations matrix M¢ are also valid, provided
that the causal system G is an invariant causal DAG and the causal faithfulness
assumption is satisfied.

4.5 Experimental results

We tested the MCl-algorithm on a variety of synthetic data sets to verify its validity
and assess its behaviour and performance in uncovering causal information from
multiple models. For the generation of random causal DAGs we used a variant
of [Ide and Cozman, 2002] to control the distribution of edges over nodes in the
network. The random experiments in each run were generated from this causal
DAG by including a random context and hidden nodes. For each network the
corresponding (complete) PAG was computed, and together used as the set of input
models for the MCI-algorithm. The generated output G and M was verified against
the true causal DAG and expressed as a percentage of the true number of (absent)
causal relations.

To assess the performance we introduced two reference methods to act as a
benchmark for the MCI-algorithm (in the absence of other algorithms that can
validly handle different contexts). The first is a common sense method, indicated
as ‘sum-FCI’, that utilizes the transitive closure of all causal relations in the input
PAGs, that could have been identified by FCI in the large sample limit. As the
second benchmark we take all causal information contained in the PAG over the
union of observed variables, independent of the context, hence ‘nc-CPAG’ for ‘no
context’. Note that this is not really a method as it uses information directly derived
from the true causal graph.
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Figure 4.5: Proportion of causal relations discovered by the MCl-algorithm vs. sum-FCI
and nc-CPAG in different settings; (a) causal relations vs. nr. of models, (b) causal relations
vs. nr. of context nodes, (c) non-causal relations > vs. nr. of models; (top) identical
observed nodes in input models, (bottom) only partially overlapping observed nodes; see
main text for details.

In Figure 4.5, each graph depicts the percentage of causal (a&b) or non-causal (c)
relations uncovered by each of the three methods: MCI, sum-FCI and nc-CPAG, as a
function of the number of input models (a&c) or the number of nodes in the context
(b), averaged over 200 runs, for both identical (top) or only partly overlapping
(bottom) observed nodes in the input models. Performance is calculated as the
proportion of uncovered relations as compared to the actual number of non/causal
relations in the true causal graph over the union of observed nodes in each model set.
In these runs the underlying causal graphs contained 12 nodes with edge degree <
5. Tests for other, much sparser/denser graphs up to 20 nodes, showed comparable
results.

Some typical behaviour is easily recognized: MCI always outperforms sum-FCI,
and more input models always improve performance. Also non-causal information
(c) is much easier to find than definite causal relations (a&b). For single models / no
context the performance of all three methods is very similar, although not necessar-
ily identical. The perceived initial drop in performance in Figure 4.5(c,bottom) is
only because in going to two models the number of non-causal relations in the union
rises more quickly than the number of new relations that is actually found (due to
lack of overlap). A striking result that is clearly brought out is that adding random
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context actually improves detection rate of causal relations. The rationale behind
this effect is that externally induced links can introduce conditional dependencies,
allowing the deduction of non-causal links that are not otherwise detectable; these
in turn may lead to other causal relations that can be inferred, and so on. If the con-
text is expanded further, at some point the detection rate will start to deteriorate
as the causal structure will be swamped by the externally induced links (b).

As to be expected: all of the (non)causal relations identified by a valid MCI
algorithm were found to be present in the true causal graph as well. For 2 8 nodes
the algorithm spends the majority of its time building the Sy matrix in lines 6-8.
The actual number of minimal conditional independencies found, however, is quite
low, typically in the order of a few dozen for graphs of up to 12 nodes.

4.6 Conclusion

We have shown the first principled algorithm that can use results from different
experiments to uncover new (non)causal information. It is provably sound in the
large sample limit, provided the input models are learned by a valid procedure like
the augmented FCI algorithm from section 2.4. In its current implementation the
MClI-algorithm is a fast and practical method that can easily be applied to sets of
models of up to 20 nodes (presuming the graph is sufficiently sparse). Compared
to related algorithms like ION, it produces very concise and easily interpretable
output, and does not suffer from the inability to handle any differences in observed
dependencies between data sets [Tillman et al., 2008]. For larger models it can
be converted into an anytime algorithm by running over minimal conditional in-
dependencies from subsets of increasing size: at each level all uncovered causal
information is valid, and, for reasonably sparse models, most will already be found
at low levels. For very large models an exciting possibility is to target only specific
causal relations: finding the right combination of (in)dependencies is sufficient to
decide if it is causal, even when there is no hope of deriving a global PAG model.

From the construction of the MCI-algorithm it is sound, but not necessarily
complete. From chapter 3 we know that Lemma 4.4 already covers all invariant
arrowheads in the single model case, and only needs one additional rule (the ‘in-
ferred blocking node’) to cover all tails as well. We aim to extend this result to
the multiple model domain. Integrating our approach with recent developments in
causal discovery that are not based on independence constraints [Shimizu et al.,
2006; Hoyer et al., 2009] can provide for even more detectable causal information.
When applied to real data sets the large sample limit no longer applies and inconsis-
tent causal relations may result. It should be possible to exclude the contribution of
such links (when detected) on the final output. Alternatively, output might be gen-
eralized to quantities like ‘the probability of a causal relation’ based on the strength
of appropriate conditional (in)dependencies in the available data. The next chapter
contains an important step in that direction.
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4.A Proofs

Proposition 4.9

Proof. ‘<’ follows from the fact that a directed path 7 = (X,...,Y) in the under-
lying causal DAG G¢ implies existence of a directed path in the true MAG over the
observed nodes and therefore at least the existence of a p.d. path in the PAG Pg.
‘=" follows from the completeness of the PAG in combination with theorem 2 in
[Zhang, 2008] about orientability of PAGs into MAGs. This, together with Meek’s
algorithm [Meek, 1995] for orienting chordal graphs into DAGs with no unshielded
colliders, shows that it is always possible to turn a p.d. path into a directed path in
a MAG that is a member of the equivalence class P|g). Therefore, a p.d. path from
X to Y in P|g) implies there is at least some underlying causal DAG in which it is
a causal path, and so cannot correspond to a valid, detectable absence of a causal
link. O

Lemma 4.10

Proof. Fromrule (1) in Lemma 4.4, X 1l ,Y | [Z] implies causal links Z = X and/or
Z =Y. If X = Y then by transitivity Z = X also impliess Z = Y. If X % Y
then for any Z € Z, X = Z implies Z = Y and so (transitivity) also X = Y, in
contradiction of the given; therefore X > Z. O
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Chapter 5

Bayesian Constraint-based Causal
Discovery

This chapter targets the problem of accuracy and robustness in causal inference
from finite data sets. Some state-of-the-art algorithms produce clear output com-
plete with solid theoretical guarantees but are susceptible to propagating erroneous
decisions, while others are very adept at handling and representing uncertainty,
but need to rely on undesirable assumptions. Our aim is to combine the inherent
robustness of the Bayesian approach with the theoretical strength and clarity of
constraint-based methods. We use a Bayesian score to obtain probability estimates
on the input statements used in a constraint-based procedure. These are subse-
quently processed in decreasing order of reliability, letting more reliable decisions
take precedence in case of conflicts, until a single output model is obtained. Tests
show that a basic implementation of the resulting Bayesian Constraint-based Causal
Discovery (BCCD) algorithm already outperforms established procedures such as
FCI and Conservative PC. It can also indicate which causal decisions in the output
have high reliability and which do not.

5.1 Introduction: Robust Causal Discovery

Causal discovery lies at the heart of most scientific research today. Perhaps surpris-
ingly then, ‘proper’ causal discovery algorithms are still not as routinely applied in
practice as one might expect. Researchers can find them too difficult, slow, or cum-
bersome to use for everyday analysis. But arguably one of the main obstacles is the

This chapter is based on: [Claassen and Heskes, 2012a] “A Bayesian Approach to Constraint
Based Causal Inference”, which received the Best Paper Award at the 28th Conference on Uncer-
tainty in Artificial Intelligence.
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perceived lack of robustness of such methods. Small changes in the input can lead
to substantial changes in the output, as (erroneous) borderline decisions become de-
cisive statements that are propagated through the network. But this ambiguity is
usually not apparent in the resulting causal model. In particular, if causal relations
are identified that are known (e.g. from background knowledge) to be clearly wrong,
then this tends to have a very negative impact on the confidence assigned by a re-
searcher to any causal relation found by the algorithm. Outputting a single model
without further qualifications may seem clear and informative, but suggests a level
of reliability that cannot be justified in practice, and makes researchers reluctant
to go through the trouble of applying them in the first place.

Other methods can provide some measure of confidence by outputting multiple
models with the implied assumption that arcs present in many are more likely to be
true. The obvious downside is that it becomes much harder to interpret succinctly
what causal relations are actually implied by the output. On top of that they often
have to rely on undesirable, unrealistic assumptions like causal sufficiency, which
makes them less suited for causal analysis in general. This is somewhat compensated
for by the fact that other sources of information, e.g. background literature, are
incorporated naturally through a prior on structures and/or parameters.

For a more robust solution, we want a method that is less susceptible to the
impact of single, categorical decisions, but can handle unobserved common causes.
Ideally we would like a robust and efficient method that requires few assumptions,
and outputs a single clear model that indicates explicitly how reliable all the indi-
vidual causal relations are. Sections 5.2-5.4 in this chapter implement the first part,
while 5.5 and 5.6 make a good step towards the second.

Background

We briefly state a few terms and concepts that play an important role in this chapter;
for details the reader is referred to sections 2.1-2.3.

In many real-world systems the relations and interactions between variables can
be modeled in the form of a causal DAG G¢ over a set of variables V. A directed
path from A to B in such a graph indicates a causal relation A = B in the system,
where cause A influences the value of its effect B, but not the other way around.
An edge A — B in G¢ indicates a direct causal link. In data from a system with a
causal relation A = B (direct or indirect), the values of A and B have a tendency
to vary together, i.e. they become probabilistically dependent.

The Causal Markov Condition and Causal Faithfulness Condition link the un-
derlying, asymmetric causal relations to observable, symmetric probabilistic depen-
dencies. Together, they imply that the causal DAG G¢ is also minimal, in the
sense that no proper subgraph can satisfy both assumptions and produce the same
probability distribution [Zhang and Spirtes, 2008]. The joint probability distribu-
tion induced by a causal DAG G¢ factors according to a Bayesian network (BN).
If some of the variables in the causal DAG are hidden then the independence rela-
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tions between the observed variables may be represented in the form of a mazimal
ancestral graph (MAG) M. Tts equivalence class [M)] (indistinguishable via inde-
pendencies), is represented as a partial ancestral graph (PAG) P, which keeps the
skeleton and invariant tail (—) and arrowhead (>) edge marks in [M], and turns
the rest into circles (o); see Definitions 2.2-2.6.

Causal discovery procedures

With this in mind, the task of a causal discovery algorithm is to find as many invari-
ant features of the equivalence class corresponding to a given data set as possible.
From this, all identifiable, present or absent causal relations can be read.

A large class of constraint-based causal discovery algorithms is based directly
on the faithfulness assumption: if a conditional independence X Il Y |Z can be
found for any set of variables Z, then there is no direct causal relation between
X and Y in the underlying causal graph G¢, and hence no edge between X and
Y in the equivalence class P. In this way, an exhaustive search over all pairs of
variables can uncover the entire skeleton of P. In the subsequent stage a number
of orientation rules are executed that find the invariant tails and arrowheads.

Members of this group include the IC-algorithm [Pear]l and Verma, 1991}, PC/FCI
[Spirtes et al., 2000], Grow-Shrink [Margaritis and Thrun, 1999], TC [Pellet and
Elisseef, 2008], and many others. All involve repeated independence tests in the
adjacency search phase, and employ orientation rules as described in Meek [1995].
The differences lie mainly in the search strategy employed, size of the condition-
ing sets, and additional assumptions imposed. Of these, only the FCI algorithm
in conjunction with the additional orientation rules in [Zhang, 2008] is sound and
complete in the large-sample limit when hidden common causes and/or selection
bias may be present.

Constraint-based procedures tend to output a single, reasonably clear graph,
representing the class of all possible causal DAGs. The downside is that for finite
data they give little indication of which parts of the network are stable (reliable), and
which are not: if unchecked, even one erroneous, borderline independence decision
may be propagated through the network, leading to multiple incorrect orientations
[Spirtes, 2010].

To tackle the perceived lack of robustness of PC, Ramsey et al. [2006] proposed
a conservative approach for the orientation phase. The standard rules draw on
the implicit assumption that, after the initial adjacency search, a single X 1L Y |Z
should suffice to orient an unshielded triple (X, Z,Y), as Z should be either part
of all or part of no sets that separate X and Y. The Conservative PC (CPC)
algorithm tests explicitly whether this assumption holds, and only orients the triple
into a noncollider resp. v-structure X — Z «— Y if found true. If not, then it is
marked as unfaithful. Tests show that CPC significantly outperforms standard PC
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in terms of overall accuracy, albeit often with less informative output, for only a
marginal increase in run-time.

This idea can be extended to FCI: the set of potential separating nodes is now
conform FCI’s adjacency search, and any of Zhang’s orientation rules that relies
on a particular unshielded (non-)collider does not fire on an unfaithful triple. See
[Glymour et al., 2004; Kalisch et al., 2011] for an implementation of Conservative
FCI (CFCI) and many related algorithms.

The score-based approach is an alternative paradigm that builds on the implied
minimality of the causal graph: define a scoring criterion S(G,D) that measures
how well a Bayesian network with structure G fits the observed data D, while
preferring simpler networks, with fewer free parameters, over more complex ones.
If the causal relations between the variables in D form a causal DAG G¢, then in the
large sample limit the highest scoring structure G must be part of the equivalence
class of [G¢].

An example is the (Bayesian) likelihood score: given a Bayesian network B =
(G, ©), the likelihood of observing a particular data set D can be computed re-
cursively from the network. Integrating out the parameters @ in the conditional
probability tables (CPTs) then results in:

p(DIG) = /@ p(D|G. ©)f(O[G) de, (5.1)

where f is a conditional probability density function over the parameters ® given
structure G.

A closed form solution to eq.(5.1) is used in algorithms such as K2 [Cooper
and Herskovits, 1992] and the Greedy Equivalence Search (GES) [Chickering, 2002]
to find an optimal structure by repeatedly comparing scores for slightly modified
alternatives until no more improvement can be found. See also Bouckaert [1995]
for an evaluation of different strategies using these and other measures such as the
BIC-score and minimum description length.

Score-based procedures can output a set of high-scoring alternatives. This am-
biguity makes the result arguably less straightforward to read, but does allow for
a measured interpretation of the reliability of inferred causal relations, and is not
susceptible to incorrect categorical decisions [Heckerman et al., 1999]. The main
drawback is the need to rely on the causal sufficiency assumption.

5.2 The Best of Both Worlds

The strength of a constraint-based algorithm like FCI is its ability to handle data
from arbitrary faithful underlying causal DAGs and turn it into sound and clear,
unambiguous causal output. The strength of the Bayesian score-based approach
lies in the robustness and implicit confidence measure that a likelihood weighted
combination of multiple models can bring.
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» Our idea is to improve on conservative FCI by using a Bayesian approach to
estimate the reliability of different constraints, and use this to decide if, when,
and how that information should be used.

Instead of classifying pieces of information as reliable or not, we want to rank
and process constraints according to a confidence measure. This should allow to
avoid propagating unreliable decisions while retaining more confident ones. It also
provides a principled means for conflict resolution. The end-result is hopefully a
more informative output model than CFCI, while obtaining a higher accuracy than
standard FCI can deliver.

To obtain a confidence measure that can be compared across different estimates
we want to compute the probability that a given independence statement holds from
a given data set D. In an ideal Bayesian approach we could compute a likelihood
p(D|M) for each M € M (see section 5.3 on how to approximate this). If we know
that the set M contains the ‘true’ structure, then the probability of an independence
hypothesis I follows from normalized summation as:

p(ID) o > p(D|M)p(M), (5.2)
MEeM(I)
[Heckerman et al., 1999], where M(I) denotes the subset of structures that en-
tail independence statement I, and p(M) represents a prior distribution over the
structures (see §5.3.4).

Two remarks. Firstly, it is well known that the number of possible graphs grows
very quickly with the number of nodes V. But eq.(5.2) equally applies when we limit
data and structures to subsets of variables X C V. For sparse graphs we can choose
to consider only subsets of size K < |V|. We opt to go one step further and follow
a search strategy similar to PC/FCI, using structures of increasing size. Secondly,
it would be very inefficient to compute eq.(5.2) for each independence statement we
want to evaluate. From a single likelihood distribution over structures over X we
can immediately compute the probability of all possible independence statements
between variables in X, including complex combinations such as those implied by
v-structures, just by summing the appropriate contributions for each statement.

Having obtained probability estimates for a list of in/dependence statements Z,
we can rank these in decreasing order of reliability, and keep the ones based on a
decision threshold p(I|D) > 6, with § = 0.5 as intuitive default. In case of remain-
ing conflicting statements, the ones with higher confidence take precedence. The
resulting procedure is outlined in Algorithm 5.1.

In this form, the Bayesian estimates are only used to guide the adjacency search
(update skeleton G, 1.7), and to filter the list of independencies Z (1.12). Ideally,
we would like the probabilities to guide the orientation phase as well. This implies
processing the independence statements sequentially, in decreasing order of relia-
bility. For that we can use the Logical Causal Inference (LoCI) algorithm from
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Algorithm 5.1 Outline of Bayesian FCI
Start : database D over variables V
Stage 1 - Adjacency search
1: fully connected graph P, empty list Z, K =0

2: repeat
3: for all X — Y still connected in P do

4 for all adjacent sets Z of K nodes in P do
5 estimate p(M|D) over {X,Y,Z}

6: sum to p(I|D) for independencies T

7 update Z and P for each p(I|D) > 6

8 end for

9 end for

10: K=K+1
11: until all relevant found
Stage 2 - Orientation rules
12: rank and filter Z in decreasing order of reliability
13: orient unshielded triples in P
14: run remaining orientation rules
15: return causal model P

section 3.5.2: it breaks up the overall inference process into a series of modular
steps that can be executed in arbitrary order by translating observed minimal in-
dependence constraints into logical statements L about presence or absence of
causal relations:

L XUY|[WUZ] + (Z=X)V (Z=Y),
2. XWY|WU[Z] + Z=% ({X,YIUW).

New information is found by deduction on the standard causal properties transitivity
and irreflexivity, see section 3.3.

5.3 Sequential Causal Inference

This section discusses the steps needed to turn the previous idea into a working
algorithm in the next section. Main issues are: probability estimates for logical
causal statements from substructures, Bayesian likelihood computation, and infer-
ence from unfaithful DAGs. Proofs are detailed in Appendices 5.A, 5.B.

A word on notation: we use L denotes the set of logical causal statements L
over two or three variables in V, of the form given in the r.h.s. of rules 1 and 2,
above. We use Mx to represent the set of MAGs over X, and Mx (L) to denote
the subset that entails logical statement L. D denotes a data set over variables V
from a distribution that is faithful to some (larger) causal DAG Gx. We also use G
to explicitly indicate a DAG, M for a MAG, and P for a PAG.
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5.3.1 A Modular Approach

In order to process available information in (decreasing) order of reliability we need
to obtain probability estimates for logical statements on causal relations from data.
Using the notational conventions introduced above:

Lemma 5.1. The probability of a logical causal statement L given a data set D is

given by
. ZMeM(L)p(D|M)p(M)
P = S en DIV (M) >3

Proof. Follows from summing the normalized posterior likelihoods of all MAGs that

entail that statement through m-separation, similar to eq.(5.2). O

As stated, in many cases considering only a small subset of the variables in V is
already sufficient to infer L. But that also implies that there are multiple subsets
that imply L, each with different probability estimates. As these relate to different
sets of variables, they should not be combined as in standard multiple hypothesis
tests, but instead we want to look for the mazimum value that can be found.

Lemma 5.2. Let D be a data set over variables V. Then VX C V : p(L|D) >
ZMeMx(L)p(M|D)-

Proof. Let p(Mvy|Dv) be the posterior probability of MAG My given data Dy
over variables V. Let M(X) denote the MAG M marginalized to variables X, then:

p(LIDv) = > p(My|Dv)

My EMy (L)

Y

> p(Mv|Dv)

MveMv(L):Mv(X)EMx(L)

Y. p(MxDy)
MxEMx (L)
Where by definition p(Mx[Dv) = > i, eMy:my (x)=mx PMv[Dv). The in-
equality follows from the fact that, by definition, no marginal MAG M (X) entails
a statement not entailed by M, whereas the converse can (and does) occur. O

It means that while searching for logical causal statements L, it makes sense
to keep track of the maximum probabilities obtained so far. However, computing
p(M|D) for M € Mx still involves computing likelihoods over all structures over V,
which is precisely what we want to avoid. A reasonable approximation is provided by
p(M|Dx), i.e. the estimates obtained by only including data in D from the variables
X. It means that the lower bound is no longer guaranteed to hold universally, but
should still be adequate in practice. As a result, a conservative estimate is given
by:

p(LID) X max > p(M|Dx) (5.4)

XCcV
MeMx (L)
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5.3.2 Obtaining likelihood estimates

If we know that the ‘true’ structure over a subset X C V takes the form of a DAG,
then computing the required likelihood estimates p(Dx|G) is relatively straightfor-
ward. Cooper and Herskovits [1992] showed that, under some reasonable assump-
tions, for discrete random variables the integral (5.1) has a closed-form solution. In
the form presented in [Heckerman et al., 1995] this score is known as the Bayesian
Dirichlet (BD) metric:

“ F(Nlﬂk + szk)

p(DI9) = HHFN +N’)H T(N;

9
i=14=1 mk)

(5.5)

with n the number of variables, r; the multiplicity of variable X, ¢; the number of
possible instantiations of the parents of X; in G, N;j;; the number of cases in data
set D in which variable X ; has the value 7z While its parents are instantiated as
Gi(y), and with N;; = vy Niji. The N4 =30 N, k represent the pseudocounts
for a Dirichlet prior over the parameters in the Correspondlng CPTs.

Different strategies for choosing the prior exist: for example, choosing NN ik =1
(uniform prior) leads to the original K2-metric, see [Cooper and Herskovits, 1992].
Setting Ni’jk = N'/(r;q;) gives the popular BDeu-metric, which is score equivalent
in the sense that structures from the same equivalence class [G] receive the same
likelihood score, cf. [Buntine, 1991]. In this article, we opt for the K2-metric, as it
seems more appropriate in causal settings [Heckerman et al., 1995]. But having to
consider only one instance of every equivalence class may prove a decisive advantage
of the BDe(u)-metric in future extensions.

However, eq.(5.5) only applies to DAGs. We know that, even when assum-
ing causal sufficiency applies for the variables V, considering arbitrary subsets size
|X| > 4 in general will require MAG representations to account for common causes
that are not in X. Extending the derivation of eq.(5.5) requires additional as-
sumptions on multiplicity and number of the hidden variables, and turns the nice
closed-form solution into an intractable problem that requires approximation, e.g.
through sampling [Heckerman et al., 1999]. This would make each step in our ap-
proach much more expensive. Recently, Evans and Richardson [2010] showed a
maximum likelihood approach to fit acyclic directed mixed graphs (a superset of
MAGs) directly on binary data. Unfortunately, this method cannot provide the
likelihood estimates per model we need for our purposes. Silva and Ghahramani
[2009] do present a Bayesian approach, but need to put additional constraints on
the distribution in the form of (cumulative) Gaussian models.

In short, even though we would like to use MAGs to compute p(Dx|M) directly
in eq.(5.3), at the moment we have to rely on DAGs to obtain approximations to
the ‘true’ value. This will result in less accurate reliability estimates for p(L|D),
but also means that we may miss certain pieces of information, or, even worse, that
the inference may become invalid.
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5.3.3 Inference from unfaithful DAGs

Fortunately we can show that, even when the true independence structure over a
subset X C V is a MAG, we can still do valid inference via p(L|Dx) from likelihood
scores over an exhaustive set of DAGs over X, provided we account for unfaithful
DAG representations. This part discusses unfaithful inference, and how the map-
ping from structures to logical causal statements can be modified. Much of what
we show builds on [Bouckaert, 1995].

In the large-sample limit, the Bayesian likelihood score picks the smallest DAG
structure(s) that can capture the observed probability distribution exactly.

Definition 5.3 (Optimal uDAG). A DAG G is an (unfaithful) uDAG approxi-
mation to a MAG M over a set of nodes X, iff for any probability distribution p(X),
generated by an underlying causal graph faithful to M, there is a set of parameters
© such that the Bayesian network B = (G, ®) encodes the same distribution p(X).
The uDAG is optimal if there exists no uDAG to M with fewer free parameters.

In other words: a uDAG is just a DAG for which we do not know if it is faithful
or not. Reading in/dependence relations from a uDAG goes as follows:

Lemma 5.4. Let B = (G, ®) be a Bayesian network over a set of nodes X, with G a
uDAG for some MAG that is faithful to a distribution p(X). Let Gx |y be the graph
obtained by eliminating the edge X =Y from G (if present). Then, if X lg .Y |Z
then:

(X UgY|Z)e (X U,Y|Z).

Proof sketch. The independence rule (X 1lgY|Z) = (X 1,Y |Z) follows from
the standard rule for d-separation, see e.g. [Pearl, 1988].

The dependence rule (X 1lg, .Y |Z)A(X WgY |Z)= (X [, Y |Z) is similar to
the ‘coupling’ theorem (3.11) in [Bouckaert, 1995], but stronger. As we assume a
faithful MAG, a dependence X 1, Y |Z cannot be destroyed by in/excluding a
node U that has no unblocked path in the underlying MAG to X and/or Y given
Z. This eliminates one of the preconditions in the coupling theorem. See Appendix
5.A for details. O

So, in a uDAG all independencies from d-separation are still valid, but the
identifiable dependencies are restricted.

Example 5.5. Treating the uDAG in Figure 5.1(b) as a faithful DAG would suggest
X U,T|[Z], and hence (Z = X))V (Z = T). This is wrong: Figure 5.1(a) shows
that Z is ancestor of neither X nor T'. Lemma 5.4 would not make this mistake, as
it allows to deduce X 1L, T|Z, but not the erroneous X W, T.

We can generalize Lemma 5.4 to indirect dependencies.
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Figure 5.1: (a) causal DAG with hidden variables, (b) uDAG with unfaithful X 1l ¢T'|[Z]

Lemma 5.6. Let G be a uDAG for a faithful MAG M. Let X, Y, and Z be disjoint
(sets of ) nodes. If m = (X, ..,Y) is the only unblocked path from X toY given Z in
G, then X W, Y |Z.

Example 5.7. With Lemma 5.6 we infer from Figure 5.1(b) that X W, T |{V,W}.
We also find that Y W, V, from which, in combination with Y 1L, V' |[Z], we
(rightly) conclude that (Z = Y)V (Z = V), see (a).

In general, lemmas 5.4 and 5.6 assert different dependencies for different uDAG
members of the same equivalence class. If the uDAG G is also optimal, then all
in/dependence statements from any uDAG member of the corresponding equiva-
lence class [G] are valid. In that case we can do the inference based on the PAG
representation P of [G]. This provides additional information, but also simplifies
some inference steps. Again, see Appendix 5.A for details.

Identifying an absent causal relation (arrowhead) X =x Y from an optimal
uDAG becomes identical to the inference from a faithful MAG. Let a potentially
directed path (p.d.p.) be a path in a PAG that could be oriented into a directed
path by changing circle marks into appropriate tails/arrowheads, then

Lemma 5.8. Let G be an optimal uDAG to a faithful MAG M, then the absence
of a causal relation X =Y can be identified, iff there is no potentially directed path
from X toY in the PAG P of [G].

Proof sketch. The optimal uDAG G is obtained by (only) adding edges between
variables in the MAG M to eliminate invariant bi-directed edges, until no more are
left. At that point the uDAG is a representative of the corresponding equivalence
class P (Theorem 2 in Zhang [2008]). For any faithful MAG all and only the
nodes not connected by a p.d.p. in the corresponding PAG have a definite non-
ancestor relation in the underlying causal graph. At least one uDAG instance in
the equivalence class of an optimal uDAG over a given skeleton leaves the ancestral
relations of the original MAG intact. Therefore, any remaining invariant arrowhead
in the PAG P matches a non-ancestor relation in the original MAG. O
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For the presence of causal relations (tails) a similar, but more complicated cri-
terion can be found, see Appendix 5.B.2. Ultimately, the impact of having to use
uDAGs boils down to a modified mapping of structures to logical causal statements,
based on the inference rules above.

Finally, it is worth mentioning that in the large-sample limit, matching uDAGs
over increasing sets of nodes we are guaranteed to find all independencies needed
to obtain the skeleton, as well as all invariant arrowheads and many invariant tails.
However, as the primary goal remains to improve accuracy/robustness when the
large-sample limit does not apply, we do not pursue this matter further here.

5.3.4 Consistent prior over structures

The computation of p(L|Dx) requires a prior distribution p(M) over the set of
MAGs over X. A straightforward solution is to use a uniform prior, assigning equal
probability to each M € M. Alternatively, we can use a predefined function that
penalizes complexity or deviation w.r.t. some reference structure [Chickering, 2002;
Heckerman et al., 1995]. If we want to exploit score-equivalence with the BDe(u)
metric in eq.(5.5), we can weight DAG representatives according to the size of their
equivalence class.

If we have background information on expected (or desired) properties of the
structure, such as max. node degree, average connectivity, or small-world/scale-free
networks, we can use this to construct a prior p(M) through sampling: generate
random graphs over all variables in accordance with the specified characteristics,
sample a random subset of K variables from that graph, and compute the marginal
uDAG/MAG structure over that subset. Repeat until the empirical distribution
of structures over K variables obtained through this sampling procedure converges
to an adequate approximation of the prior p(M). Averaging over structures that
are PAG-isomorphs (equivalence classes identical under relabeling) improves both
consistency and convergence.

Irrespective of the method to obtain a prior, it is essential to ensure it is also
consistent over structures of different size. Perhaps surprisingly, this is not obtained
by applying the same strategy at different levels: a uniform distribution over DAGs
over {X,Y,Z} implies p(“X L Y”) = 6/25, whereas a uniform distribution over
two-node DAGs implies p(“X 1L Y”) = 1/3. We obtain a consistent multi-level
prior by starting from a preselected level K, and then extend to different sized
structures through marginalization.

5.4 The BCCD algorithm

We can now turn the results from the previous section into a working algorithm. The
implementation largely follows the outline in Algorithm 5.1, except that now uDAGs
(instead of MAGs) are used to obtain a list of logical causal statements (instead of
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independencies), and that logical inference takes the place of the orientation rules,
resulting in the Bayesian Constraint-based Causal Discovery (BCCD) algorithm.

Algorithm 5.2 Bayesian Constrained-based Causal Discovery (BCCD)

© X NPT w

11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:

In : database D over variables V, background info 7
Out: causal relations matrix Mg, causal PAG P
Stage 0 - Mapping

: G XL — Get_.uDAG_Mapping(V, Koz = 5)
: p(G) « Get_Prior(T)

Stage 1 - Search

: fully connected P, initialize list VL € L : p(L) =0, K =0,0 =0.5
: while K < K,,,4. do

for all X e V,Y € Adj(X) in P do
for all Z C Adj(X)\y, |Z| = K do
W «— Check_Unprocessed(X,Y,Z)
VG € Gw : compute p(G|Dw)
VL :p(LwDw) < > g_ 1, P(G|Dw)
VL : p(L) < max(p(L), p(Lw|Dw))
for all {IWW;,W;} C W do
if p(“W; ><¢W,;”|Dw) > 6 then
remove edge W; — W; from P (if present)
end if
end for
end for
end for
K=K+1
end while
Stage 2 - Inference
Lc = empty 3D-matrix size |V|?, i =1
L — Sort_Descending (L,p(L))
while p(L;) > 6 do
L¢ < Run_Causal_Logic(Le, L)
t—1i+1
end while
M¢ «— Get_Causal _Matriz(Le)
P — Map-To_PAG(P,Mc¢)

A crucial step in the algorithm is the mapping G x L from optimal uDAG struc-

tures to causal statements in line 9. This mapping is the same for each run, so it can
be precomputed from the rules in section 5.3.3, and stored for use afterwards (line

1).

The uDAGs G are represented as adjacency matrices. For speed and efficiency

purposes, we choose to limit the structures to size K < 5, which gives a list of
29,281 DAGs over 5 variables [Robinson, 1973], and so also 29,281 uDAGs at this
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highest level. For details about representation and rules, see the Appendix.

The adjacency search (lines 3-15), loops over subsets from neigbouring nodes
for identifiable causal information, while keeping track of adjacencies that can be
eliminated (line 11). For structures over five or more nodes we need to consider
nodes from FCI's Possible-D-Sep set [Spirtes et al., 1999]. In practice, it rarely
finds any additional (reliable) independencies, and we opt to skip this step for speed
and simplicity (line 6), similar to the RFCI approach in [Colombo et al., 2011]. As
the set W = {X,Y} UZ can be encountered in different ways, line 7 checks if the
test on that set has been performed already. A list of probability estimates p(L|D)
for each logical causal statement is built up (line 10), until no more information is
found.

The inference stage (lines 16-21) then processes the list L in decreasing order of
reliability, until the threshold is reached. Statements in L are added one-by-one to
the matrix of logical causal statements L (encoding identical to L), with additional
information inferred from the causal logic rules. Basic conflict resolution is achieved
through not overriding existing information (from more reliable statements). The
final step (lines 22,23) retrieves all explicit causal relations in the form of a causal
matrix M, and maps this onto the skeleton P obtained from Stage 1 to return a
graphical PAG representation.

We verified the resulting mapping from uDAG rules to logical statements (line
1) against a brute-force approach that checks the intersection of all logical causal
statements implied by all MAGs that can have a particular uDAG as an optimal
approximation. We found that at least for uDAG structures up to five nodes our
rules are still sound and complete. Interestingly enough, for uDAGs up to four
nodes all implied statements are identical to those that would be obtained if we
just treated uDAGs as faithful DAGs. Only at five+ nodes do we have to take into
account that the DAGs we score with eq.(5.5) may be unfaithful.

5.5 Experimental Evaluation

We tested various aspects of the BCCD algorithm in many different circumstances,
and against various other methods. The principal aim at this stage is to verify the
viability of the Bayesian approach. We compare our results and that of other meth-
ods from data against known ground-truth causal models. For that, we generate
random causal graphs with certain predefined properties (adapted from Melancon
et al. [2000]; Chung and Lu [2002]), generate random data from this model, and
marginalize out one or more hidden confounders. We looked at the impact of the
number of data points, size of the models, sparseness, choices for parameter settings
etc. on the performance to get a good feel for expected strengths and weaknesses
in real-world situations.

It is well-known that the relative performance of different causal discovery meth-
ods can depend strongly on the performance metric and/or specific test problems
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used in the evaluation. Therefore, we will not claim that our method is inherently
better than others based on the experimental results below, but simply note that
the fact that in nearly all test cases the BCCD algorithm performed as good or
better than other methods is a clear indication of the viability and potential of this
approach.

ROC curve Ind(X.Y): 20, 100, 500, 10000 data points, p()=0.3 ROC curve CI(X,YIW,Z): 20, 100, 500, 10000 data points, p(C)<0.3
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1 —

= - ===
]

= sensitivity

o e

2 &
sensitivity

TPR
TPR

—e— chisq
- & -BCCD 041
—— LogOdds &/

—e— chisq
- & -BCCD
—— LogOdds

—e— Chisg

- & -BCCD

g —— LogOdds

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
FPR = 1-specificity FPR = 1-specificity FPR = 1-specifcity

Figure 5.2: BCCD approach to (complex) independence test in eq.(5.2) for different sized
data sets; (a) independence test X 1l ,Y (for, left to right: 10000, 500, 100, and 20 data
points per set), (b) conditional independence X 1L, Y | W, Z (again: 10000, 500, 100, and
20 data points), (c) minimal conditional dependence X W, Y |W U [Z] (now for: 10000,
500, resp. 50 data points).

First we implemented the BCCD approach as a (minimal) independence test.
Figure 5.2 shows a typical example in the form of ROC-curves for different sized
data sets, compared against a chi-squared test and a Bayesian log-odds test from
[Margaritis and Bromberg, 2009], with the « decision threshold for the p-value as
tuning parameter for the chi-squared test along the curve, idem for the log-odds
decision threshold, and with the prior on independence as the tuning parameter
for BCCD. For ‘regular’ independence tests, Figure 5.2(a), there was no significant
difference (BCCD marginally ahead). For the conditional independencies in Fig-
ure 5.2(b) the BCCD version started to outperform the other tests, an effect that
becomes stronger as the size of the conditioning set increases. The reason for this
behaviour is that ‘traditional’ tests look for dependencies in any of the separate
subsets of data (slices) for each possible value of the conditioning set, effectively
performing multiple tests on smaller data sets, whereas the BCCD test always uses
all data on the variables in one single test. A drawback is that the BCCD test
becomes relatively more expensive. But the real difference in performance only
becomes apparent when testing for complex independence statements, involving
combination(s) of in- and dependencies, such as in the minimal dependence in Fig-
ure 5.2(c). Other methods always reject for both high and low decision thresholds
(on resp. the independence and the dependence), resulting in the awkward looped
curves in (c), but the BCCD method has no such problem.

Obviously, in such cases we can/should introduce multiple thresholds for the chi-
squared test and the likes, but then the problem becomes how to choose the optimal
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combination; and even then it would still lag behind BCCD for the same reason
as in (b). For BCCD the optimal setting is always given by the prior probability
on that statement, with similar performance in a reasonable interval around that
setting, as illustrated by Figure 5.3.

Max. accuracy Ind(X,Y): 20-100000 data points, p(Iind)=0.3 . Maxaccuracy CI(X,YIW.Z): 20-100000 data points, p(Cl)=03
e [ R <
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Figure 5.3: Accuracy for chi-squared and BCCD independence test as function of threshold
setting for different sized data sets (lines from bottom to top: 20, 50, 100, 200, 500,
1000, 10000, 100000 data points); (a) independence X 1L,Y, (b) conditional independence
X 1 ,Y |W, Z; the bold mark on each line indicates the optimal setting.

Note that for the chi-squared test the optimal decision threshold is not only
highly dependent on the size of the data set (the larger D, the smaller the optimal
decision threshold «), but also on the size of the conditioning set.

Next we look at the performance of the BCCD algorithm itself, against two other
state-of-the-art methods that can handle hidden confounders: FCI as the de facto
benchmark, and its equivalent adapted from conservative PC. For the evaluation we
use two complementary metrics: (1) the PAG accuracy looks at the graphical causal
model output and counts the number of edge marks that matches the PAG of the
true equivalence class (excluding self-references), and (2) the causal accuracy looks
at the proportion of all causal decisions, either explicit as BCCD does or implicit
from the PAG for FCI, that are correct compared to the generating causal graph.

Figure 5.4 shows typical results for the PAG accuracy test: for a data set of
1000 records the PAG accuracy for both FCI and conservative FCI peaks around a
threshold a ~ 0.05 - lower for more records, higher for less - with conservative FCI
consistently outperforming standard FCI. The BCCD algorithm peaks at a cut-off
value 6 € [0.45,0.7] with an accuracy that is slightly higher than the maximum
for conservative FCI. The PAG accuracy tends not to vary much over this interval,
making the default choice § = 0.5 fairly safe, even though the number of invariant
edge marks does increase significantly when lowering 6 (more correct decisions, but
also more mistakes).

In summary: we found that in most circumstances conservative FCI outper-
forms vanilla FCI by about 3 — 4% in terms of PAG accuracy and slightly more in
terms of causal accuracy. In its standard form, with a uniform prior over structures



92 CHAPTER 5

Equivalence class accuracy

055 4

— B -BCCD — B -BCCD
—— cFCl s
—©S—FCl —S—FCl

T T

I I L Il
02 04 06 0.8 1 0 0.2 0.4 0.6 0.8 1
Decision parameter Decision parameter

Figure 5.4: Equivalence class accuracy (% of edge marks in PAG) vs. decision parameter;
for BCCD and (conservative) FCI, from 1000 random models; (a) 6 observed nodes, 1-2
hidden, 1000 points, (b) idem, 12 observed nodes.

of 5 nodes, the BCCD algorithm consistently outperforms conservative FCI by a
small margin of about 1 — 2% at default decision thresholds (6 = 0.5 for BCCD,
a = 0.05 for FCI). Including additional tests / nodes per test and using an ex-
tended mapping often increases this difference to about 2 — 4% at optimal settings
for both approaches (cf. Figure 5.4). This gain does come at a cost: BCCD has an
increase in run-time of about a factor 2.5 compared to conservative FCI, which in
turn is marginally more expensive than standard FCI. Evaluating many large struc-
tures can increases this cost even further, unless we switch to evaluating equivalence
classes via the BDe metric in §5.3.2.

To obtain additional insight in (the quality of) the output of the different al-
gorithms, we also looked at their orientation behavior in the form of the so called
confusion matrices for the corresponding PAGs. Table 5.1 shows the average ori-
entation behavior for edge marks in the PAG model at standard threshold settings
for each of the three methods. Each cell in the confusion matrix indicates the per-
centage of (row,column) = (true,output) oriented edge marks in the PAG output.
For example, cell (—,—o) = 2.1% in the FCI-table on the Lh.s. indicates that on
average 2.1% of the edge marks in the PAG output of standard FCI were circle
marks that should have been invariant arrowheads. The main (red) diagonal indi-
cates the percentage of correctly oriented edge marks of that type in the output,
with the sum-total in the top-left in bold the total average PAG-accuracy. The
cells in the bottom row of each matrix sum all contributions in that column, and
so indicate the average percentage of the corresponding edge mark in the output
PAG. For example the bold number in the bottom-right represents the number of
circle marks in the output.
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68.2 > — — —o 74.5 > — — —o
S| 425 1.7 | 0.0 0.6 > | 42,5 0.9 | 0.0 1.5
— 3.0 | 11.6 | 0.1 2.1 — 3.0 | 10.7 | 0.1 3.1
— 0.9 31|12 1.5 — 0.9 14 | 1.5 2.9
—o 4.8 | 12.3 | 1.6 | 129 —o 4.8 59 | 1.1 19.8
total | 51.2 | 28.7 | 2.9 | 17.1 total | 51.2 | 18.9 | 2.7 | 27.3
FCI cFCI

755 | > | — | — ] —o

>& | 44.0 0.2 | 0.1 0.5

— 3.2 | 10.9 | 0.5 2.3

— 0.9 1.7 | 24 1.7

—o 5.2 5.5 | 2.7 18.2

total | 53.3 | 18.3 | 5.7 | 22.7

BCCD

Table 5.1: Confusion matrices showing average orientation behaviour in PAG output: (a)
Standard FCI algorithm, (b) Conservative FCI, (¢) BCCD ; rows = true value, columns
= output edge mark (1000 random models over 6 nodes, 10,000 data points).

We can recognize how FCI is very informative, in the sense that it makes the
most explicit decisions (only 17.1% circle marks), but also includes many mistakes.
Conservative FCI starts from the same skeleton (first column is identical to FCI),
but is then more reluctant to orient uncertain v-structures. It manages to increase
the overall accuracy as a result (sum of diagonal entries: 74.5 vs. 68.2), but does
so by simply leaving a lot of default “don’t know” circle marks (27.3%), which are
much more likely than the invariant arrowhead/tail options to be correct (= in-
crease accuracy), but do not provide any real information. The BCCD algorithm
increases this accuracy even further, but also manages to be much more informative
than cFCI: it avoids mostly erroneous (overly conservative) circle marks, resulting
in a slight increase in overall performance.

However, the main benefit of the BCCD approach lies not in a slight improve-
ment in accuracy, but in the added insight it provides into the generated causal
model: even in this simple form, the algorithm gives a useful indication of which
causal decisions are reliable and which are not, which seems very useful to have in
practice.

Figure 5.5 depicts the causal accuracy as a function of the tuning parameter for
the three methods. The BCCD dependency is set against (1 —6) so that going from
0 — 1 matches processing the list of statements in decreasing order of reliability.
As hoped/expected: changing the decision parameter 6 allows to access a range
of accuracies, from a few very reliable causal relations to more but less certain
indications. In contrast, the accuracy of the two FCI algorithms cannot be tuned
effectively through the decision parameter . The reason behind this is apparent
from Figure 5.2(b): changing the decision threshold in an independence test shifts
the balance between dependence and independence decisions, but it cannot identify
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Figure 5.5: Accuracy of causal decisions as a function of the decision parameter; averages
from 1000 data sets of 1000 points each from models over 6 observed nodes.

or alter the balance in favor of more reliable decisions. We consider the fact that
the BCCD algorithm can do exactly that as one of the most promising aspects of
the Bayesian approach.

5.6 Discussion and future work

The experimental results confirm that the Bayesian approach is both viable and
promising: even in a basic implementation the BCCD algorithm already outper-
forms other state-of-the-art causal discovery algorithms. It yields slightly better
accuracy, both for optimal and standard settings of the decision parameters. Fur-
thermore, BCCD comes with a decision threshold that is easy to interpret and can
be used to vary from making just a few but very reliable causal statements to many
possibly less certain decisions. Perhaps counterintuitively, changing the confidence
level in (conservative) FCI does not lead to similar behavior as it only affects the
balance between dependence and independence decisions, which in itself does not
increase the reliability of either.

We do not claim that the current optimal uDAG mapping is complete in the
sense that it is guaranteed to extract the maximum amount of causal information.
The brute-force check at the end of section 5.4 showed that the combined inference
rules cover all optimal uDAGs up to five nodes: they could be extended to infer
more dependencies and/or causal information from larger graphs. If possible this
should take the form of an easy-to-use graphical criterion in the vein of d-separation,
but based on our impressions so far this seems rather ambitious.

But there are many other opportunities left for improvement, both in speed
and accuracy. An easy option is to try to squeeze out as much as possible from
the current framework: scoring equivalence classes with the BDe metric should
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bring a performance gain for large structures, without any obvious drawback, as
the likelihood contributions of all members are aggregated anyway. Furthermore,
we now sometimes miss likely causal information in the mapping from uDAGs to
causal statements L, because they are not implied in a small percentage of possible
matching MAGs. To use this information we can choose to weigh the different causal
statements L by the proportion of underlying MAGs in which they hold instead of
a logical yes/no value. This results in a more informative mapping G — L, for more
accurate estimates p(L|D). It seems not possible to infer this type of mapping from
graphical rules alone, and so it would have to rely on brute-force computation.

For larger (sub)graphs some form of Monte Carlo sampling can be applied to
obtain the (weighted) mapping to causal statements. Reasonable reliability es-
timates can be obained from a limited number of high scoring alternatives, see,
e.g. [Bouckaert, 1995]. It would be very expensive to compute, but could provide
valuable information to decide on borderline cases, or simply as an independent
confirmation for parts of the inferred structure.

Further improvements

An interesting question is how far off from the theoretical optimum we are: what is
the maximum attainable accuracy of all causal information that can be extracted
from a given data set? At the moment it is not clear whether we are fighting for
the last few tenths of a percent or if substantial gains can still be made.

A hopeful but ambitious path is to tackle some of the fundamental problems:
scoring MAGs (or even PAGs) directly would eliminate the need for ‘unfaithful
inference’ altogether [Evans and Richardson, 2010]. This would improve both the
mapping and the probability estimates of the inferred logical causal statements,
although it is likely to impact the overall running time. Sampling MAGs could
also be employed to obtain or confirm reliability estimates for causal information
derived from combinations of separately obtained logical statements, as described in
[Claassen and Heskes, 2011a]. We expect such combinations to be highly dependent,
but especially for less certain ones, e.g. two statements with p(L; 2|D) = 0.6, the
difference between a fully independent estimate: p(L;|D) - p(Lz|D) = 0.36, and a
fully dependent estimate: min (p(L;|D),p(L2|D)) = 0.6, is considerable. Having
a means to obtain a more principled reliability estimate for the combination can
improve the overall accuracy of the BCCD algorithm.

Finally, we would like to turn the current reliability estimates into principled
probabilities for initial logical causal statements and new statements derived during
the inference process: this would improve conflict resolution, and would ultimately
allow to give a meaningful estimate for the probability of all causal relations inferred
from a given data set. In fact, for high values the relatively crude BCCD reliability
estimates in Figure 5.5 already form a decent approximation to p(X = Y |D): for
example at (1 — ) = 0.2, corresponding to using all statements with reliability
> 0.8, the inferred causal relations are also correct in about 80% of the cases. Still,
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much is needed before we can claim to have a proper probability estimate.

5.A Appendix: Probabilistic inference from uDAGs

This section describes how to read in/dependencies from uDAGs; it extends results
in [Bouckaert, 1995] through the added assumption of an underlying faithful MAG;
see also [Claassen and Heskes, 2012b].

Note: a DAG G is an (unfaithful) uDAG approximation to a MAG M over a
set of nodes X, iff for any probability distribution p(X), generated by an underlying
causal graph faithful to M, there is a set of parameters ® such that the Bayesian
network B = (G, ®) encodes the same distribution p(X).

We use G to explicitly indicate a DAG, M for a MAG, and P for a PAG. For
details regarding other graph theoretical / causal concepts and terminology used in
this Appendix the reader is referred to sections 2.1-2.3.

A uDAG is a DAG for which we do not know if it is faithful or not. We can apply
standard d-separation to read presence or absence of an independence ‘X 1L,Y | Z?’
from a uDAG G, provided the set Z d-separates nodes X and Y when edge X — Y
(if present) is removed:

Lemma 5.4. Let B = (G, ®) be a Bayesian network over a set of nodes X, with
G a uDAG for a MAG M that is faithful to a distribution p(X). Let Gx |y be the
graph obtained by eliminating the edge X — Y from G (if present), then:

(X gV |Z) = (X 1L, Y |Z),

(X Loy, Y IZ)A (X KoY |Z) = (X U, Y |Z).

or, alternatively: if Z is a set that d-separates X and Y in Gx |y, then
(X LgY |Z) & (X 1L,Y]|Z),

Proof sketch. The independence rule (=) follows [Pearl, 1988]. The dependence
rule (through negation) is similar to the ‘coupling’ theorem (3.11) in [Bouckaert,
1995], but stronger. As we assume a faithful MAG, a dependence X 1 ,Y |Z
cannot be destroyed by in/excluding a node U that has no unblocked path in the
underlying MAG to X and/or Y given Z. This eliminates one of the preconditions
in the coupling theorem (see below). O

So, all independencies from d-separation remain valid, but identifiable depen-
dencies put restricitions on the set Z. For a more formal proof, we first introduce
the notion of coupling:
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Definition 3.10. [Bouckaert, 1995] In a DAG G, two variables X and Y are cou-
pled given Z, denoted )X, Z,Y (g, if: (X = Y) € G, Pa(Y)g C (X UZ), and
X UgY|Z in Gxy (or vice versa for X).

The relevance of this notion comes courtesy of the following result, based on the
graphoid axioms for independence:

Theorem 3.11. [Bouckaert, 1995] In a DAG G, if two variables X and Y are
coupled given Z in G then X WY | Z.

In contrast with this coupling Theorem, Lemma 5.4 does not require the explicit
inclusion of Pa(Y)g C (X UZ) in the separating set. This is a direct consequence
of the (stronger) assumption of an underlying faithful MAG M, as we now show in
the detailed proof of Lemma 5.4:

Proof of Lemma 5.4. Let X — Y in G, and let X and Y be coupled given disjoint
sets ZU W, with W C Pa(Y), so that X J¥,Y |ZUW by Theorem 3.11. Now
assume that also X 1lg|Y |Z, then there is no unblocked path given Z from X
to any W € W in G, otherwise the W — Y would imply an unblocked path
(X,..,W,Y) given Z, in contradiction with X 1l g Y |Z. As a result, YIW € W :
X UgW|Zin G, so also [Pearl, 1988] X 1L, W|Z, and so by definition also
X 1y W Z in the underlying faithful MAG M.

We now show by contradiction that this implies that X and Y are dependent
given Z, ie. X W, Y |Z:

Suppose that X 1,Y |Z while given X W, Y |ZUW and X U, W|Z. For
a faithful MAG M this implies that X and Y are m-separated given only Z, but
not given (Z U W). An unblocked path 7 given a set (Z U W) means that all
noncolliders on 7 are not in Z U W and all colliders on 7 are in An(ZUWUS). A
path 7 in M blocked by the removal of W therefore contains one or more colliders
in An(W), as any collider in Z that blocks the path 7 would also block the path
given (ZU W) before. Let W be the first collider in An(W) encountered along the
unblocked path 7 given (Z U W), then faithfulness implies X 1, W | Z, contrary
the given. Therefore the assumption X 1l Y |Z cannot hold, and so we can infer
X W, Y|Z. O

Note that this does not follow from the (in)dependence axioms - otherwise it
would hold always. As a consequence unblocked paths are always preserved.

Corollary 5.9. Let G be a uDAG for a faithful MAG M, then all unblocked paths
in M are preserved in G, i.e. then X Wy Y |Z implies X WgY | Z.

Proof. Follows immediately from Lemma 5.4. O

We can apply Lemma 5.4 twice to get a two-step, indirect dependence, as in
Example 5.5:
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Lemma 5.10. Let G be a uDAG for a faithful MAG M. Let X, Y, Z, W be disjoint
(sets of ) nodes with (X, W,Y) € G, for which X lLgyW |Z and W 1Lg Y |Z. If
X UgY|ZUW, then X W, Y |Z.

Proof. By Lemma 5.4, X W, W|Z and W ¥, Y |Z, and so there are unblocked
paths from X and Y to W given Z in M. These paths in M cannot be both into
W, because that would imply that X and Y are m-connected given Z U W, so
X W, Y |ZUW, contrary the given X 1lgY |Z U W. But that means that W is a
noncollider in M on an unblocked path given Z from X to Y, and so X JW,Y |Z
without W. O

It is easy to see that, similar to the direct edge in Lemma 5.4, the path (X, W) Y")
is also the only unblocked path between X and Y given Z. This turns out to hold
generally for identifiable dependence in a uDAG G to a faithful MAG M: if there
is one and only one unblocked path in G from X to Y given Z, then X ¥, Y |Z.
Though perhaps intuitively obvious (‘one unblocked path implies there is no other
path/mechanism that can cancel out the dependence due to this one’), to prove it we
need to relate observations in G to configurations in M, and deduce the dependency
holds from there.

We first show this for an extended version of Lemma 5.10, in which there is now
a single, unblocked directed path from X to Y given Z C An(Y") (so no unblocked
paths ‘created’ by Z). After that we do the general version.

Lemma 5.11. Let G be a uDAG for a faithful MAG M. Let X, Y, Z, W =
{W1, .., Wi} be disjoint (sets of) nodes. If 1 = (X — Wy — .Wj, —Y) is the only
unblocked path from X toY given Z in G, then X W, Y |Z.

Proof. By induction. We show that at each step, if there was an unblocked path in
M between X and W; given Z, then there is also one between X and W;;;. We
do this by deriving a contradiction from the assumption that a necessary collider
in M is not in the set Z.

Let V = Pa(W)g \ (W U Z) represent the set all parents in G from nodes in
W that are not on 7 or in Z. Let V; C V denote a minimal subset of nodes
from V needed to block all alternative paths between W; — W;,1 in G, such that
Wi lLgyWis1|Z U V;. By Lemma 5.4 this implies:

W Wy Wi |ZUV, (5.6)
The invariant after induction step i is:
X 1, W, |2 (5.7)

By definition, W; separates all its predecessors on the unblocked path 7 in G from
all its successors given Z UV, so that in particular:

X J_Lp Wit ‘ ZUV;UW; (58)



CHAPTER 5. BAYESIAN CONSTRAINT-BASED CAUSAL DISCOVERY 99

Below (in B) we show by contradiction that this implies that:
Wi Wy Wit | Z (5.9)
For the proof in (B) we first show in (A) that:
YV, C(VAV): X 1,VI|ZUV] (5.10)

From this it follows that the unblocked path in M given Z corresponding to equation
(5.7) cannot be blocked by any node from V;, and so also

X W, W;|ZUV,; (5.11)

Equations (5.11) and (5.6) correspond to unblocked paths in M from to W; to X
and W; 1 given Z UV;. Node W; cannot be a collider between these two paths in
M, otherwise X W, W;i1|ZUV,; UW;, contrary to (5.8), and so it follows that:

X W, Wi |ZUV; (5.12)

But if X 1L, Wit1|ZU(V;\V), then V must be a collider in M with unblocked
paths to X and W;; given ZU (V; \ V). But that implies X W,V |ZU (V,\V),
in contradiction with equation (5.10), and so X 1, W;11|ZU(V;\ V). This
argument can be repeated to eliminate all nodes V;, so that we find:

X Wy, Wit |Z (5.13)

which corresponds to the invariant for the next step. By induction over the entire
path this ultimately proves that X W, Y |Z.

The remaining elements in this process are detailed below:

The invariant in equation (5.7) holds at the induction base for edge X — W;. In
G we find that Z blocks all other paths between X and W7, otherwise an alternative
unblocked path from X to Y given Z would exist, contrary the given. Therefore
X 1lLgy Wi |Z, from which we conclude X ¥, W, |Z by Lemma 5.4, and so equa-
tion (5.7) is satisfied.

Part (A): X is independent of any node in V; given Z, eq.(5.10).
Let V; € V,;NPa(W;) be a node that is a parent from W; (with j € {0, ..,4}) needed
to block some secondary path (apart from 7) in G between W; and W, ;. This path
consists of one half as a directed path m = V; — W;.. — W;, and the second half
as an unblocked path m = Vj.. — W;4; given ZU (V;\ V;) in G, connected by
noncollider V;. The path m may contain zero, one or more collider nodes (that
are ancestors of/) from (V; \ Vj). Denote these as Vi (1), .., Vi(m) Tespectively, as
encountered along my when going from V; to Wiy;. By contradiction. Suppose
that X L, V;|Z, then there is an unblocked path X 1 3/ V;|Z in M, and so
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(Corollary 5.9) there is an unblocked path 7' in G. If this unblocked path 7’ in
G does not go via W; (the child of Vj, on =), then the path 7’ + m + W; —
..Y is an alternative unblocked path between X and Y via V; given Z, and so is
not allowed. If it does go via W, and there are no collider nodes along my (i.e.
m = 0 in the sequence Vi(1),.., Vi(m)), then the path 7' + 7 + Wiy — .Y is
an alternative unblocked path between X and Y via V; given Z, and so is also
not allowed. Alternatively, if there are one or more collider nodes along o (i.e.
with m > 1 in the sequence Vj(y), ..,Vk(m)), then the fact that 7’ can only go
via W; if this node is (ancestor of) a collider in G that is (ancestor of) a node
in Z, implies that there is at least one leg {Wj ), Wy41)} in the corresponding
sequence Wiy (= Wj), Wiy, s Wim)s Wi(m+1)(= Wig1) for which k(I) < j and
Wiy < Wi(41) along 7. As node W) is an ancestor of (or equal to) node W,
which in turn was (ancestor of) a collider in G that is (ancestor of) a node in Z, it
means that the path X.. — Wiy « .. = Wy(41).. — Y is an alternative unblocked
path between X and Y given Z, and so again not allowed.

In short: assuming X 1V, V;|Z results in a contradiction with the original
assumption of a single unblocked path 7 connecting X and Y in G, and there-
fore X 1L, V;|Z must apply for any node from V; that is needed to create the
Wi gy Wig1 |ZUV;. But if X 1, V|Z holds for all V' € V;, then (by faith-
fulness) for an arbitrary node V' € (V; \ V) it must hold that X 1L, V|ZUV’,
otherwise, to create the dependence through conditioning on V', there have to be
unblocked paths from X (and V') to V' given Z in M, contradicting X 1l ,V'|Z.
This argument can be extended to arbitrary subsets of V;, ergo: YV/ C (V,;\ V) :
X U,V |ZUV'. (end-of-proof part A)

Part (B): two successive nodes along 7 are dependent given Z, equation (5.9).
By contradiction. Assume the invariant X J¥, W;|Z holds up to node W; along
the path, and suppose that W; W, W11 |Z UV, but W; 1, W;41 | Z. Then there
is at least one V' € V; needed to block all paths between W; and W;;1 in G that
is a collider between unblocked paths from these two nodes given Z U (V; \ V) in
M, necessary to create the dependence. By (A) we know that no subset of nodes
in V; can block the unblocked path in M between X and W; given Z, and so we
also have (in particular): X W, W;|Z U (V;\ V), corresponding to an unblocked
path in M between X and W; given Z U (V; \ V). Node W; cannot be a collider
between these paths in M, because that would imply X Wy W1 |ZUV, UW;,
contrary equation (5.8). But if W; is a noncollider between these paths in M, then
without W; the path from X to V is unblocked given Z U (V;\ V), contrary to (A).

As W; has to be either a collider or a noncollider between these unblocked paths
in M, it follows that the assumption of a node V' € V; needed in the conditioning
set to create the dependence between W; and W, is false. Hence they must also
be dependent without conditioning on V;, or in other words: W; 1, W41 | Z.
(end-of-proof part B); this completes the proof of Lemma 5.11. O
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We can now formulate the general version to infer dependence from arbitrary,
single unblocked paths.

Lemma 5.6. Let G be a uDAG for a faithful MAG M. Let X, Y, and Z be disjoint
(sets of) nodes. If # = (X,..,Y) is the only unblocked path from X to Y given Z
in G, then X W,Y |Z.

Proof. The path 7 can be split into three parts: @ = m; + w9 + w3, with m; =
X « .. < U, the part of 7 that is a directed path into X, m = U — .. —» Cy «—
. — Cf < .. — V, the part with directed paths into colliders C; along m, and
m3 =V — .. = Y, a directed path into Y. Note that any 7 can be written as a
combination of one, two or all three subpaths from {, 7,73}, possibly with X
and/or Y taking the role of U and/or V. For example, the case in Lemma 5.11
corresponds to m = w3 with X = V.

For the proof, we first show in part (A) that each of the three subpaths 7, w2, 73
represents a dependency U W, X |Z, U W,V |Z, and V J¥,Y | Z, corresponding
to unblocked paths in M given Z. Then we show in part (B) that these can be
stitched together in any combination to obtain X W, Y |Z.

Part (A): Subpaths 7; and 73 already satisfy the antecedent of Lemma 5.11, and
so represent identifiable dependencies U W, X |Z, and V W, Y | Z.

For each pair of nodes W;, W; on the path 7 it holds that Z blocks all alternative
paths 7}, between them in G (except along ), otherwise the path 7' = (X, .., W)+
T + (Wj,.,Y) is an alternative unblocked path in G between X and Y given Z:
whether W;,; € An(Z) is a collider or noncollider along 7', it does not block the
path. As we assumed that m was the only unblocked path between X and Y, it
follows there is no unblocked path 7T£j in G given Z.

This implies in particular that for each successive pair of nodes W;, W;,1 along 7
it holds that Wi 1Lg) Wiy1|Z, and so (by Lemma 5.11) that W; W, W 1| Z.

Furthermore, each node W; that is not a collider along 7 in G is also not a
collider between its neighbouring legs W;_1 — W; — W, along the corresponding
unblocked path in M, otherwise conditioning on Z U W; would unblock a path in
M, whereas in G it implies W;_; lLg W1 |ZUW,, and so there is an unblocked
path in M without W;, corresponding to W;_1 W, W41 | Z.

But if W; is a collider along 7 in G then it is also a collider between its neighbour-
ing legs W;_1 —W,;—W,; along the corresponding unblocked path in M. The single
unblocked path implies that there is a subset Z" C (Z\W;) (in case collider W; in G is
itself part of Z) such that both W;_; 1lLg W;|Z" and W; ILgy Wiy |Z'. This sub-
set also separates W;_; and W, in G (otherwise it would not block all alternative
paths to W;) so that W;_q1 1L, W;41 | Z’. That implies that W; is a collider in M be-
tween unblocked paths from W;_; and W4 given Z’, i.e. W;_1 W, Wit1 |Z' UW;.
We can expand Z’ to include all nodes in Z that are not descendant of W; in G.
The remaining subset Z* = Z \ Z’ contains only descendants of W; in G and can
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only destroy this dependence if it blocks at least one leg, say W;_; — W;, of this
unblocked path in M given Z’, so that W;_1 J¥, W;|Z. This also implies an un-
blocked path in G from W;_; to a node Z* € Z* given Z \ Z* that does not go via
W;. Node W, 1 cannot have a similar alternative path to Z* in G that does not go
via W;, because that would imply an alternative unblocked path between X and Y,
bypassing W;. Therefore, similar to the situation in Lemma 5.11, W; ;1 and Z* can
be separated (in G) by some set including W, whereas in M they are dependent
given W; (blocking the path W;_y — Z*.. — W, « .W;41). The contradiction im-
plies that the assumption the nodes in Z* can block the dependence via W; given
Z’ is false, and hence that again W;_q W, Wii1 | Z.

As this applies to each overlapping triple we can extend the dependence (again,
similar to Lemma 5.11) along the entire path my to obtain U W,V | Z.

Part (B): If 7 consists of just a single subpath m;, then the dependence is already
shown above. For combinations we can connect the subpaths on root nodes U and
V along 7 in G in the same fashion: Node U cannot be a collider between 7 and
7o in M, because in G conditioning on U cannot unblock any new paths (as U was
already in An(Z), and so X L gV |ZUU, and so without U there is an unblocked
path in M corresponding to X J, V' |Z. Similarly V' cannot be a collider between
w9 and 73, and therefore also for a single unblocked path 7 = 71 + 73 + 73 in G it
holds that X W, Y |Z.

For empty 7o, we also find that U(= V') cannot be a collider between m; and
w3 in M, as conditioning on U blocks the last unblocked path in G between X and
Y. Otherwise, any path in G unblocked by adding U to the conditioning set Z goes
via a collider C € An(U). But C already has an unblocked path to X(/Y) given
Z, which means that the path 7/ =X «— .. > C — .. - U — .. > Y (or vice versa
for Y') is an alternative unblocked path in G given Z. This is contrary the orignal
assumption, and therefore conditioning on U blocks the path m but cannot open
up any new path in G, and therefore X 11,Y |ZUU. This implies U must be a
noncollider connecting 7 and 73 in M, and therefore again X W, Y |Z. O

A powerful way to obtain more dependence statements is to eliminate nodes
from the conditioning set Z that can be shown not to be needed to ensure the
dependence.

Lemma 5.12. Let G be a uDAG for a faithful MAG M. Let X, Y, and Z be disjoint
(sets of ) nodes such that X W, Y |Z. Let Z' C Z be a subset such that for each
Z € 7 there are no (disjoint) unblocked paths nx = (X,..,Z) and 7y = (Z,..,Y)
between X andY in G given Z\ Z, then X W, Y |Z\Z'.

Proof. The given X ¥, Y |Z establishes the existence of an unblocked path 7 in
M given Z. All nodes Z € Z* C Z that are (descendants of) colliders along this
unblocked path 7 have unblocked paths to both X and Y given Z \ Z (or given
the union of (Z* \ Z) and any subset (Z \ Z)), and are therefore (by Corollary
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5.9) not in Z’. So, removing any (subset of) node(s) Z’ from Z cannot introduce a
noncollider on 7, nor remove a necessary collider from 7. Hence the unblocked path
7 remains unblocked in M given Z \ Z’, and so (by faithfulness) the dependence
X W,Y|Z\Z also holds. O

This approach can be extended to read even more dependencies. For example,
the single unblocked path requirement in Lemma 5.6 can be relaxed, ultimately
leading to a graphical criterion to read dependencies from uDAGs. However, a full
analysis of inference from uDAGs would go far beyond the scope of the current
chapter. Instead we focus on the mapping to the logical causal statements in the
BCCD algorithm.

5.B Causal statements from uDAGs

This part of the Appendix focuses on the mapping from optimal uDAGs to logical
causal statements as used in the BCCD algorithm.

Note: a logical causal statement L is a statement about the presence or absence
of causal relations between two or three variables of the form (X = Y), (X =
Y)V(X=Z),or (X #Y)=-(X=Y). Weuse L to denote the set of possible
causal statements L over variables in V. A uDAG approximation to a faithful MAG
M is optimal if there exists no uDAG to M with fewer free parameters.

5.B.1 Minimal in/dependencies

From section 3.4 we know that all causal information can be found by identifying
variables Z that make or break an independence relation between {X,Y}:

1L X1,Y|[WUZ] + (Z=X)V (Z=Y),
2. X W, Y|WU[Z] F Z=» ({X,Y}UW).

In words: a minimal independence identifies the presence of at least one from two
causal relations, whereas a dependence identifies the absence of causal relations.

We can infer a minimal independence X 1L, Y |[Z] from a uDAG if we can
establish that in a given independence X 1l ,Y | Z all nodes Z € Z are noncollider
on some unblocked path between X and Y given the other nodes Z, 7.

Lemma 5.13. Let G be a uDAG to a faithful MAG M. Then X 1L, Y |[Z] can be
read from G, iff we can infer that X 1 gY |[Z] and thatVZ € Z: X,Y W, Z|Z\ .

Proof. In words: it suffices to establish that given a separating set X Ul gY |Z in
G, each node Z in Z is dependent on both X and Y given the others.

Clearly, if the independence is not minimal in G then we cannot infer it is minimal
in M (otherwise M = G is a trivial counter), so we can start from X 1l gY |[Z]. If
there is a node Z for which it is not possible to establish a dependence to X and Y
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given the rest, then there exists a corresponding MAG in which Z is independent
from X/Y given Z 7, and so by Lemma 4a not always needed in the minimal
independence.

If it does hold, then each node Z € Z is noncollider on some unblocked path between
X and Y given all the others: for each node there are unblocked paths mxz and
nzy from X and Y to Z given Z,,, connected by noncollider Z (otherwise not
X U,Y|Z), which makes mxy = mxz+ mzy the required unblocked path between
X and Y. Therefore Z is needed to block all paths in M, and so it also represents
a minimal independence in M, i.e. X 1L, Y |[Z]. O

Note that to establish in Lemma 5.13 that a node Z has unblocked paths to both
X and Y given the others we can either show that X W, Z|Z\z and Z W, Y |Z\
hold, or directly show that X W, Y |Z\; can be inferred from uDAG G.

Identifying a node that breaks an independence from a uDAG follows straight-
forward from the definition:

Corollary 5.14. Let G be a uDAG to a faithful MAG M. Then X W, Y |WU[Z]
can be read from G, iff X 1LgY |W, and both X W, Z|W and Z J,Y |W can

be inferred.

Proof. If Z has unblocked paths to X and Y given W, then Z is a collider between
these paths in M (otherwise not X 1lg Y | W), and so including Z makes them
dependent, i.e. X W, Y | [W]Z. O

It means that for inferring (both types of) causal information from uDAGs,
reading dependencies remains the crucial bottleneck. From Lemma 5.6 we know
that the existence of a single unblocked path is sufficient to infer a dependence, but
that would miss out on many others. One way to increase the number of readable
dependencies is to identify patterns of nodes that can invalidate a given unblocked
path 7 in uDAG G: if we find these patterns are not present for said path, then we
can also infer the dependence. For that we introduce the following notion:

Definition 5.15. In a uDAG G, a node Z lies on an (indirect) triangle detour
for an edge X — Y, iff Z is a non-collider on a triangle with X and Y in G, or
X —>(Z'-Y)—ZinG. A node Z lies on an (indirect) collider detour for
XY, iff X —>Z«Y inG, orif it has disjoint incoming directed paths from X
and 'Y wvia (only) other (indirect) collider detour nodes for X and Y.

The relevance lies in the following property:

Lemma 5.16. In a uDAG G to a faithful MAG M, an edge X — Y is guaranteed
to imply X W, Y |Z if Z contains all (indirect) triangle detour nodes for X =Y,
but no (indirect) collider detour nodes.

Proof sketch. If X — Y in G, then this tells us that X W, Y | An(Y)g. Suppose X
and Y are not adjacent in M, then this implies that either:
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(1) a set of nodes U, necessary for separating X and Y in M, is not in An(Y)g,
and/or

(2) a set of nodes W that unblock a path between m-separated X and Y in M are
in An(Y)g.

In case of (1): let U be the first node from U in (some global ordering that
satisfies) the partial order induced by uDAG G, then X — U «— Y in G, and so U
is part of a collider detour for X — Y. This follows from the fact that all nodes in
U are part of some minimal separating subset (though not necessarily all together),
and so U has a directed path to at least X or Y in M, and is a noncollider on some
unblocked path given the other nodes in a minimal separating set Z; containing
U. Therefore, conditional on any subset An(Y )\ x that still includes Y, U has an
unblocked path to X in M, so X — U in G; similar for any subset An(Y)\y that
still includes X, U has an unblocked path to Y in M, so Y — U in G. Similar
for subsequent alternative blocking nodes from U, except that now these may (or
may not) be separated from X and/or Y in M by preceding nodes from U in G,
in which case they have an unblocked path to one or more of those nodes from U,
and so are part of an in direct collider detour.

In case of (2): let Z be the subset of predecessors of Y that are in An(X,Y ),
and let W be its complement W = An(Y)g\Z. Then X 11,Y | Z, but there is also
at least one unblocked path 7 = (X, .., (Y)) in M (partly) via a subset of collider
nodes {W1y, .., Wi} C W. All nodes along 7 (including X') have an unblocked path
to Y in M given Z U W, and so arcs 7 — Y in G. Using m x as shorthand for all
nodes along 7 except X (and Y'), then if m x < X in G, then the same holds for
arcs m, x — X, and so all non-endpoint nodes along 7 form triangle detours for the
edge X — Y. If my < W, then W has unblocked paths to all other nodes along 7
in M, and so my — W — Y in G, which again means they all form an (indirect)
triangle detour for X — Y.

For an arc X — Y in G, if X and Y are also adjacent in M then they are
dependent given any set. If not, then in case of (1) including nodes from U may
separate them, but these nodes are all part of an (indirect) collider detour for
X — Y in G, and so excluding these from Z avoids destroying the dependence.
Similarly, in case of (2) the dependence can be the result of an unblocked path due
to conditioning on non-ancestors of X and Y in M, but these are then all part of
(indirect) triangle detours in G, and so as long as all of these are included in Z the
dependence X [, Y | Z is ensured. O

We can string these dependencies together to form longer paths.

Corollary 5.17. In a uDAG G to a faithful MAG M, if W is a noncollider between
non-adjacent X and 'Y, and we can infer that X ¥, W |Z and W W, Y |Z, then
it also follows that X W, Y |Z.

Proof. By contradiction: assume X 11,Y |Z. From the given there are unblocked
paths mxw and 7y in M given Z, and the assumption implies W would need to
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be a collider between these paths in M. There cannot exist alternative directed
paths out of W to X and/or Y in M: these would need to be blocked by Z to
ensure the independence, but that would unblock the collider path, resulting in
X U,Y|Z, contrary the assumed.

As X and Y are not adjacent in G we can choose U from An(X,Y,W)g such
that there is only one unblocked path (edge) between X and W in G, corresponding
to an unblocked path 7'y, in M, and likewise 7y in M for edge W — Y in
G. By Lemma 4 this also implies identifiable dependency X 1, Y |U. But by
construction, adding W to the conditioning set will separate X and Y in G, giving
X 1,Y|UUW by Lemma 3. This implies that W cannot be a collider between
myw and 7y in M, whereas the original assumption implies it must be. This
means that the assumption must be false, and so indeed X W, Y | Z. O

We can use the uDAG rules above to test observed (minimal) independencies
in G for the required dependencies in Lemma 5.13 and Corollary 5.14: if there are
multiple unblocked paths for a given dependence, then validating any one of them
via Lemma 5.16 or Corollary 5.17 corresponds to identifying an unblocked path in
faithful MAG M, which is sufficient to infer the dependence.

We can try to find additional uDAG rules to read even more dependencies, but
that would neglect another important piece of information, namely that the uDAG
is also optimal.

5.B.2 Causal inference from optimal uDAGs

In general, the previous results assert different dependencies for different uDAG
members of the same equivalence class. For optimal uDAGs (oDAGs for short)
additional information can be inferred.

Lemma 5.18. IfG is an optimal uDAG to a faithful MAG M, then all in/dependence
statements that can be inferred for any uDAG instance of the corresponding equiv-
alence class [G] are valid.

Proof. All (DAG) instances in an equivalence class [G] can describe the same distri-
bution with the same in/dependencies, and have the same number of free parame-
ters. Therefore, if one is a valid (optimal) uDAG to the faithful MAG M, then they
all are. That means that all in/dependence statements derived for any of these via
proper uDAG inference rules, e.g. Lemma 5.4, are valid in M. O

Even though there can be different c0DAGs (optimal uDAGs) for a MAG M,
it does mean that no edge in a given oDAG G can be removed without either
requiring an invariant bi-directed edge in the corresponding equivalence class, or
implying in/dependence statements not present in M.

For example, knowing that Figure 5.6(c) is an optimal uDAG implies X XY,
whereas this does not follow for ‘ordinary’ uDAGs (only implies X lLgY | ZW).
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Figure 5.6: (a) MAG with invariant bi-directed edges (R4b), (b) optimal uDAG if rw <
(ry — Drz + 1, (c¢) idem, if rw > (ry — 1)rz 4+ 1; with rx the multiplicity of random
variable X, etc.

It also follows that inference is most naturally done on the PAG representation
P of the graph. In this Appendix we focus on deriving causal statements. For that
we need to establish a connection between the underlying faithful MAG M and an
optimal uDAG representation G (where we ignore selection bias).

Lemma 5.19. For a faithful MAG M, an optimal uDAG G is a member of an
equivalence class [M'] obtained by (only) adding arcs to M, necessary to eliminate
an arrowhead from a bi-directed edge in the PAG P(M'’), until no more invariant
bi-directed edges are left.

Proof sketch. If the PAG P(M) does not contain a bi-directed edge, then there ex-
ists a DAG representative of the corresponding equivalence class [M], see Theorem
2 in [Zhang, 2008]. As fewer edges and fewer invariant edge marks require fewer
free parameters, any such DAG is also optimal.

If the PAG P(M) does contain edges with two invariant arrowheads then a uDAG
approximation is needed. From Section 3.2 we know that all invariant arrowheads
at a node Z on a bi-directed edge Z < Y in a PAG are inferred from (minimal) con-
ditional independencies U 1L,V | [W] with Y € ({U, V}UW) that are destroyed by
conditioning on the arrowhead node Z. In this minimal dependence U W, V' | [W]Z
node Z has distinct unblocked incoming paths in P from U and V given W (so
Z also has another invariant arrowhead to some other node, apart from Y). As
a uDAG leaves every unblocked path in M intact, the only way to eliminate the
invariant arrowhead is to ‘hide’ the conditional independence, by either adding an
edge U — V, or adding edges to extend the required separating set W. But addi-
tional nodes in the separating set can only hide the independence if at least one of
these, say W', helps to block all paths between Z and, say, U. But then W’ and V'
would also need to be separated in M (otherwise W’ € W), and so the invariant
arrowhead at Z still follows from a conditional independence destroyed by Z, i.e.
W' W,V |[..]Z, unless an edge is added between the two separated nodes.

In short: to eliminate an invariant arrowhead Z <Y edges need to be added in M
between the two separated nodes in a non-empty subset of (minimal) conditional
independencies destroyed by Z to obtain an unfaithful MAG M’. Each added
edge is in the form of an arc with the arrowhead at Y (or arbitrary orientation if
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Y € W), unless this necessarily results in an almost directed cycle (not permitted
in a MAG)), in which case the added edge itself becomes a bi-directed edge, which
then has to be eliminated in a subsequent step. How to find which (minimal set of)
edges need to be added in each step is not important to us here.

Once all required edges have been added, the collider(s) at Z is/are no longer
invariant, and the newly implied possible dependence in the MAG M’ via Z is
compensated for by the implied dependencies via the added edges, in combination
with parameter constraints that ensure these separate paths cancel out each other
exactly. After this step the PAG P(M’) is recomputed. This process is repeated
until all invariant bi-directed edges have been eliminated. At that point a there is
a DAG instance G in the equivalence class [M’], which is a uDAG to the faithful
MAG M, for which the number of free parameters can be calculated.

Choosing different arrowheads to eliminate in each step can lead to different uDAGs
with different numbers of free parameters: the smallest one(s) correspond to the
optimal uDAG(s) G to the faithful MAG M. O

Note that a given MAG can have different optimal uDAG representations, pos-
sibly depending on the multiplicity of the variables as well.

Having established a connection between an optimal uDAG G and the underlying
faithful MAG M, we can translate this information into causal inference from the
PAG representation P(G) of the observed uDAG. Fortunately the inference rule for
absent causal relations takes a particularly simple form, identical to that for regular,
faithful PAGs. It uses the notion of a potentially directed path (p.d.p.), introduced
in Section 2.1.

Lemma 5.20. Let G be an optimal uDAG to a faithful MAG M, then the absence
of a causal relation X =Y can be identified, iff there is no potentially directed path
from X toY in the PAG P of [G].

Proof. From Lemma 5a we know that the optimal uDAG G is obtained by (only)
adding arcs between variables in the MAG M to eliminate invariant bi-directed
edges, until no more are left. By construction, all arrowheads on arcs added in each
step to obtain the next M’ satisfy the non-ancestor relations in M. Therefore,
any remaining invariant arrowhead in the corresponding PAG P(M’) matches a
non-ancestor relation in the original MAG M. For a MAG all nodes not connected
by a potentially directed path (p.d.p.) in the corresponding PAG have a definite
non-ancestor relation in the underlying causal graph, see Proposition 4.9. As all
unblocked paths in M are left intact in M’ and G, and a p.d.p. is by definition
an unblocked path given the empty set, adding edges at each step can only hide
non-ancestor relations still identifiable in the previous step, but never introduce new
ones.

For an optimal uDAG g it holds that P(G) = P(M’) (at least for one of the possible
MAG solutions), and so if there is no p.d.p from X to Y in the PAG P(G), then
there is no p.d.p. from X to Y in M’, and so also none in M, which implies the
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absence of a causal relation X > Y . But no more then these can be inferred, as
the uDAG also matches itself as faithful MAG, and for that MAG the nodes not
connected by a p.d.p. in P are all that can be identified. O]

For causal alternatives a result can also be found. Like for ‘regular’ uDAGs, it
is based on identifying minimal conditional independencies via Lemma 4b: start
from a minimal separating set X g Y'|[Z] in the graph P(G), and establish
dependencies from each node Z € Z to X and Y given the other Z, 4.

Naturally, to identify independencies in optimal uDAGs we can use all uDAG
lemmas from Section 5.A, including in particular the ‘only one unblocked path’
result (Lemma 5.6). But we now also utilize a variant of the triangle/collider detours
in Lemma 5.16, based on the fact that if an edge in P(G) cannot ‘hide’ an invariant
bi-directed edge, then it cannot invalidate that edge as a dependence.

Lemma 5.21. Let G be an optimal uDAG to a faithful MAG M, and P the cor-
responding PAG of G. Then, an edge X —Y in P corresponds to an identifiable
dependence if all nodes Z in a triangle with X and Y either satisfy:

(1) Z+«— X and/or Z «+—Y are not in P, or

(2) Z—x X and/or Z —xY are in P.

Proof. The proof of Lemma 5.16 for regular uDAGs showed that if an edge X — Y
was present in G but not in the underlying MAG M, then it showed in the presence
of either a triangle or collider detour. For optimal uDAGs collider detours do not
apply, as they only introduce additional arrowheads in G using more parameters, and
so do not appear in the construction of a optimal uDAG in Lemma 5.19. Remains
to show that a node in a triangle in P(G) cannot correspond to a triangle detour:
If (1) applies, then if Z was oriented as a collider between X and Y (removing
edge X —Y) then it would represent the same equivalence class but with fewer
parameters, and so the fact that this did not occur implies this is not the case for
Z.

If (2) applies, then Z is definitely a noncollider between X and Y (though not
necessarily ancestor of), and so Z cannot have an invariant bi-directed edge to
either that is ‘hidden’ in G by edge X — Y.

If this holds for all nodes in a triangle with edge X — Y, then there is no node that
can hide an implicit collider that invalidates the edge, and so the edge represents a
direct dependence. O

We can extend this to identifiable dependencies by finding a path that can be
validated through Lemma 6a. In this we use the term base path to indicate a
path/edge that is not itself a triangle detour of another path/edge in P.

Corollary 5.22. Let G be an optimal uDAG to a faithful MAG M, and P the
corresponding PAG of G. Then a dependence X W, Y |Z can be inferred if there is
an unblocked base path in P between X andY given Z along which all edges can be
verified to represent a direct dependence.
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Proof. If we can validate all edges along the path, e.g. by Lemma 5.6 or Lemma
5.21, then we can string these together similar to Corollary 5.17, to establish the
existence of an unblocked path in the underlying faithful MAG M between X and
Y given Z, which ensures the dependence X W, Y | Z. O

And one special alternative to validate edges as dependencies from already iden-
tified in/dependencies:

Lemma 5.23. Let G be an optimal uDAG to a faithful MAG M, and P the corre-
sponding PAG of G. Then for adjacent X —Y in P a dependence X W, Y | Z can
be inferred, if there exist identifiable X W, Y |W and X 1L, Z |[W].

Proof. If X —Y in P(G), then if X W, Y |W and X 1L, Z|[W], then X W,Y |Z
Proof: if also X —Y in M then X and Y are dependent given any set, so also given
Z. If X W, Y but not adjacent in M then they remain dependent given Z, as if Z
blocks all paths between X and Y, and W blocks all paths between X and Z, then
W would also block all paths between X and Y, contrary X ¥, Y |W. Finally,
if X 1l,Y in M, but conditioning on W unblocks a path between them, then W
cannot have a directed path to X (or Y'). But that means that X 1L, Z | [W] implies
that W does have a directed path to Z in M, and so if W unblocks the path, then
so does descendant Z, and so X W, Y | Z. O

Note that lemmas 5.21 and 5.23 do not identify the minimal independencies
themselves, but only verify the dependencies (in Lemma 5.13) required to find
them. Also note that Lemma 5.23 builds on minimal independencies already found,
which implies a recursive approach is needed to find the full mapping.

For every oDAG we may infer additional causal information by applying the
standard causal inference rules on the statements obtained via the lemmas in this
Appendix. Together this results in the mapping from each oDAG G to the set of
logical causal statements L as used in the BCCD algorithm. Interestingly enough,
for optimal uDAGs up to four nodes the mapping is identical to that for regular,
faithful DAGs. Only at five or more nodes the distinction becomes relevant.
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Samenvatting

Een van de belangrijkste problemen waar wetenschappelijk onderzoekers telkens mee
geconfronteerd worden is de vraag ‘waardoor wordt dit verschijnsel veroorzaakt’?
Weten welke factoren daadwerkelijk van invloed zijn geeft de mogelijkheid om doel-
gericht een bepaald gewenst effect te bewerkstelligen. Andersom is het soms even
belangrijk te weten dat een bepaalde factor juist geen (nadelige) gevolgen heeft.

Een moeilijkheid die zich hierbij voordoet is dat een oorzaak niet altijd hoeft
te leiden tot een bepaald gevolg en omgekeerd; bijv. we weten inmiddels dat roken
longkanker veroorzaakt, maar niet iedereen die rookt krijgt longkanker, en long-
kanker komt ook voor bij mensen die niet roken. Ook is vaak niet direct duidelijk
of en hoe een bepaald verband causaal is: bijv. zelfs als er een relatie is aange-
toond tussen geweld op straat en gewelddadige computerspelletjes, leidt dan het
spelen van de spelletjes tot geweld of zijn agressieve jongeren eerder geneigd stoere
spelletjes leuk te vinden? Of zijn beide wellicht enkel een gevolg van opvoeding
of sociale omstandigheden? Vaak is het niet mogelijk (te duur of onethisch) om
gecontroleerde experimenten uit te voeren die uitsluitsel kunnen geven, en moeten
onderzoekers proberen de causale relaties uit enkel de beschikbare data af te leiden.
Dit is het terrein van de zgn. causal discovery methoden, en het hoofdonderwerp
van dit proefschrift. Om precies te zijn: het probeert antwoord te vinden op de
vraag ‘waar zit nou precies de causale informatie in een data set, en hoe kun je deze
er het beste uit halen?’.

In een notedop: voor zogenaamde dynamische systemen, d.w.z. systemen die
voldoen aan (Newtoniaanse) dynamica, oftewel bijna alle voorkomende systemen,
bestaat er een direct, logisch verband tussen (probabilistische) afhankelijkheden en
onafhankelijkheden tussen variabelen en de aan- of afwezigheid van bepaalde causale
relaties. De kern van dit proefschrift is dat het laat zien dat wanneer geobserveerde
on/afhankelijkheden tussen variabelen direct vertaald worden naar deze logische
uitspraken over causale relaties, en daar vervolgens mee verder te redeneren, dat
het achterhalen van identificeerbare aspecten van het onderliggende causale model
een bijzonder elegante en eenvoudige vorm aanneemt. De daaruit volgende moge-
lijkheden wordt gedemonstreerd aan de hand van een aantal concrete toepassingen.

In hoofdstuk 1 wordt gekeken naar wat we eigenlijk precies bedoelen met het
doorgaans intuitief duidelijke, maar toch verrassend ambigue begrip ‘causale relatie’.
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Aan de hand van het voorbeeld van een gesimuleerde worp met een punaise wordt
een verband gelegd met ‘effectief beinvloedbare kansen’. Uiteindelijk leidt dit tot
de conclusie dat juist conditionele onafthankelijkheid, d.w.z. waarbij twee variabelen
onafhankelijk worden gegeven een of meer andere variabele, de cruciale link vormt
tussen waarneembare patronen in data en identificeerbare causale relaties in de vorm
van een grafische model, mits aan een aantal zeer redelijke aannames is voldaan.

Hoofdstuk 2 begint met een korte introductie in de theorie van grafische model-
len, gevolgd door een beschrijving van een aantal bestaande methoden voor causal
discovery. Hoofdstuk 3 laat vervolgens zien dat ditzelfde ook bereikt kan worden
met behulp van veel minder regels (3 i.p.v. 14) via de tussentijdse transformatie van
conditionele onafhankelijkheden naar logische uitspraken over causale relaties.

Vervolgens laten we een tweetal krachtige toepassingen van dit principe zien.
Allereerst geeft hoofdstuk 4 aan hoe de methode gebruikt kan worden om extra
causale relaties af te leiden uit de combinatie van meerdere data sets, zelfs als deze
afkomstig zijn van verschillende experimenten/onderzoeken. Dit was voorheen een
fundamenteel probleem waarvoor geen correcte oplossing beschikbaar was, maar
volgt eenvoudig uit de in het voorgaande hoofdstuk ontwikkelde ‘logische machine-
rie’. Daarna wordt in hoofdstuk 5 gedemonstreerd hoe deze aanpak ook gebruikt kan
worden om te komen tot schattingen voor de kans dat een bepaalde causale relatie
bestaat gegeven de beschikbare data. Door het opbreken van het causal discovery
process in kleine hapklare brokjes wordt het mogelijk aan te geven welke causale
relaties vrijwel zeker en welke minder waarschijnlijk zijn en waarom. Hiermee kan
de betrouwbaarheid van de uiteindelijke conclusies sterk vergroot worden, hetgeen
van cruciaal belang is voor het vergroten van het vertrouwen van onderzoekers in
causal discovery methoden.

Tot slot biedt de in dit proefschrift getoonde aanpak tal van handvaten voor
andere, veelbelovende verbeteringen: dit vormt dan ook onderwerp van ons huidige
vervolgonderzoek.
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