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Abstract 
This work describes a brain-computer interface (BCI) 
system using multi-channel magnetoencephalogram 
(MEG) signals for real-time control of a computer 
game and a robot arm in a motor imagery paradigm. 
Computationally efficient spatial filtering and time-
frequency decomposition facilitate the extraction and 
classification of neurophysiologically meaningful and 
task-relevant signal components from all of the 275 
channels comprising the high-density sensor array. 
To our knowledge, this is the first report of an MEG-
based BCI system capable of real-time signal 
processing and control using the whole sensor array. 
The robust and reliable performance of this system 
was demonstrated several times in front of a large 
public audience at an open day celebrating the 5th 
anniversary of the F.C. Donders Centre for Cognitive 
Neuroimaging at Radboud University Nijmegen. 
 
1 Introduction 
A brain-computer interface (BCI) translates complex 
patterns of brain activity into commands that can be 
used to control a computer and other electronic 
devices. Thus, a BCI can provide a communication 
and control channel, which by-passes conventional 
neuromuscular pathways involved in speaking or 
making movements to manipulate objects [1]. BCI 
systems are anticipated to play an important role in 
the development of assistive and therapeutic 
technologies for paralyzed patients, for prosthesis or 
orthosis control, and in movement rehabilitation, e.g., 
after stroke or spinal cord injury [2,3]. 
 Many BCI systems are based on the electro-
encephalogram (EEG), which provides a noninvasive 
measure of electrophysiological brain activity. There 
has also been growing interest BCI systems using 
magnetoencephalogram (MEG) signals [4-6], which 
have a higher spatial resolution compared with EEG. 
Notwithstanding the fact that MEG systems are not 
portable, MEG signals could be useful for providing 
enhanced feedback during training for EEG-based 
systems and for non-ambulatory BCI applications. 

 So far, the only working implementation of an 
MEG-based BCI system, which provides users with 
online neurofeedback has been developed by the 
Tübingen group [7]. Their BCI system, like many 
others, exploits the well-known neurophysiological 
phenomenon, e.g., [8], that both overt and imagined 
movement engage the primary sensorimotor areas of 
the brain in a similar fashion; i.e., by causing an 
amplitude reduction of spontaneous oscillatory 
neuronal activity in the µ (8-14 Hz) and β (15-30 Hz) 
frequency bands during movement/imagery, followed 
by a “rebound” of β-band power on the contralateral 
side. The feedback in [7] relates to µ or β power – 
computed from a small selection of sensors overlying 
the sensorimotor areas – which is visualized as a 
cursor on a computer screen, whose vertical position 
is computed using the method introduced in [9]. No 
special measures were taken to remove artifacts. 
 This work describes a somewhat different type 
of BCI system which processes information from 275 
MEG channels at once in order to control a computer 
game and a robot arm in real-time. The system uses 
a multi-channel signal processing approach where 
the MEG (or EEG) signals measured at each sensor 
are considered to be linear mixtures of a set of 
underlying (unobserved) source signals that are 
associated with brain activity and various interfering 
artifacts. Only a small number of brain source signals 
reflect task-related brain states or subject intentions, 
which can be distinguished by the characteristic 
time-frequency signatures of each source. 
 Thus the approach here is to find a spatial and 
time-frequency decomposition of the multi-channel 
MEG data in order to identify task-related sources. 
These are then extracted during online signal 
processing using spatial filters that operate on all 
275 MEG channels and suppress interference from 
other sources, thereby obviating the need for artifact 
detection and removal. Instead of direct position 
control, we use a control scheme – analogous to 
pressing buttons – where a 3-category classifier 
determines whether, and in which direction, a fixed-
magnitude relative change in position should occur. 
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2 Materials and Methods 
 
2.1 Experimental Setup 
Participants: Three healthy volunteers (2 male, 1 
female, age range 25-37) took part in an initial 
screening task, and one subject (male) whose data 
could best be classified (and is reported here) was 
selected for subsequent online training for a live BCI 
demonstration, which was held at an open day (on 
28.10.2007) celebrating the 5th anniversary of the 
F.C. Donders Centre for Cognitive Neuroimaging. 
Task and Protocol: Subjects were asked to play 
several rounds of the computer game Pong, which 
involves 1-D control of the vertical position of a bat 
(cursor) on a screen in order to hit a ball. The game 
was implemented in Presentation® (Neurobehavioral 
Systems, Inc., Albany, CA, USA) and controlled via 
the serial port, receiving input either from a response 
device or from the BCI. With MEG being recorded, 
subjects began by controlling the game through the 
response device using overt movements of their left 
(=up) and right (=down) index finders. After the 
classifier had been trained, the game was controlled 
via the BCI system, initially using overt and then 
imagined finger movements. Finally, the BCI system 
was used to control a robot arm constructed using 
fischertechnik® components (fischertechnik GmbH, 
Waldachtal, Germany). The subject saw the robot via 
a video link and was immediately able to achieve 
control using imagined movement. 
Response Device: Movements of the left and right 
index fingers were registered using a custom-built 
response device based on force transducers that 
operated as touch-sensitive switches (buttons). The 
device was controlled using LabVIEW (v8.2, National 
Instruments Corp., Austin, TX, USA) and configured 
to produce a trigger signal indicating whether or not 
the finger was resting on the touch-pad. A response 
consisted of a brief lift of the finger. The triggers 
were set to Presentation® and the MEG system.  
MEG Signal Acquisition: Electromagnetic brain 
activity was recorded using a CTF MEG™ System 
(VSM MedTech Ltd., Coquitlam, British Columbia, 
Canada) installed at the F.C. Donders Centre for 
Cognitive Neuroimaging, Nijmegen, the Netherlands. 
The system comprises 275 DC SQUID axial 
gradiometers that provide whole-head coverage. 
Additional bipolar channels were used to record the 
vertical and horizontal electrooculogram (EOG), the 
electrocardiogram (ECG), and the surface electro-
myogram (EMG) from sites overlying the extensor 
muscles (m. ext. indicis) on the left and right forearm. 
The biomagnetic and electrophysiological signals, 
and the triggers from the response device were co-
registered and sampled continuously at 600 Hz. 

2.2 Offline Data Analysis 
Data Segmentation: Using the triggers from the 
response device, the MEG signals were segmented 
into 2 second epochs which contained either left or 
right movement on- or offsets, or no movement; 
these were then assigned to one of three classes: 
left, right, nothing. Epochs from two separate gaming 
sessions formed training and test sets. 
Spatial and Time-Frequency Decomposition: The 
MEG signals were decomposed into spatial and 
time-frequency elements using a blind source 
separation (BSS) approach based on the discrete 
wavelet transform (DWT), see [10]. The method uses 
non-orthogonal joint approximate diagonalization [11] 
of a set of DWT sub-band cross-covariance matrices 
– computed over 400 ms sub-intervals and averaged 
over epochs for each class – to find a linear (spatial) 
projection of the MEG signals into the space of 
temporally uncorrelated sources with maximally 
disjoint DWT amplitude spectra.  This (supervised) 
approach is well suited for separating sources with 
unique activity profiles in different conditions [12]. 
Classifier Construction: Features for classification 
were extracted from the DWT of all signal segments 
as follows. We took the logarithm of the sum of the 
absolute DWT coefficients in the four sub-bands 
from 4-75 Hz over two 400 ms sub-intervals around 
the centre of each epoch, and concatenated the 
values to form an 8-element feature vector. 
 Separate probabilistic network classifiers were 
trained for each source. The hidden layer consisted 
of a Gaussian mixture model (GMM) [13] that was 
trained on all features combined over classes and 
where the number mixture components was chosen 
with reference to the Bayesian Information Criterion 
(unsupervised). The mixture component activations 
were mapped onto the output (classes) using a linear 
combination, whose weights were determined by 
regression onto the class labels (supervised), and 
scaled to reflect the class posterior probabilities. The 
classifiers (sources) were ranked according to their 
performance on training data and then cumulatively 
combined using a voting scheme in which the class 
posteriors are multiplied (the product rule). The best 
classifier “ensemble” – reflecting movement-related 
sources – was selected by peak classification rate. 
 

2.3 Online Data Analysis 
MEG Data Streaming: The CTF MEG™ acquisition 
software (Acq) runs on a Linux platform which allows 
simultaneous read and write file access by different 
processes. We therefore configured Acq to write 
data in 250 ms blocks and “streamed” the data to the 
BCI system by reading each new block as it became 
available, using the FieldTrip Matlab toolbox [14]. 
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Figure 1: Shown for each of the two movement-related sources (rows, left to right) are their scalp topographies, 
their average DWT amplitude spectra for left, right and no movement, expressed as a proportion relative to the 
median of the epoch, and the confusion matrices for their individual classification of the training data. 
 
Feature Extraction: Each new block of MEG data 
was added to a ring buffer that stored the last 2 s of 
data. The time-course for each source of interest 
was extracted (estimated) using a fixed spatial filter 
whose coefficients corresponded to the relevant row 
of the spatial decomposition (un-mixing) matrix 
obtained using the wavelet BSS method. The DWT 
of each source signal was computed – using efficient 
and fast sparse matrix multiplication – and features 
were extracted from the latest 800 ms as described. 
Classification: Features extracted from the sources 
of interest were classified using the ensemble 
classification approach described above. For online 
classification we introduced additional weights to a) 
equalize classifier biases due to imbalances in the 
number of training samples for each class, and to b) 
increase the likelihood of no movement eightfold. 
Finally, BCI commands for “up” and “down” were 
generated only from segments where the posterior 
probability for “left” or “right” was greater than 0.6. 
 
3 Results 
 
3.1 Offline Analysis 
The wavelet BSS method applied to 275-channel 
MEG data produces 275 source signals, the majority 
of which are not task-related. Identifying the small 

subset of “relevant” sources, i.e., those sources most 
clearly reflecting the differences between classes, is 
a difficult problem, to which the ensemble classifier 
approach here offers a solution. For the MEG data 
from the pong game only two sources were required 
to distinguish left from right from no movement. 
These are shown in Figure 1, where it is clear from 
the scalp topographies of the sensor projections that 
these sources reflect the primary sensorimotor areas 
of the left and right hemispheres. Moreover, the time-
frequency representation of the source signal shows 
amplitude modulation in DWT sub-bands spanning 
the µ- and β-bands (as well as higher frequency 
ranges) before, during and after left and right finger 
movement. The classification rates for the individual 
and ensemble classifiers on training and test data 
are plotted in Figure 2. 
 
3.2 Online Analysis 
To validate the online processing and classification 
of the MEG-based BCI system the subject first tried 
– successfully – to play the pong game (against the 
experimenter) using overt finger movements but with 
the response device removed. Subsequently, over a 
period of about 20 min, the subject learned to play 
using only imagined movement. Finally, the BCI 
control acquired by the subject transferred smoothly 
over to the task of controlling the robot arm. 
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Figure 2: Individual and ensemble classification rates 
for sources on training and test data. 
 
4 Summary and Conclusion 
This work describes an MEG-based BCI system that 
processes and analyzes high-density, 275-channel 
MEG data in real-time, and which has been used to 
control both a computer game and a robot arm. The 
system uses computationally efficient multi-channel 
signal processing for feature extraction, combining 
spatial filtering with DWT-based time-frequency 
decomposition. An ensemble classification approach 
offers a simple, objective (and automatic) means of 
selecting only those underlying sources for BCI 
processing, whose associated classifiers help to 
maximize overall performance. While the BCI system 
described here operates on MEG signals, the feature 
extraction and ensemble classification approach is 
as such equally applicable to multi-channel EEG and 
can be extended to more than 3 classes. 
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