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Abstract. Rating players in sports competitions based on game re-
sults is one example of paired comparison data analysis. Since an exact
Bayesian treatment is intractable, several techniques for approximate
inference have been proposed in the literature. In this paper we com-
pare several variants of expectation propagation (EP). EP generalizes
assumed density filtering (ADF) by iteratively improving the approxi-
mations that are made in the filtering step of ADF. Furthermore, we
distinguish between two variants of EP: EP-Correlated, which takes into
account the correlations between the strengths of the players and EP-
Independent, which ignores those correlations. We evaluate the differ-
ent approaches on a large tennis dataset to find that EP does signifi-
cantly better than ADF (iterative improvement indeed helps) and EP-
Correlated does significantly better than EP-Independent (correlations
do matter).

1 Introduction

Our goal is to develop and evaluate methods for the analysis of paired comparison
data. In this paper we illustrate such methods by rating players in sports, in
particular in tennis.

We consider the player’s strength as a probabilistic variable in a Bayesian
framework. Before taking into account the match outcomes, information avail-
able about the players can be incorporated in a prior distribution. Using Bayes’
rule we compute the posterior distribution over the players’ strengths. We take
the mean of the posterior distribution as our best estimate of the players’
strengths and the covariance matrix as the uncertainty about our estimation.

An exact Bayesian treatment is intractable, even for a small number of play-
ers; the posterior distribution cannot be evaluated analytically, and therefore we
need approximations for it. Expectation propagation [7] is a popular approxi-
mation technique. We will use it in this paper for approximating the posterior
distribution over the players’ strengths. The question that we want to answer
here is: how do different variants of expectation propagation perform for this
setting? In particular, does it make sense to perform backward and forward iter-
ations for the approximations and does it help to have a more complicated (full)
covariance structure?
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The paper is structured as follows: in the next section we introduce the
probabilistic framework used to estimate players’ strengths; in Section 3 we
present algorithms for approximate inference and the way they apply to our
setting; in Section 4 we show experimental results for real data, which we use to
compare the performance of the algorithms; and in the last section we draw the
conclusions.

2 Probabilistic Framework to Estimate Players’ Strengths

Let θ be an nplayers-dimensional probabilistic variable whose components rep-
resent the players’ strengths. We define rij = 1 if player i beats player j, and
rij = −1 otherwise. For the probability of rij as a function of the strengths θi

and θj , we take the Bradley-Terry model [2]:

p(rij |θi, θj) =
1

1 + exp[−rij(θi − θj)]
. (1)

A straightforward method to approximate the players’ strengths is to build
the likelihood of θ given R; where R stands for the outcomes of all played
matches. We take the maximum of the likelihood as the estimate for the strengths
of the players.

The maximum likelihood approach gives a point estimate, the Bayesian ap-
proach, on the other hand, yields a whole distribution over the players’ strengths.
Furthermore, useful sources of information, like results in previous competitions
and additional information about the players, can be incorporated in a prior
distribution over the strengths. Using Bayes’ rule we compute the posterior dis-
tribution over the players’ strengths:

p(θ|R) =
1

d
p(R|θ)p(θ) =

1

d
p(θ)

∏

i6=j

p(rij |θi, θj) , (2)

where p(θ) is the prior, p(rij |θi, θj) from (1), and d is a normalization constant.
We take the mean or the mode of the posterior as the best estimate for

the players’ strengths. While computing the mean of the posterior distribution
is computationally intractable, its mode (MAP) can be determined using opti-
mization algorithms. For the MAP estimate the computation time is linear in the
number of matches, and the number of iterations needed to obtain convergence.
Typically, the number of iterations needed scales linearly with the number of
players with a state-of-the-art optimization method such as conjugate gradient.

For making predictions and estimating the confidence of these predictions, we
need the whole posterior distribution over the players’ strengths. The posterior
obtained using Bayes’ rule in equation (2) cannot be evaluated analytically, hence
we need to make approximations for it. For this task, sampling methods are very
costly because of the high-dimensionality of the sampling space: the dimension
is equal to the number of players. Therefore, for rating players, we here focus on
deterministic approximation techniques, in particular expectation propagation
and variants of it.



Expectation Propagation for Rating Players in Sports Competitions 3

3 Expectation Propagation

Expectation propagation (EP) [7] is an approximation technique which tunes the
parameter of a simpler approximate distribution, to match the exact posterior
distribution of the model parameters given the data.

Assumed Density Filtering ADF is an approximation technique in which
the terms of the posterior distribution are added one at a time, and in each step
the result of the inclusion is projected back into the assumed density. As the
assumed density we take the Gaussian, to which we will refer below as q.

The first term which is included is the prior, q(θ) = p(θ); then we add terms
one at a time p̃(θ) = Ψij(θi, θj)q(θ), where Ψij(θi, θj) = p(rij |θi, θj); and at
each step we approximate the resulting distribution as closely as possible by a
Gaussian qnew(θ) = Project{p̃(θ)}. Using the Kullback-Leibler (KL) divergence
as the measure between the non-Gaussian p̃ and the Gaussian approximation,
projection becomes moment matching: the result qnew of the projection is the
Gaussian that has the first two moments, mean and covariance, the same as p̃.

After we add a term and project, the Gaussian approximation changes. We
call the quotient between the new and old Gaussian approximation a term ap-

proximation.

Iterative Improvement EP generalizes ADF by performing backward-forward
iterations to refine the term approximations until convergence. The final ap-
proximation will be independent of the order of incorporating the terms. The
algorithm performs the following steps.

1. Initialize the term approximations Ψ̃ij(θi, θj), e.g., by performing ADF; and
compute the initial approximation

q(θ) = p(θ)
∏

i6=j

Ψ̃ij(θi, θj) .

2. Repeat until all Ψ̃ij converge:
(a) Remove a term approximation Ψ̃ij from the approximation, yielding

q\ij(θ) =
q(θ)

Ψ̃ij(θi, θj)
.

(b) Combine q\ij(θ) with the exact factor Ψij = p(rij |θi, θj) to obtain

p̃(θ) = Ψij(θi, θj)q
\ij(θ) . (3)

(c) Project p̃(θ) into the approximation family

qnew(θ) = argmin
q∈Q

KL[p̃||q] .

(d) Recompute the term approximation through the division

Ψ̃new
ij (θi, θj) =

qnew(θ)

q\ij(θ)
.



4 Adriana Birlutiu and Tom Heskes

Computational Complexity When minimizing the KL divergence in step (c)
we can take advantage of the locality property of EP [10]. From equation (3),
because the term Ψij does not depend on θ

\ij , we can rewrite p̃ as:

p̃(θ) = p̃(θ\ij |θi, θj)p̃(θi, θj) = p̃(θi, θj)q
\ij(θ\ij |θi, θj) .

Furthermore we obtain:

KL[p̃(θ)||q(θ)] = KL[p̃(θi, θj)||q(θi, θj)]

+Ep̃(θi,θj)[KL[q\ij(θ\ij |θi, θj)||q(θ\ij |θi, θj)]] . (4)

The two terms on the right-hand side can be minimized independently. Mini-
mization of the second term gives:

qnew(θ\ij |θi, θj) = q\ij(θ\ij |θi, θj) . (5)

Minimizing the KL divergence for the first term in the right-hand side in (4) re-
duces to matching the moments, mean and covariance, between the 2-dimensional
distributions p̃(θi, θj) and q(θi, θj).

Exploiting this locality property, we managed to go from nplayers-dimensional
integrals to 2-dimensional integrals, which can be further reduced to 1 dimension,
by rewriting them in the following way (see e.g., the appendix of [1]):

〈Ψ(θi, θj)〉N (m,C) = 〈F (aθij)〉N (m,C) = 〈F (θ
√

aT Ca + a
T
m)〉N (0,1)

where a is the vector [−1, 1] if player i is the winner, or a = [1, −1] if player
j is the winner, θij = [θi, θj ], F is defined through equation (1), and N (m, C)
stands for a Gaussian with mean m and covariance matrix C. Substituting the
solution (5), we see that the term approximation, in step (d) of the algorithm,
indeed only depends on θi and θj .

We can simplify the computations by using the canonical form of the Gaus-
sian distribution. Because, when projecting, we need the moment form of the
distribution, we go back and forth between distributions in terms of moments
and in terms of canonical parameters. For a Gaussian, this requires computing
the inverse of the covariance matrix, which is of the order n3

players. Since the
covariance matrix, when refining the term corresponding to the game between
players i and j, changes only for the elements corresponding to players i and
j, we can use the Woodbury formula [8] to reduce the cubic complexity of the
matrix inversion to a quadratic one. Thus, the complexity of EP is:

C(EP) = O(niterations × n2
players × nmatches)

where niterations is the number of iterations back and forth in refining the term
approximations. In practice, the number of iterations to converge seems largely
independent of the number of players or matches. In our experiments, we needed
niterations ≈ 5 to converge.

We will refer to this version of EP as EP-Correlated: by projecting into a non-
factorized Gaussian, it takes into account the correlations between the players’
strengths.
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EP-Independent The complexity of the EP algorithm can be reduced further
if we keep track only of the diagonal elements of the covariance matrix, ignoring
the correlations. The matrix inversion has in this case linear complexity. The
algorithm is faster and requires less memory.

4 Experiments

We applied the approximation algorithms, presented in the previous section, to
the analysis of a real dataset. The dataset consists of results of 38538 tennis
matches played on ATP events among 1139 players between 1995 and 2006.
The goal was to compute ratings for the players based on the match outcomes.
The methods described yield a Gaussian distribution of the players’ strengths;
the mean of the distribution represents our estimate of the players’ strengths,
the rating, and the variance relates to the uncertainty. Furthermore, we predict
results of future games, and estimate the confidence of our predictions. We take
as the prior a Gaussian distribution with mean zero and covariance equal to the
identity matrix.

Figure 1 shows the empirical distribution of the players’ strengths (means of
the posterior distribution) in comparison with the average width of the posterior
for an individual player. It can be seen that the uncertainty for individual players
is comparable to the diversity between players.
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Fig. 1. A histogram of the players’ strengths (means of the posterior distribution) for
all years. The bar indicates the average width of the posterior distribution for each of
the individual players. The results shown are for EP-Correlated.
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4.1 Accuracy

We computed the ratings for the players at the end of each year, based on the
matches from that year. Furthermore, based on these ratings we made predictions
for matches in the next year: in a match we predicted the player with the highest
rating to win.

EP-Correlated versus ADF We compared the accuracy of the predictions
based on EP-Correlated ratings with the ones based on ADF ratings. We divided
all joint predictions into 4 categories as shown in Table 1. We applied a binomial
test on the matches for which the two algorithms gave different predictions to
check the significance of the difference in performance [9]. The p-value obtained
for this one-sided binomial test is 3 × 10−14, which indicates that the difference
is highly significant: EP-Correlated performs significantly better than ADF.

EP-Correlated versus EP-Independent The same type of comparison was
performed between EP-Correlated and EP-Independent, the results are shown in
Table 1. As for the previous comparison, the p-value is very small, 3× 10−7: the
binomial test suggests that the difference between the two algorithms is again
highly significant.

Table 1. Comparison between EP-Correlated, ADF and EP-Independent based on the
number of matches correctly/incorrectly predicted.

ADF EP-Independent

correct incorrect correct incorrect

EP-Correlated

correct 16636 (54.48%) 2395 (7.81%) 17857 (58.46%) 1174 (3.83%)
incorrect 1902 (6.21%) 9620 (31.50%) 945 (3.09%) 10577 (34.62%)

EP-Correlated versus Laplace and ATP Rating We compared Laplace
and EP-Correlated to find out that EP-Correlated does slightly, but not signifi-
cantly better (p-value is 0.3). They disagree on only 0.2% of all matches.

We also compared the accuracy of the predictions based on the EP ratings
with the accuracy of the predictions obtained using the ATP ratings at the end
of the year. The ATP rating system gives points to players according to the type
of the tournament and how far in the tournament they reached. Averaged over
all the years, both EP and ATP ratings, give similar accuracy of predictions for
the next, about 62%.
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4.2 Confidence

With a posterior probability over the players’ strengths we can compute the
confidence of the predictions.

The algorithms presented perform about the same in estimating the confi-
dence. However, they all tend to be overconfident, in the sense that the actual
fraction of correctly predicted matches is smaller than the predicted confidence,
as indicated by the solid line in the left plot of Figure 2. We can correct this
by adding noise to the players’ strengths, to account for the fact that a player’s
strength changes over time:

θt+1 = θt + ǫ

where ǫ has mean zero and variance σ2. To evaluate the confidence estimation,
we plot on the right side of Figure 2 the Brier score [3] for different values of σ.
The optimum is obtained for σ = 1.4, which then yields the dashed line in the
left plot of Figure 2.

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

estimated confidence

fr
ac

tio
n 

co
rr

ec
tly

 p
re

di
ct

ed

0 0.5 1 1.5 2 2.5

−0.2308

−0.2307

−0.2306

−0.2305

−0.2304

σ

B
rie

r 
sc

or
e

Fig. 2. Left: the actual fraction of correctly predicted matches as a function of the
predicted confidence; without added noise (solid line) and with noise of standard de-
viation 1.4 added (dashed line); the dotted line represents the ideal case and is drawn
for reference. Right: the Brier score for the confidence of the predictions as a function
of the standard deviation of the noise added to each player’s strength.

5 Conclusions

Based on the experimental results reported in this study we draw the conclu-
sion that EP-Correlated performs better in doing predictions for this type of
dataset than its modified versions, ADF and EP-Independent. Further experi-
ments should reveal whether this also applies to other types of data.

Our results are generalizable to more complex models, e.g. including dynam-
ics over time, which means that a players rating in the present is related to his
performance in the past [4]; and team effects: a player’s rating is inferred from
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team performance [5, 6]. Specifically for tennis, the more complex models should
also incorporate the effect of surface because the performance of tennis players in
a match is influenced by the type of surface they play on (grass, clay, hard court,
indoor). In this paper we considered the most basic probabilistic rating model;
this model performs as good as the ATP ranking system. We would expect that
the more complex models could outperform ATP.
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and Léon Bottou, editors, Advances in Neural Information Processing Systems 17,
pages 601–608. MIT Press, Cambridge, MA, 2005.

7. T. P. Minka. A Family of Algorithms for Approximate Bayesian Inference. PhD
thesis, M.I.T., 2001.

8. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, 1992.

9. Steven L. Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended
approach. Data Mining and Knowledge Discovery, 1(3):317–328, 1997.

10. M. Seeger. Notes on Minka’s expectation propagation for Gaussian process classi-
fication. Technical report, University of Edinburgh, 2002.


