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Abstract. We present an approach for inferring transcriptional regu-
latory modules from genome sequence and gene expression data. Our
method, which is based on symmetric causal independence models, is
both able to model the logic behind transcriptional regulation and to
incorporate uncertainty about the functionality of putative transcrip-
tion factor binding sites. Applying our approach to the deadliest species
of human malaria parasite, Plasmodium falciparum, we obtain several
striking results that deserve further (biological) investigation.
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1 Introduction

One of the major challenges facing biologists is to understand the transcriptional
regulation of genes, which is critical for the development, complexity and home-
ostasis of all living organisms. The introduction of DNA microarray technology
[26], which enables researchers to simultaneously measure the concentration of
RNA transcripts from a single sample of cells or tissues, has offered the possibil-
ity to infer large-scale transcriptional regulatory networks for various organisms.
The algorithms developed for this purpose can be grouped into two general
strategies: an influence strategy, which seeks to identify regulatory influences
between RNA transcripts, and a physical strategy, which seeks to identify the
proteins that regulate transcription and the DNA motifs to which the proteins
bind [11]. In this paper, we propose a method following the latter strategy, which
has the advantage of being able to combine genome sequence data and RNA ex-
pression data to enhance the specificity and sensitivity of predicted interactions.

The physical strategy methods that make use of both RNA expression data
and genome sequence data rely on the assumption that genes with similar ex-
pression profiles share common regulatory mechanisms. Based on the way in
which the two sources of data are related, we can distinguish three groups of
these methods. The first group includes the methods that first cluster genes on
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the basis of their expression patterns and then search for putative motifs in the
upstream regions of the genes in each cluster. The early methods following this
approach searched for individual transcription factor binding site patterns in
upstream regions of the coexpressed genes (see e.g. [5, 8, 28]), while the more
recent algorithms search for DNA target sites for cooperatively binding tran-
scription factors [12, 18]. The methods in the second group work in the opposite
direction, first identifying a set of candidate motifs and then trying to explain
RNA expression using these motifs [7, 15, 22]. Finally, the algorithms in the last
group use both sources of data together. These methods use one or more itera-
tions of the following procedure: first, genes are clustered or grouped according
to their expression data, then the search for motifs in the upstream regions of
the coexpressed genes is performed, and, finally, the motifs identified are used
to build models that predict the expression pattern of the gene (see e.g. [2, 27]).

A key feature of transcriptional regulation of gene expression in eukaryotes
is that genes are often regulated by more than one transcription factor [30]. A
number of approaches have been proposed to address the combinatorial nature
of transcriptional regulation. One approach is based on the assumption that the
influence of different transcription factors on gene expression is additive. The
studies based on this approach use a simple linear regression to relate transcrip-
tion factor binding sites to gene expression values [7, 17]. A probabilistic model
by Segal et al. [27] assumes that genes are partitioned into modules, which de-
termine the gene expression profile. The strength of the association of a gene
with a module is the sum of its weighted motifs, where each weight specifies
the extent to which the motif plays a regulatory role in the module. These ap-
proaches, however, cannot identify synergistic motif combinations that control
gene expression patterns. Algorithms have been developed to model the synergy
between two transcription factors that bind to sites located anywhere in the
upstream region [22] or sites that are spatially close to each other [7, 12]. Beer
and Tavazoie [2] present an approach which utilizes AND, OR and NOT logic to
capture combinatorial effects of transcription factors in the regulation of gene ex-
pression. This method is not only able to infer combinatorial rules that involve
more than two transcription factors, but it also includes constraints on motif
strength, orientation and relative position. A similar method has been reported
by Hvidsten et al. [15]. To link transcription factor binding site combinations to
genes with particular expression profiles, the method extracts IF-THEN rules
which correspond to AND logic.

Although the methods that model combinatorial effects of the motifs have
appealing properties, their drawback is their inability to cope with uncertainty
in the transcription factor binding sites that are identified. The robustness of the
method in the face of uncertainty is important, as non-functional transcription
factor binding sites can be readily found throughout the genome, including pro-
moters [31]. We present an approach which is both able to model the logic behind
transcriptional regulation and to incorporate uncertainty about the functionality
of putative transcription factor binding sites. Our probabilistic method, which
is based on symmetric causal independence models, extends the earlier methods
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that infer combinatorial rules in two important directions. First, we use a broad
class of Boolean functions, symmetric Boolean functions, to capture combinato-
rial effects of transcription factors in the regulation of gene expression. Second,
the motifs contribute to the regulation of a gene through hidden variables; thus,
the method is able to cope with non-functional transcription factor binding sites.

In this paper, we apply our method to Plasmodium falciparum, which is
the deadliest species of the parasite that causes malaria in humans. Human
malaria infects between 300 and 500 million people and causes up to 2.7 million
deaths annually, mostly among young children in Sub-Saharan Africa [6]. In
many endemic countries, malaria is also responsible for economic stagnation [23].
A good understanding of transcriptional regulation in this organism is important
for devising new ways to disrupt the parasite’s life cycle.

2 Methodology

In this section, we present our approach based on symmetric causal independence
models for inferring transcriptional regulatory modules from genome sequence
and gene expression data. The underlying assumption in this approach is that
genes in the different clusters share common regulatory mechanisms. When try-
ing to separate the genes in one cluster from all others, we aim to find motifs
and their interactions that are specific to specific regulatory mechanisms. We
start our method (Figure 1) with a ‘data pre-processing’ step, where we use a
motif-finding algorithm to identify putative transcription factor binding motifs
and we cluster genes according to their expression profiles. Then, for each cluster
of genes that exhibited significant changes, we learn a symmetric causal inde-
pendence model, which, given the binding sites of a gene, classifies the gene as
belonging to the cluster or not. Finally, we analyze the results of experiments
and identify potential transcription factors binding to the motifs that play a
regulatory role in gene expression. All these steps are described in detail further
in this section.

Fig. 1. Overview of the proposed approach.
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2.1 Finding transcription factor binding motifs

We extracted the DNA sequence 1000 bp upstream from the initiation codon
of each of 5404 Plasmodium falciparum genes using PlasmoDB release 5.2. In
instances where the upstream regulatory region overlapped with another open
reading frame, we extracted only the sequence between the open reading frames.
To find over-represented motifs, the extracted sequences were analyzed using
the AlignACE program [13]. We set the GC background parameter to 0.13 (the
fractional GC background for these regions), the number of columns to align to
10 and the number of expected sites to 5.

2.2 Clustering of the RNA expression data

We used a Plasmodium falciparum 3D7 strain RNA expression data set [4]. We
downloaded data that were normalized and median-centered and we only used
data for those oligonucleotides that have a corresponding open reading frame
assigned from PlasmoDB. We discarded the genes for which more than 20% of
measurements were missing. A number of open reading frames had more than one
oligonucleotide measured; we averaged the measurements of these open reading
frames. After the data had been log2 transformed, we imputed missing values
using the weighted K-nearest neighbours method. We chose to use this data
imputation method as it has been shown to provide a more robust and sensitive
missing value estimation in microarray data than a singular value decomposition
based method or the commonly used row average method [29]. The weighted K-
nearest neighbours method uses a weighted average of values from the K genes
closest to the gene of interest as an estimate for the missing value. Based on the
results reported in [29], we chose the value of K to be 15 and Euclidean distance
as a metrics for gene similarity.

We used the K-means algorithm [19] with random initializations to cluster
the genes according to their RNA expression data. Since the K-means algorithm
is known to sometimes get stuck in a local optimum, we ran the algorithm 10
times for each number of clusters. To select the optimal number of clusters we
used the so-called C-index [14], which has been shown to outperform 13 other
indices for determining the number of clusters in binary data sets when the data
are clustered using the K-means algorithm [10].

2.3 Learning symmetric causal independence models

The global structure of a symmetric causal independence model is shown in Fig-
ure 2; it expresses the idea that causes C1, . . . , Cn influence a given common effect
E through hidden variables H1, . . . , Hn and a symmetric Boolean function f . All
variables in this model are binary; the hidden variable Hi is considered to be
a contribution of the cause variable Ci to the common effect E. The function
f represents in which way the hidden effects Hi, and indirectly also the causes
Ci, interact to yield the final effect E. To learn more about symmetric causal
independence models and learning them, see [16].
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C1 C2 . . . Cn

H1 H2 . . . Hn

E f

Fig. 2. Symmetric causal independence model

In this paper, we use symmetric causal independence models as a technique
to model combinatorial effects of transcription factor binding motifs in the reg-
ulation of gene expression. Transcription factor binding sites are causes in this
model, where the positive state of this variable is presence or absence of the
motif, depending on the motif’s effect on expression of genes in the cluster. The
positive state of the effect variable represents gene belonging to the cluster, and
the negative state represents gene belonging to any other cluster.

We used a greedy approach to select the motifs whose absence or presence
contributes to the difference between the expression of genes belonging to a given
cluster and the expression of the other genes. First, we ranked all motifs based
on their mutual information scores, where the mutual information measures the
mutual dependence of the variable M that represents a motif and the class
variable C and is defined as:

I(M ; C) =
∑

m∈M

∑

c∈C

Pr(m, c) log
Pr(m, c)

Pr(m) Pr(c)
.

Then, we built a model from the h highest ranked motifs. We started from a
model containing only a leaky cause, then iteratively added the next highest
ranked motif and evaluated the model thus obtained. If the new model did not
have a higher score than the previous model, the motif was removed from the
model. Since there are 2n+1 symmetric Boolean functions for a model with n
variables that represent motifs, evaluating all the resulting models is too expen-
sive computationally. Therefore, we restricted the interaction function space to
the Boolean threshold functions. This restriction means that for every added
motif we only had to evaluate two models, a gene model with the interaction
function τk and a gene model with the interaction function τk+1, where τk is the
interaction function from the model with the highest score. We evaluated each
model using the classification accuracy on the validation set.

To solve the problem of unbalanced data (different class size, see Table 1),
we added as many copies of every gene from the smaller class as was needed
for this class to amount for at least half of the genes. To learn the parameters
of the gene model, we ran 25 iterations of the EM algorithm, computed the
classification accuracy on the validation set after each iteration and chose those
parameters that provided the highest score.
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2.4 Evaluation of the results

We used two error estimation methods, cross-validation and bootstrap, to eval-
uate the models learned. The cross-validation scheme was used to examine the
predictive performance of the models, whereas the bootstrap approach was used
to evaluate the reliability of the model parameters. For both methods, we per-
formed 100 runs, and the data was split into training, validation and test sets.
The validation set was used to choose the number of iterations of the EM algo-
rithm and the threshold function; the results reported were obtained using an
independent test set.

We used the results of the bootstrap approach to test for potential syner-
gistic motif pairs. From the results of the bootstrap approach, we estimated
θ̂ = (θ1, θ2, . . .), where θi is the probability that motif Mi will be chosen as a
feature in the model. We introduce a variable Xjk that specifies four possible
combinations of occurrence of the motifs Mj and Mk. Our null hypothesis was
that Xjk follows multinomial distribution, with each trial resulting in one of 4
possible outcomes with probabilities p1 = (1− θ̂j)(1− θ̂k), p2 = θ̂j(1− θ̂k), p3 =
(1 − θ̂j)θ̂k, p4 = θ̂j θ̂k, and the number of trials n being equal 100. To measure
the discrepancy between the observed and expected counts, we used Pearson’s
chi-square statistic:

X2 =
∑

i

(Oi − Ei)2

Ei

where i is a possible outcome and the expected count Ei = npi.
To compare our classifier to a classifier which assigns all genes to the biggest

class, we used a binomial test described in [24]. The test uses the number of
cases n for which the two classifiers produce a different output, and the number
of cases s where the output of the examined classifier was correct, while the
output of the reference classifier was wrong. Under the null hypothesis that the
two classifiers perform equally well, we compute:

p = 2
n∑

i=s

n!
i!(n− i)!

0.5n.

2.5 Identifying potential transcription factors binding to the motifs

To identify potential transcription factors binding to the motifs, we used com-
parative genome analysis, which is based on the fact that sequence similarity
might reflect functional similarity. Identification, which was done separately for
each motif, involves three steps. Firstly, we used STAMP [20], a web tool for ex-
ploring DNA-binding motif similarities, to find a number of the closest matches
for a given motif in 13 supported databases. Secondly, for each match found,
we checked whether the database where the motif is stored reports a transcrip-
tion factor binding to it. Finally, if the transcription factor is known, we used
BLAST [1, 25] to find the most similar protein sequences from the Plasmodium
falciparum protein database.
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3 Experimental Results

3.1 Transcription factor binding motifs found and clusters obtained

AlignACE found 100 transcription factor binding motifs in the given upstream
sequences. The motifs that were found to be the most important features for
classifying the genes will be discussed later in this section.

We chose the number of clusters to be 5, as the C-index curve had an ‘elbow’
at this value. Figure 3 presents the clusters obtained, which are comparable to
the four characteristic stages of intraerythrocytic parasite morphology discussed
by Bozdech et al. [4], as the vast majority of genes induced in every one of
the stages belong to one of four clusters. Cluster 5 is a cluster of genes whose
expression did not show a significant change. The correspondence among the
characteristic stages and the clusters and the cluster sizes are given in Table 1.
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Fig. 3. Clusters of Plasmodium falciparum RNA expression data.

3.2 Models learned

We learned the models for the first four clusters, i.e. the clusters of genes whose
expression changed throughout the intraerythrocytic stage.

The classification accuracy of the gene models learned using the cross-validation
procedure explained in 2.4 is reported in Table 1. The p-values for the null hy-
pothesis that the gene models perform equally well as a classifier which assigns
all genes to a bigger class are less than 10−10.

Table 2 lists the motifs that were most often selected as features of the gene
model. Due to space limitations, we report only those motifs that were selected as
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Table 1. A brief description of the clusters, the number of the genes assigned, the
corresponding characteristic stage of intraerythrocytic parasite morphology; and clas-
sification accuracy obtained using the cross-validation procedure.

Cluster Number of Corresponding Accuracy Baseline
genes stage obtained (%) accuracy (%)

1 329 schizont 60.48 50.79
2 1033 ring/early trophozoite 61.52 52.52
3 985 trophozoite/early schizont 59.16 50.90
4 144 early ring 63.21 51.30
5 1344 - - -

features of the model in more than 50 bootstrap runs. Some of the motifs appear
in more than one cluster; however, their weighting is different (not shown) and
they can be either ‘present’ or ‘absent’ (the presence or absence is a positive
state of the corresponding variable in the model). Sequence logos of the motifs,
which were generated using the WebLogo program [9], are shown in Figure 4. A
study of the positive states of the variables representing the motifs selected as
features of the model in more than 20 bootstrap runs reveals a distinct pattern.
The variables in models for cluster 2 and cluster 4 represent the absence of the
motifs, while the variables in models for cluster 1 and cluster 3 mainly represent
the presence of the motifs. Even though there are 6 motifs that break this pattern
in clusters 1 and 3, these motifs are found in a very small number of genes (from
1 to 5 % of genes); the other motifs selected are much more common in genes.
The summary of these results is presented in Table 3.

Table 2. Motifs that were selected as features of the model in more than half of the
bootstrap runs; the number of runs the motif was selected is given in parentheses.
‘Present’ motifs are written in roman, ‘absent’ motifs are written in roman.

Cluster Motifs selected more than 50 times

1 Motif 38 (100), Motif 37 (95), Motif 6 (65), Motif 59 (65), Motif 11 (63),
Motif 21 (55)

2 Motif 6 (98), Motif 35 (93), Motif 37 (89), Motif 38 (89), Motif 11
(75), Motif 21 (68), Motif 59 (68), Motif 7 (64), Motif 80 (59)

3 Motif 6 (100), Motif 88 (82), Motif 38 (67), Motif 59 (60), Motif 21 (51)
4 Motif 6 (99), Motif 11 (93), Motif 4 (55)

Interpretation of the probabilities of the hidden variables is somewhat tricky
as they highly depend on the number of input variables and the interaction
function in the model, which currently vary a lot from one bootstrap run to
another. Nevertheless, there is a pattern which suggests that probabilities of
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Fig. 4. Sequence logos of the motifs that were selected as features of the model in more
than half of the bootstrap runs.

Table 3. Positive states of variables representing the motifs that were selected as
features of the model in at least 20 bootstrap runs.

Cluster Motifs selected Positive state: absence Positive state: presence

1 14 2 12
2 14 13 1
3 10 4 6
4 15 15 0

hidden variables contain information about functionality of putative transcrip-
tion factor binding sites. The pattern emerges when we compare probabilities of
hidden variables with the average of probabilities of the other hidden variables
in the model. The probabilities in clusters of ‘absent’ motifs were almost the
same, while the probabilities in clusters of ‘present’ motifs differed much more
and the majority of motifs had the tendency to have corresponding probabilities
below or above the average.

To find statistically significant occurrences of motif pairs, we tested all pos-
sible pairs of the motifs selected as causes in the model in at least 20 bootstrap
runs (see 2.4 for the description of the method). We rejected the null hypothesis
at the significance level of 0.05 (corrected for multiple testing) for two motif
pairs from cluster 4: for the pair of motifs 70 and 72 (with p-value of 0.0055),
and the pair of motifs 4 and 5 (with p-value of 0.0174). These motifs were se-
lected together to be features in the model more often than it would be expected.
Sequence logos for potential synergistic motif pairs are shown in Figure 5.

3.3 Potential transcription factors binding to the motifs

We present the most significant findings for the motifs reported in Figure 4.
Motifs 6, 11 and 35 have the same closest match - the binding site of fruit fly’s

transcription factor Topoisomerase 2, reported in FlyReg database [3]. The most
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Fig. 5. Sequence logos of potential synergistic motif pairs.

significant alignment in Plasmodium falciparum is PF14 0316, putative DNA
topoisomerase 2, whose protein sequence is nearly identical (E value of 0.0).

Another gene of Plasmodium falciparum that is a potential transcription fac-
tor binding to at least two of the motifs discussed is PF14 0175, which is anno-
tated as a hypothetical protein in PlasmoDB. One of the closest matches for mo-
tif 7 is MCM1+SFF M01051 reported in TRANSFAC database [21]. The most
significant alignment for MCM1, which is yeast transcription factor involved in
cell-type-specific transcription and pheromone response and plays a central role
in the formation of both repressor and activator complexes, is PF14 0175 (E
value of 10−5). Another motif to which this transcription factor could bind is
motif 80; this possible connection was found through a different transcription
factor in a different organism. Motif FOXP1 M00987 reported in TRANSFAC is
a close match to motif 80. Mouse transcription factor FOXP1 which binds to this
motif is thought to repress expression of epithelial genes in the lung and reduce
expression from promoters of mouse CC10 gene G002818. The most significant
alignment for variants T04812 and T04813 of FOXP1 in Plasmodium falciparum
is PF14 0175 (E value of 10−8).

A gene which is found as potential transcription factor for one third of the
motifs analyzed is PFL0465c, zinc finger transcription finger (krox1). For motif
4, the connection was found through motif Helios M01004 reported in TRANS-
FAC and mouse transcription factor IKAROS family zinc finger 2, Helios, whose
functions include zinc ion binding, DNA binding and nucleic acid binding (E
value of 7 · 10−6). For motif 21, the connection was found through motif CF2-
II M00012 reported in TRANSFAC and fruit fly transcription factor CF2-II, a
late activator in follicle cells during chorion formation (E value of 10−6).

4 Discussion and Future Work

We have presented an approach which is both able to model the logic behind
transcriptional regulation and to incorporate uncertainty about the functionality
of putative transcription factor binding sites. Another advantage of our technique
is that it does not require other biological knowledge than genome sequence data
and RNA expression data to validate the results. Since we do not use expression
data while searching for putative regulatory motifs, the accuracy of the models
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in predicting gene expression pattern is an unbiased measure of the soundness
of the models learned.

Experimental results revealed the lack of consistency in the properties of the
models learned. This inconsistency could be caused by the lack of additional
constraints on the motifs, such as position relative to the translation start, ori-
entation and functional depth. Therefore, the next step in our research is to
implement normal and binomial approximations to Poisson binomial distribu-
tion, which will help to reduce computational complexity of the EM algorithm.
Reduced computational complexity will enable us to test more interaction func-
tions and to examine the additional constraints on the motifs.

We will also continue our discussions with biologists to find the explanation
to the experimental results, especially, the pattern of clusters of ‘present’ and
‘absent’ motifs, and potential transcription factors binding to the motifs.
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10. Dimitriadou, E., Dolničar, S. Weingessel, A.: An examination of indexes for deter-
mining the number of clusters in binary data sets. Psychometrika 67 (2002) 137–160

11. Gardner, T.S., Faith, J.: Reverse-engineering transcription control networks.
Physics of Life Reviews 2 (2005) 65–88

12. GuhaThakurta, D., Stormo, G.: Identifying target sites for cooperatively binding
factors. Bioinformatics 17 (2001) 608–621



12 Rasa Jurgelenaite et al.

13. Hughes, J.D., Estep, P.W., Tavazoie S., Church, G.M.: Computational identifica-
tion of cis-regulatory elements associated with groups of functionally related genes
in Saccharomyces cerevisiae. Journal of Molecular Biology 296 (2000) 1205–1214

14. Hubert, L.J., Levin, J.R.: A general statistical framework for accessing categorical
clustering in free recall. Psychological Bulletin 83 (1976) 1072–1082
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25. Schäffer, A.A., Aravind, L., Madden, T.L., Shavirin, S., Spouge, J.L., Wolf,
Y.I., Koonin, E.V., Altschul, S.F.: Improving the accuracy of PSI-BLAST protein
database searches with composition-based statistics and other refinements. Nucleic
Acids Research 29 (2001) 2994–3005

26. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science 270 (1995)
467–470

27. Segal, E., Yelensky, R., Koller, D.: Genome-wide discovery of transcriptional mod-
ules from DNA sequence and gene expression. Bioinformatics 19 (2003) 1273–1282

28. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic
determination of genetic network architecture. Nature Genetics 22 (1999) 281–285

29. Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., Bot-
stein D., Altman R.B.: Missing value estimation methods for DNA microarrays.
Bioinformatics 17 (2001) 520–525

30. Wagner, A.: Genes regulated cooperatively by one or more transcription factors and
their identification in whole eukaryotic genomes. Bioinformatics 15 (1999) 776–784

31. Werner, T.: Models for prediction and recognition of eukaryotic promoters. Mam-
malian Genome 10 (1999) 168-175


