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Abstract 
Mixture density models, particularly those based on 
the Gaussian distribution, are widely used in 
machine learning tools for data modeling and 
classification. Gaussian mixture models have also 
been used in biomedical signal processing 
applications involving electrophysiological signals 
such as the electromyogram (EMG) and electro-
encephalogram (EEG). In this paper, we consider a 
generalization of the Gaussian mixture model, which 
is based on the generalized exponential distribution. 
We describe a means of fitting such a model to data 
and explore its utility for bio-signal analysis. 
 

1 Introduction 
Parametric probabilistic models form an important 
aspect of statistical signal processing and analysis. 
They are generally useful for signal classification and 
can be used to infer or detect state changes in the 
underlying system. Parametric models can facilitate 
these tasks, because the class-conditional posterior 
probabilities computed using Bayes’ rule then have 
analytic expressions. Mixtures of Gaussian (MOG) 
distributions [1] are a versatile tool for parametric 
modeling of arbitrary probability distributions and 
have been used to classify EMG [2] and EEG [3] 
signals. Here, we consider an extension of the MOG 
density model, based on the generalized exponential 
distribution, and its use in biomedical signal analysis. 
 This paper is organized as follows. Section 2 
reviews the MOG density model and the expectation 
maximization (EM) algorithm for estimating its 
parameters. Section 3 introduces the generalized 
exponential distribution and describes a modification 
of the EM algorithm for fitting mixtures of generalized 
exponentials (MGE). Section 4 discusses model 
selection criteria useful for determining an optimal 
number of mixture components and for choosing 
between different mixture models. Section 5 has 
examples of how MGE density models can be used 
to analyze electrophysiological signals. Section 6 
has a summary. 

2 Mixtures of Gaussians 
The probability density function (pdf) of a univariate 
distribution comprising K component densities (here 
a mixture of Gaussians) has the general form 
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of Gaussian (Normal) densities, e.g., [4] 
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where 

! 

µk  and 

! 

" k  reflect the mean and standard 
deviation of the kth Gaussian. An example pdf for a 
MOG density is shown in Figure 1. 
 The total log-likelihood of a MOG density model 
for N samples of data is therefore 
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The standard approach for obtaining the maximum 
likelihood estimate for the MOG parameters is the 
expectation maximization (EM) algorithm [5]. The EM 
algorithm alternates between updating the posterior 
probabilities that each data point was generated by 
the kth mixture component, the E-step:  
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and weighted maximum likelihood updates of the 
parameters of each mixture component, the M-step: 
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Figure 1. The probability density function of a mixture of several 
Gaussian distributions. 

 
 The EM algorithm (especially in cases of high-
dimensional multivariate Gaussian mixtures) has a 
tendency to converge to spurious solutions when 
there are singularities in the log-likelihood function 
due to small sample sizes, outliers, repeated data 
points or rank deficiencies leading to “variance 
collapse”; these problems along with possible 
preventative measures have been described by 
several authors [6]-[8]. However, these issues are 
beyond the scope of this paper, which is focused on 
applications with large samples of univariate data. 
 
3 Mixtures of Generalized Exponentials 
A generalized formulation of the pdf of the univariate 
Gaussian distribution (2) where the power in the 
exponential term can take strictly positive values 
other than 2 was proposed by [9] as the exponential 
power distribution, whose pdf is symmetric about the 
mean and has a general expression, e.g. [10], 
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where 

! 

µ  is the mean and 

! 

" > 0 is a scale parameter 
corresponding to the standard deviation. The shape 
parameter 

! 

" > 0  reflects kurtosis and controls the 
degree of deviation from normality. Thus, as shown 
in Figure 2, for 

! 

" = 2  the distribution is Gaussian, for 

! 

" = 1 it is Laplacian, as 

! 

" #$  it becomes uniform, 
and as 
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" # 0 it approaches a delta function at 
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µ . 
The scaling terms 
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Figure 2. The probability density function of the exponential power 
(or generalized exponential) distribution for different values of α. 

 
 The exponential power distribution has been 
variously referred to as the generalized Gaussian, 
generalized Laplacian and generalized exponential 
distribution (the preferred term here) [9]-[12]. 
 The sample mean and standard deviation can 
be taken as method of moments estimates (MME) 
for the location and scale parameters 

! 

µ  and 

! 

" . 
However, the relationship between the sample 
kurtosis, as measured by 

! 

" = E(x # µ)4 /$ 4
# 3, and 

the shape parameter 

! 

"  is more complex 
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Nevertheless, one could use numerical optimization 
approaches to estimate to 

! 

"  with respect to kurtosis, 
e.g., a golden section search or a look-up table 
mapping the relation in (11), which is independent of 

! 

µ  and 

! 

" . Maximum likelihood estimates (MLE) for 

! 

µ , 

! 

"  and 

! 

"  require the solution of a system of three 
coupled nonlinear equations, e.g. [11]. 
 By adding parameter subscript indices and 
substituting equation (8) for the Gaussian pdf term in 
equation (1) we obtain a general expression for the 
pdf of a mixture of generalized exponentials (MGE) 
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where the parameters are 
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"K = [wk ,µk ,# k ,$k ]k=1
K  and 

the mixture component weights 

! 

wk  have the same 
constraints as before. Figure 3 shows the pdf of an 
MGE with 4 components. The MGE parameters can 
be estimated using a suitably modified (approximate) 
version of the EM algorithm, where the E-step is  
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Figure 3. The probability density function of a mixture of several 
generalized exponential distributions (each with different kurtosis). 

 
 The M-step update for 

! 

wk  follows equation (5); 
precise M-step updates for 

! 

µk , 

! 

" k  and 

! 

"k  require 
numerical optimization of the weighted log-likelihood 
function with respect to each of the parameters 
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A simple alternative is to use approximate M-step 
updates based on (weighted) method of moments 
estimates of 

! 

µk  and 

! 

" k  as in equations (6) and (7), 
and the kurtosis of the kth mixture component 

 

! 

" k
# =

$ i=1
N
hi
k
(xi % µk

#
)
4

(& k
#
)
4
$ j=1
N
h j
k

% 3, (15) 

so that 

! 

"k

#  can be determined with respect to 

! 

" k

#  
using the relationship in (11). Note that numerical 
optimization using kurtosis is computationally far 
more efficient than numerical optimization of (14), 
which may be an important factor for some practical 
applications. For the examples reported in section 5 
we used numerical optimization of (14). 
 
4 Model Selection Criteria 
Given the tools for estimating the parameters of 
MOG or MGE models comprising a specified number 
of mixture components K, a remaining problem is to 
estimate the “correct” model order 

! 

ˆ 
K " K  from the 

data sample. Since the log-likelihood for these 
models can readily be computed, it makes sense to 
use a standard likelihood-based model selection 
criterion such as Akaike’s information criterion (AIC)  
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AIC ("K ) = #2L("K ) + 2P , (16) 
or the Bayes information criterion (BIC) 
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BIC ("K ) = #2L("K ) + P logN , (17) 

which both aim to optimally balance model accuracy 
and parsimony by penalizing for excessive numbers 
of parameters P; BIC also accounts for sample size. 
For MOG models 

! 

P = 2K + K "1 and for MGE models 

! 

P = 3K + K "1. Thus, an optimal choice for 

! 

ˆ 
K " K  is 

the one which minimizes (16) or (17). Such model 
selection criteria also facilitate comparisons between 
MOG and MGE models fitted to the same data. 
 
5 Biomedical Signal Processing Applications 
We investigated the relative utility of MOG and MGE 
densities for modeling and analysis of single channel 
electrophysiological signals such as EMG, EOG and 
EEG. We were particularly interested to see whether 
the MGE distribution would yield a more optimal 
description (i.e. more accurate and/or parsimonious) 
of the data than the MOG model, when comparing 
the number of mixture components determined for 
each model using BIC. 
 We used data from the experiment described in 
[13] and selected two trials from the condition 
involving right hand movement for analysis. We fitted 
MEG and MGE models to the signals from the right 
extensor EMG channel, the vertical EOG, and the 
EEG electrode C3. In each case we found that the 
optimal MGE model has a lower BIC than the optimal 
MOG model, as shown in Figures 4, 5 and 6. 
 We also wanted to illustrate how mixture density 
models can be used for signal classification (e.g., 
event detection) when different mixture components 
of the model can be identified with different states of 
the measured system, such as muscle contraction 
(movement) in EMG, eye-blinks in the EOG, and 
changes in brain state during a behavioral task 
(movement) reflected in the EEG. 
 

 
Figure 4. Reference EMG signal with MOG and MGE models (A). 
The “activation” probability of one MGE (red) mixture component 
on EMG from a second trial tracks muscle contraction (B). 
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Figure 5. Reference EOG signal with MOG and MGE models (A). 
The “activation” probability of one MGE (red) mixture component 
on EOG from a second trial tracks eye-blinks (B). 
 

 Using the MGE models from the first trial, we 
(manually) identified the dominant component during 
the movement period for EMG and EEG, and for 
eye-blinks in the EOG. We then analyzed the signals 
from the second trial by averaging the component 
posterior probabilities computed using equation (13) 
over a short moving window. This gives a relatively 
smooth estimate of the probability that the signal 
reflects components of interest. 
 

6 Summary 
We introduced a mixture density model based on the 
generalized exponential distribution as an analysis 
tool for biomedical signal processing. We described 
the EM algorithm for maximum likelihood parameter 
estimation and showed that the MGE model can 
provide a more optimal description of data than a 
MOG model and is useful for signal classification. 
 

 
Figure 6. MOG and MGE models for reference EEG (A). The 
“activation” probability relates to movement related activity (B). 
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