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ABSTRACT

In this article we study inference problems in non-linear dy-
namical systems. In particular we are concerned with as-
sumed density approaches to filtering and smoothing. In mod-
els with uncorrelated (but dependent) state and observation,
the extended Kalman filter and the unscented Kalman filter
break down. We show that the Gaussian particle filter and
the one-step unscented Kalman filter make less assumptions
and potentially form useful filters for this class of models.
We construct a symmetric smoothing pass for both filters that
does not require the dynamics to be invertible.

We investigate the characteristics of the methods in an in-
teresting problem from mathematical finance. Among others
we find that smoothing helps, in particular for the determinis-
tic one-step unscented Kalman filter.

1. INTRODUCTION

Filtering and estimation problems in linear dynamical sys-
tems are well understood. The Kalman filter and Rauch-Tung-
Streibel smoother provide efficient algorithms for exact on-
line and off-line estimates. These algorithms are based on two
main characteristics of the canonical linear dynamical system.
The first is the conditional independence structure, which al-
lows for a fast recursive algorithm. The second characteristic
is that all required local operations can be done analytically
and efficiently: due to the linear-Gaussian assumptions in the
model only Gaussians need to be multiplied and integrated
out.

Non-linear dynamical systems share the conditional in-
dependencies, but the local operations, in general, have no
analytic solutions.

The oldest approximate inference algorithm, the extended
Kalman filter (EKF) (see e.g. [10] and references therein), ap-
proximates the filtered posteriors at every time step by a Gaus-
sian. Local integrals are approximated using an explicit lin-
earization. The unscented Kalman filter (UKF) [4] improves
upon the extended filter. As emphasized in [6] the UKF can
be interpreted as an EKF where the linearization is obtained
using Gaussian quadrature.

Both methods are examples of assumed density filtering
methods: the recursively computed approximations are pro-

jected onto a chosen parametric form, the assumed density (a
Gaussian in this case).

The measurement update steps in both the EKF and UKF
are (implicitly) based on a linearization of the observation
model. A simple argument in [12] shows that for models with
uncorrelated (but dependent) state and observation, approx-
imations based on such explicit linearizations break down.
They result in a Gaussian approximation where state and ob-
servation are uncorrelated, but therefore, due to their Gaus-
sianity, also independent. I.e. the approximate filter never up-
dates the state prediction after making an observation.

Throughout this article we will consider the following gen-
eral class of non-linear models

xt = f(xt−1, εt), εt ∼ N (0, Q), for t = 2 : T (1)

yt = g(xt, ηt), ηt ∼ N (0, R), for t = 2 : T (2)

with states x1:T and observations y1:T . All disturbances εt

and ηt are assumed to be independently drawn, and x1 ∼
N (m1, V1). In the above, boldface variables denote vectors,
and N (m, V ) denotes the (multivariate) Gaussian probability
density with mean m and covariance V . Occasionally we will
write N (x;m, V ) to emphasize that x is normally distributed
with mean m and covariance V .

For practical reasons we will assume that p(yt|xt) =∫
g(xt, ηt)p(ηt)dηt with p(ηt) Gaussian, can be computed

analytically. We will come back to this in Section 2.

2. DETERMINISTIC AND STOCHASTIC GAUSSIAN
PARTICLE FILTERING

The extra Gaussian approximation of p(xt,yt|y1:t−1) in the
measurement update of the traditional unscented filter can be
circumvented by approximating p(xt|y1:t) directly. We in-
vestigate a Monte Carlo and a deterministic approach. Be-
low the measurement updates for univariate problems are pre-
sented; extensions to multivariate problems are straightfor-
ward.



Measurement update p̃(xt|y1:t) = N (xt; mt|t, vt|t), with

mt|t =
∫

xt
p(yt|xt)p̃(xt|y1:t−1)

Zt
dxt

Zt =
∫

p(yt|xt)p̃(xt|y1:t−1)dxt = p̃(yt|y1:t−1)

vt|t =
∫

(xt − mt|t)2
p(yt|xt)p̃(xt|y1:t−1)

Zt
dxt .

These integrals can be approximated using importance
sampling, which leads to the (stochastic) Gaussian par-
ticle filter [5]. Often the prior can be used as a proposal
distribution, but more elaborate proposal distributions
can be used as well.

More in spirit with the original UKF, the above inte-
grals can also be approximated using points determined
by Gaussian quadrature [1, 12]. Monomial points and
weights {Xi, Wi} are determined for the state xt ∼
N (mt|t−1, vt|t−1), and the mean and variance are up-
dated as

Zt =
∑

i

Wip(yt|Xi) (3)

mt|t =
∑

i

WiXi
p(yt|Xi)

Zt
(4)

vt|t =

[∑
i

WiX 2
i

p(yt|Xi)
Zt

]
− (

mt|t
)2

. (5)

In our implementation we have used the McNamee-
Stenger quadrature rules [7].

There is a strong similarity between the two approaches.
The importance sampling based approach would have
the same updates (3)–(5) but would draw, instead of
deterministically place, Xi from the prior p̃(xt|y1:t−1)
and always associate Wi = 1.

For any finite number of samples, the importance sam-
pling approximation of the local integrals is biased. In the
limit of infinite samples they converge to the exact expecta-
tions. The deterministic approach is also biased, since p(y t|xt),
the likelihood of observing observation y t, is not a polynomial
in xt. Both methods fail when the prior is ill-matched to the
posterior. In such cases more elaborate proposal distributions
may permit useful approximations.

In the measurement update we have assumed that the in-
tegral

p(yt|xt) =
∫

p(yt|xt, ηt)p(ηt)dηt,

with p(yt|xt, ηt) ≡ δyt=g(xt,ηt) a Kronecker delta function,
can be done analytically. This holds if g is linear in ηt. So the
important class of a non-linear mapping with additive Gaus-
sian noise can be treated in this way. More complex obser-
vation models leading to χ2, t, or F distributions are on the
boundary of what can be handled by a one-step filter.

The product of all the normalization constants

T∏
t=1

Zt =
T∏

t=1

p̃(yt|y1:t−1) ≈ p(y1:t) ,

gives an approximation of the likelihood.

3. ITERATIVE GAUSSIAN PARTICLE SMOOTHING

Using the expectation propagation framework [8] we can for-
mulate a symmetric smoothing pass for the general class of
models under consideration, without inverting the latent state
dynamics. This is in contrast to previous approaches where
the inverse of the latent state dynamics was determined ana-
lytically (when it existed) or approximated using e.g. a multi-
layer perceptron [9]. The filtering and smoothing pass can be
iterated, in an attempt to make the greedy local approxima-
tions consistent on a global level. In [11] a related smoothing
pass is introduced for the traditional two-step UKF. Due to
the two-step nature of the underlying filter this smoother does
not allow iterative refinement.

We will give a brief introduction to expectation propa-
gation and introduce some notation, but refer the interested
reader to [8] and [2] for more details. As in Section 2 we will
introduce the material in a univariate setting; extensions to the
multivariate case are again straightforward.

The required joint posterior over all latent states can be
represented as a product over factors Ψ t defined as

Ψ1(x1) ≡ p(y1|x1)p(x1)
Ψt(xt−1,t) ≡ p(yt|xt)p(xt|xt−1) ,

such that

p(x1:T |y1:T ) ∝
T∏

t=1

Ψt(xt−1,t) . (6)

Any required marginal can be computed from this joint by in-
tegration. However, computing the product in (6) explicitly is
computationally too intensive and the required integrals can-
not be done analytically.

To get an approximation, a tractable family q(x1:T ) is in-
troduced. For the one-step unscented smoother we choose

q(x1:T ) =
∏

t

q(xt), q(xt) ≡ N (xt; mt|T , vt|T ) , (7)

a fully factorized Gaussian distribution. The algorithm is ini-
tialized with arbitrary approximations Ψ̃ of the factors Ψt

such that their product is a member of q(x1:T ). Since q(x1:T )
factors, the approximation of Ψt(xt−1,t) factors into a contri-
bution to q(xt−1) and a contribution to q(xt). So we can use
without loss of generalization the notation

Ψt(xt−1,t) ≈ Ψ̃t(xt−1,t) ≡ ctβt−1(xt−1)αt(xt) . (8)



With this choice q(xt) ∝ αt(xt)βt(xt). In the above ct

emphasizes that the product of αt and βt need not be nor-
malized. The αt and βt are often referred to as messages,
and are Gaussian potentials. Readers familiar with the HMM
forward-backward algorithm can keep in mind that the choice
of notation in (8) implies that the αt and βt messages have a
similar interpretation here as they do in the HMM algorithms.

The expectation propagation based approximation then pro-
ceeds by iteratively updating the approximating factors as fol-
lows.

Update of the approximation of Ψt

1. Remove βt−1(xt−1)αt(xt), the old approximation of
Ψt(xt,t−1), by division

q(xt−1,t)
βt−1(xt−1)αt(xt)

=
αt−1(xt−1)βt−1(xt−1)αt(xt)βt(xt)

βt−1(xt−1)αt(xt)
= αt−1(xt−1)βt(xt) .

2. Put in the exact factor Ψt(xt,t−1)

r(xt−1,t) =
αt−1(xt−1)Ψt(xt−1,t)βt(xt)

Zt|T
,

with Zt|T ≡ ∫
αt−1(xt−1)Ψt(xt−1,t)βt(xt)dxt−1,t.

3. Since r(xt−1,t) is not in the chosen family, approx-
imate it by q(xt−1)q(xt) closest in Kullback-Leibler
sense. For q(xt−1) this becomes

qnew(xt−1) = N (xt−1; mnew
t−1|T , V new

t−1|T ), with

mnew
t−1|T =

∫
xt−1r(xt−1,t)dxt−1,t ,

Znew
t|T =

∫
αt−1(xt−1)Ψt(xt,t−1)βt(xt)dxt−1,t ,

vnew
t−1|T =

∫
(xt−1 − mt−1|T )2r(xt−1,t)dxt−1,t ,

and analogously for q(xt).

4. Infer the contribution of Ψt by division

βnew
t−1(xt−1) =

qnew(xt−1)
αt−1(xt−1)

αnew
t (xt) =

qnew(xt)
βt(xt)

.

In principle the updates can be done in any order, but an
iteration of forward-backward passes seems most logical.

Combining the above steps 1–3 we get

mnew
t−1|T =

∫
xt−1

q(xt−1)q(xt)Ψt(xt−1,t)
βt−1(xt−1)αt(xt)Zt|T

dxt−1,t , (9)

and similarly for Z new
t|T , vnew

t−1|T , mnew
t|T and vnew

t|T . In (9) we can

identify an integral form y =
∫

h(xt−1,t)K(xt−1,t)dxt−1,t

with

h(xt−1,t) =
Ψt(xt−1,t)

βt−1(xt−1)αt(xt)Zt|T
K(xt−1,t) = q(xt−1)q(xt) .

So the required local approximations can be done using Gaus-
sian quadrature.

In an analogous way the importance sampling based Gaus-
sian particle filter can be extended to a Gaussian particle smoo-
ther. Instead of deterministically placing the X i, they are
drawn from K(xt−1,t) and get associated weight Wi = 1.

At this point it is perhaps useful to emphasize that the
form in (7) does not imply as coarse an approximation as it
may at first appear. Due to step 2 in the update, the indepen-
dent q(xt)’s are updated such that they are as close as possible
to the true (dependent) posteriors. The assumed density filters
from Section 2 are special cases of the iterative algorithm, so
it is good to realize that the iterated approximations are ex-
pected to be better instead of coarser than these approximate
filters, although starting the derivation with (7) perhaps makes
it appear otherwise for readers unfamiliar with EP.

One can verify that the filtering algorithm from the previ-
ous section is a first forward pass of the algorithm described
above with a suitable choice for the messages αt and βt, that
is to say, with βt = 1 and αt the prediction as computed in
the filtering algorithm.

4. EXPERIMENTS

We will evaluate the introduced methods with a discrete time
variant of the stochastic volatility model for stock prices from
[3]. In this model yt represents the daily log return, which
can be interpreted as a stochastic interest yt = log St

St−1
that

is earned on stock S between days t and t−1. This log return
is drawn from a normal distribution with fixed mean µ and
standard deviation (volatility in financial parlance) ext+l. The
unobserved log volatility (minus a base level l) x t follows an
AR(1) process. With

f(xt−1, εt) = axt−1 + εt, and,

g(xt, ηt) = ext+lηt + µ ,

the stochastic volatility model is a special case of the class of
models (1)–(2). It has a non-linear observation model, and
uncorrelated (but dependent) state-observation pairs.

Figure 1 presents a typical result from an experiment with
artificially generated data. The top plot shows S1:T , the daily
closing values of an artificial stock. The second plot shows
y1:T , the corresponding log returns as they were drawn from
the model (solid). Also shown are one-day ahead predic-
tions based on the one-step unscented filter and 2 standard
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Fig. 1. Results from inference on artificial stock data, see text
for details.

deviations errors bars (dashed). The bottom four plots show
the estimated log volatilities based on the different methods
discussed in this article. The true underlying log volatilities
that were drawn from the model are represented as thick solid
curves (identical copies in the bottom four plots for clarity).

The estimate based on the traditional unscented Kalman
filter (dashed, third plot from the top), quickly converges to a
straight line and shows that the traditional UKF fails to track
the log-volatility. The stochastic Gaussian particle filter and
the one-step unscented Kalman filter can track the log volatil-
ity reasonably well. Smoothed results give slightly better es-
timates of the underlying log volatilities. When filtering there
is hardly a distinction between the importance sampling based
approach (with 1000 samples) and the Gaussian quadrature
based approach (with 5 points). When smoothing however, in
particular when iteratively improved, we see that the improve-
ment over the filtered estimate is less for the sampling based
approach than for the deterministic approach. Whereas with
a deterministic scheme we can hope that there is a fixed point
of our iterative scheme, due to the stochasticity in the sam-
pler we are certain that for the stochastic Gaussian particle
smoother there is none. Due to the iteration certain anomalies
can be enlarged (e.g. the dip around the 147-th day).

Figure 2 summarizes the performance of the various ap-
proaches on ten drawn problems. The left plot shows the
mean squared error between the generated log-volatilities and
the inferred posterior means. The bars represent averages over
10 runs, error bars show one standard deviation. Experiments
were done for an unscented Kalman filter (1), a stochastic
Gaussian particle filter with 1000 samples (2), 100 samples
(3), and in (4) with 5 samples for the filter, and 25 samples
for the smoother (i.e. with computational complexity identi-
cal to the deterministic one-step filter and smoother). Bar (5)
represents a deterministic one-step filter with 5 points per di-
mension. The middle plot gives a paired analysis. The bars

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
se

 s
ta

te
 m

ea
n

Filtered
Smoothed
Iterated

2 3 4 5
0

0.2

0.4

0.6

0.8

M
se

 fi
lte

re
d 

−
 m

se
 s

m
oo

th
ed

2 3 4 5
−0.15

−0.1

−0.05

0

0.05

0.1

M
se

 s
m

oo
th

ed
 −

 m
se

 it
er

at
ed

Fig. 2. The above bar plots summarize the performance of the
various approaches. See text for details.

show, per algorithm, the difference between the MSE of the
filter and the MSE of the smoother, averaged over the ten
runs. The error bars show the standard deviation scaled with
t9(.99) 1√

10
, such that they correspond to a one-sided t-test

at the 99% level. The right plot is analogous, but shows the
difference between one smoothing pass, and ten iterations of
EP. We see that smoothing results in a significant improve-
ment for all algorithms, iterating only for the deterministic
one-step smoother.
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