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Abstract. We introduce a novel approximate inference algorithm
for non-linear dynamical systems. The algorithm is based upon ex-
pectation propagation and Gaussian quadrature. The first forward
pass is strongly related to the unscented Kalman filter. It im-
proves upon unscented Kalman filtering by only making Gaussian
approximations in the latent and not in the observation space.

Smoothed estimates can be found without inverting latent space
dynamics and can be improved by iteration. Multiple forward and
backward passes make it possible to improve local approximations
and make them as consistent as possible.

‘We demonstrate the validity of the approach with an interesting
inference problem in stochastic stock volatility models. The tradi-
tional unscented Kalman filter is ill suited for this problem: it can
be proven that the traditional filter effectively never updates prior
beliefs. The novel algorithm gives good results and improves with
iteration.

INFERENCE IN STOCHASTIC VOLATILITY MODELS

In 1973, Black, Scholes and Merton [1, 7] reasoned that under certain ideal-
ized market assumptions the prices of stocks and derivatives on those stocks
are coupled. A derivative is a financial product whose pay-off is determined
by the price of another asset. A European call option for instance entitles the
holder the right to buy a certain stock for a specific price, the strike price, at
a specific moment in the future, the maturity time. The effective pay-off at
maturity time is the difference between the stock price and the strike price if
the former exceeds the latter, and zero otherwise.

If all the market assumptions from [1, 7] hold, the price of such an option
is a deterministic function of the current price of the underlying stock, the



stock’s volatility, the risk-free interest rate, the strike price and the matu-
rity time of the option. Any other price allows traders to sell over priced
and buy under priced assets and make a risk-free profit. One of the crucial
assumptions is that the underlying stock S follows a geometric Brownian
motion

d
?S = pdt +VVdz. (1)

In (1) dz is a Brownian motion, p is a drift and /V is the volatility. The
latter two are constant or a deterministic function of time.

It is mainly the assumption of constant volatility that does not seem to
hold in practice. Equation (1) implies that daily log returns are normally
distributed with constant mean and standard deviation. What is observed
for most stocks is that this standard deviation (the volatility) is not constant,
but is auto-correlated and mean reverting. Also the returns do not appear to
come from a normal distribution but from a distribution with heavier tails.

These observations have led many researchers to formulate stochastic
volatility models; models where the volatility itself follows an (unobserved)
stochastic process. In our experiments we will use a discrete time model that
is inspired by the model from [3].

We denote the log returns with y; = log %, where t ranges over ex-
change closing times. As mentioned previously, if the volatility would be con-
stant, the y;’s would be identically, independently and normally distributed.
We keep the mean of this distribution fixed at u, but treat the volatility as
a random variable itself. We define x; to be the log of the volatility at time
t. It follows an AR process with a base level [ to which it reverts with rate
a. The complete model reads

Tt :a(xtfl *l)+l+€ta €t NN(07Q)5 (2)
ye=e"n+p, ne~N(0,1). (3)

In the above N(m,v) denotes the Gaussian probability distribution with
mean m and variance v. All disturbances ¢; and 7; are assumed to be in-
dependently drawn. At ¢ =1, 21 ~ N(m1,v1). Figure 1 shows an artificial
dataset generated from this model.

The latent state dynamics are linear and Gaussian, but the observation
model is non-linear. As a result exact inference of filtered and smoothed
posteriors, p(x¢|y1:+) and p(xt|yr.7), with T > ¢, is infeasible. In this article
we will introduce an approximate inference technique that is closely related
to the unscented Kalman filter [4] but significantly improves upon it.

We will consider the following general class of non-linear models

vy = f(vi1,6), € ~N(0,q) (4)
ye =g(@e,m),  ne ~N(O,r). (5)
The only requirement on g is that p(y:|x:) = [ g(z¢, ne)p(ne) with p(n:) Gaus-

sian, can be computed analytically. For this to hold it is sufficient (but not
necessary) that g is linear in n;.



GAUSSIAN QUADRATURE

In both the traditional unscented Kalman filter and our proposed algo-
rithm local integrals are approximated using Gaussian quadrature. Gaus-
sian quadrature is a general technique to approximate integrals of the form
[ h(z)K (x)dz, where K (z) is a known non-negative function. In the infer-
ence algorlthms K (z) will be a Gaussian kernel.

Based on K (z), n points &1, . .., &, and corresponding weights W1y,..., W,
are chosen such that

/K(x)h(m)d:v ~ D h(XWi

is exact if h(x) is a polynomial of degree at most 2n — 1. The constraint
that the approximation is exact for polynomials results in a set of coupled
non-linear equations. The position of the points is determined up to a com-
mon scale factor which determines the locality of the approximation. In the
canonical unscented filter 3 points are used with a scale factor of v/3. In our
experiments we will use the same scale, but 5 points since the non-linearity
seems to be too severe to be correctly approximated using 3 points.

Multi-dimensional integrals can be computed on a grid with positions
dictated by the one-dimensional points, or more sophisticated rules resulting
from correctness constraints on monomials can be used. See e.g. [6] for a
general introduction.

THE UNSCENTED KALMAN FILTER

The traditional unscented filter is a recursive algorithm based upon Gaus-
sian approximations p(z¢|y1.+) of the exact filtered state posteriors p(z¢|y1:t)-
Throughout this article we will use the notational convention that p(X)
is an approximation of p(X). Given an approximation p(z;—1|y1.4—1) =
N (14 _1)¢—1,v4—1}¢—1), @ new observation y; is incorporated using a prediction
step and a measurement, update step.

Prediction step p(x¢|y1.c—1) = N (mys—1.v¢¢—1), With
Myt—1 = / f(ze-1,e)pler)p(we—1]yre—1)drs—1des

Vgg—1 = //(f(%—lﬁt) — myje—1) P(E)B(e—1|y1:0—1)di—1des.

The above integrals are of the form [ h(z)K(z)dz, where K(z) is a
Gaussian kernel and can be approximated using Gaussian quadrature.

This is done by determining points and weights {X;, W;} for the state
;1 augmented with the Gaussian disturbance ¢;

Teaje—1 | My 1)1 Vicier O
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using one of the methods described above. The predicted mean and
variance are then

My = Z Wi f(Xi(1), Xi(2))

Vtjg—1 = ZWif(Xi(l),Xi(Z))z *(mt\t—l)z .

In the above X;(1) denotes the state component and X;(2) the noise
disturbance component in the vector Xj;.

Measurement update Follow the linear filtering paradigm approximately.

1. Compute p(y:|zs) = N(mi"til, vi"til) in the same way as the la-
tent state prediction with points taken from the augmented state
[, 1] T

2. Also compute the covariance

ita= [ (xt—m“n(g(mhm)—mft1>ﬁ<xt|y1:t_1>p(nt>dxtc(12;

using points from the augmented state.
zy
3. Compute the Kalman gain K; = Zﬁ,‘t_l and update the latent state

tlt—1
prediction as in the Kalman filter

My = Myg-1+ Kt(yt - m?t/|t,1) (7>
Vg = Utjt—1 — (Kt)Q’Uil\t,l . (8)

In the measurement update step p(y¢|y1.t—1) and p(z¢, ye|y1.4—1) are ap-
proximated by Gaussians and the update follows the linear filtering paradigm.
For models in which x; and y; are uncorrelated in the predictive distribution
(T4, Y¢|y1.t—1), this will lead to poor results. In such models a Gaussian ap-
proximation of p(zy, y¢|y1.¢—1) will render z; and y; independent. As a result
the Kalman gain will be 0 and the unscented filter effectively never updates
prior beliefs.

This phenomenon occurs in the stochastic volatility model. It falls in a
class of models where the observation model has the form

9(z,n) = g2(2)g,(n) + ¢, 9)
with [ g,(n)p(n) = 0, and ¢ a constant. For this class we have that

vy = (ay) — (@) (y) = (=) (y) — (&) () =0, (10)

and hence that (6) is 0. As a result, the Kalman gain K; is 0 and the updates
(7) and (8) effectively do not take place. Writing out the integrals implied
by (10) easily gives the required results.

The straight line in the top plot in Figure 1 shows the break down of the
unscented filter in this model.



ONE-STEP UNSCENTED KALMAN FILTERING

The extra Gaussian approximation of p(z:, y¢|y1:¢—1) in the traditional un-
scented filter is not necessary. We give the measurement update for univariate
problems below but extensions to multivariate problems are straightforward.

Measurement update p(z|y1.¢) = N (mye, vy, with

- /l't P(ye|e)p éft|ylt l)dl't, (11)
Zi = [ plurle)plyned (12)
Vet = /(It — mt\t)gp(yt‘Tt) éj”yl i 1)dCEt . (13)

These integrals can again be approximated using Gaussian quadrature.
Monomial points and weights {X;, W;} are determined for the state
Ty~ N(mt‘t,l, Vg)¢—1), and the mean and variance are updated as

Zy = ZWz‘p(thi) (14)
myy = ZWz'XiLythi) (15)

%

Ve = lZWiXEM _(mtu)Z. (16)

Zy

In (11) to (13) (and hence (14) to (16)) we have assumed that the integral

p(yilze) = / P(Ye|ze, ne)p(ne ) dny,

with p(ye|2:,m:) = 6y, —g(w,,n,) @ Kronecker delta function, can be done an-
alytically. As mentioned previously, this holds if ¢ is linear in 7. So the
important class of a non-linear mapping with additive Gaussian noise can be
treated in this way. More complex observation models leading to x?2, t, or F
distributions are on the boundary of what can be handled by the one-step
filter.

The product of all the normalization constants

I17-

gives an approximation of the likelihood.
Figure 1 presents a result of the one-step filter using 5 monomial points.

yt|y1t 1) p(ylzt)a
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ITERATIVE UNSCENTED KALMAN SMOOTHING

Using the expectation propagation framework [8] we can formulate a sym-
metric smoothing pass for the general class of models we are considering,
without inverting the latent state dynamics.
We will give a brief introduction to expectation propagation and introduce
some notation, but refer the interested reader to [8] and [2] for more details.
The required joint posterior over all latent states can be represented as a
product over factors ¥; defined as

Vi(z1) = pyilzi)p(a)
\Ijt(xtfl,t> = p(yt|$t)p(xt|xt71) ;
such that
T
plerrlyrr) o [ el 14) - (17)
t=1

Any required marginal can be computed from this joint by integration. How-
ever, computing the product in (17) explicitly is computationally too inten-
sive and the required integrals cannot be done analytically.

To get approximate results, an approximating family ¢(x1.7) is intro-
duced. For the unscented smoother we choose q(z1.7) = [[, ¢(z:¢), q(x) =
N (myr,vyr), a fully factorized Gaussian distribution. The algorithm is
initialized with arbitrary approximations of the factors ¥; such that their
product is a member of ¢(z1.7). Since g(x1.7) factors, the approximation of
U (z¢—1,) factors into a contribution to ¢(z;—1) and a contribution to q(x).
We use the notation

‘I’t(l‘t—l,t) ~ Ctﬁt—l(It—l)Oét(ZEt) ;

such that q(z;) o< ag(xt)B¢ (). In the above ¢; emphasizes that the product
of oy and B; need not be normalized. The o; and 3; are often referred to
as messages, and are general Gaussian potentials. Readers familiar with the
HMM forward-backward algorithm can keep in mind that the a; and 3; mes-
sages have a similar interpretation here as they do in the HMM algorithms.

In every update step the approximation of one of the factors ¥, is removed
by division and replaced by the exact factor. As a result the new combination
is not in the chosen approximating family. The intermediate result 7(z;_1¢) is
projected back onto the family by minimizing the Kullback-Leibler divergence

T(T4-1,t)

" (2e_1.4) = min KL (r(ze_1 )| |q(ze1.)) = min / r(ze_14)log .
q q Q(xtfl,t)

The Gaussian distribution is a member of the exponential family. It is a
general result (see e.g. [5]) that minimizing the KL divergence then boils down
to matching the moments, i.e. we have to compute the mean and variance of
7(z¢—1,t). The new approximation of ¥, is then inferred by dividing ¢"*V by

new
q

the old approximation with the approximation of ¥; removed: Biran




In principle the updates can be done in any order, but an iteration of
forward-backward passes seems most logical. The updates are done as follows.
Update of the approximation of U,

1. Remove B;—1(z¢—1)as(x:), the old approximation of W¢(z::—1), by di-
vision
q(xi—1,) a1 (@e—1) B (1) () Be (4)
Br—1(xe—1)ou () Br—1(xe—1)o ()
= ap—1(ze—1)Be(ze) -

2. Put in the exact factor Wy(x¢—1)

a—1(Te—1)Pe(xe—1,¢) Be(xt)
Zy\T ’

with ZHT = ffat,l(:vt,l)\llt(:vt,lyt)ﬂt(xt)d:vt,ldxt.

3. Project back onto the chosen approximating family. For g(x;_1) this
becomes

T(T4-1,1) =

q" " (ze-1) = N(m?EVf\T= thfﬁT),With

new // . =1 (Te—1) Ve (,0-1) Be (1)

m =
t1|T
| Zi|T

dzy_qdxy ,

tn|eTw = //Oltfl(xtfl)\pt(xt,tfl)ﬂt(It)dxtfldmt;

ap_1(xi—1)Ve(xpi— T
U?er\T = // (T4—1 — My 1\T)2 o1z 1)Ztt(Tt’t 1) t)dztfldxta

and analogously for q(x;).

4. Infer the contribution of ¥, by division

qnew(xt_l)

new

1@ = —F—

t 1( t 1) atfl(xtfl)
new qnew(xt)

oy (zy) = W

Combining the above steps 1 3 we get

g 1 q(ze) Wi (z4-1,)
myey = T drs_1dxy , 18
=T // . 1 Br—1 It 1)at(xt)Zt\T e ( )

and similarly for Z39", v, mj7" and v In (18) we can identify the

e 0 V1T tiT
required form of a Gaussian integral y = [ [ h(z¢—1,4)K (24-1,¢)dz¢—1dxy with
|\ _
M) = (1) (19)

ﬂtfl(xtfl)at(mt)ZﬂT
K(zi-10) = q(@e-1)q(z) (20)



So the required local approximations can be done using Gaussian quadrature.

For simplicity we have assumed that the transition model is “easy” (ad-
ditive Gaussian noise). In general ¥; would also be a function of ¢; and the
required moments such as (18) are found by also integrating over €;. In (20)
we would then have K (z4—1+,€:) = q(zi—1)q(x)p(er).

One can verify that the filtering algorithm from the previous section is
a first forward pass of the algorithm described above with a suitable choice
for the messages a; and (3, namely with 3; = 1 and «a; the prediction as
computed in the filtering algorithm.

EXPERIMENTS

Figure 1 presents a typical result from an experiment with artificially gen-
erated data. The bottom plot shows the daily closing values of an artificial
stock. The middle plot shows the corresponding log returns as they were
drawn from the model (solid) and the predictive mean and 2 standard devia-
tions errors bars. The top plot shows the drawn log volatilities, the traditional
unscented and one-step unscented filtered estimates, and smoothed posteriors
after 10 iterations. The traditional unscented filter gives non-sensical results,
the one-step version gives quite accurate approximations. The smoothed
iterated estimates result in a slight improvement over the filtered results.

For single slices it is feasible to compute near exact results by using a
very fine grid. The left plot in Figure 2 shows a typical measurement update
with 5 monomial points of a prior with mean 0 and variance 1. The observed
value in the example of the left plot of Figure 2 was 3 which is slightly
over 2 times the standard deviation of the predictive distribution away from
its predicted value. Note that the posterior is slightly skewed but that a
Gaussian approximation seems to be valid for the current application. The
right plot in Figure 2 gives a general picture for several observations (only
positive values are shown, the plot is symmetric around 0). On the x-axis
are observations 0 to 5 times the standard deviation away from the mean
of p(y1). In this particular case, the method seems to be valid at least for
observations lying 5 standard deviations away from their expected value.
However, for extreme outliers the method degrades. This is due to the fact
that the quadrature points lie in an area of the posterior that gets negligible
weight. It is possible to detect such a degradation by checking the variance
in ‘Zzz . if only one or a few of these points get non-negligible weights this
indicates a degradation. We are currently investigating possibilities to make
the algorithm robust against such extreme events.

SUMMARY

We have presented a one-step unscented Kalman filter, an analogous back-
ward pass and an iteration scheme to improve smoothed posteriors. The
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Figure 1: Results from inference on an artificial dataset. The bottom plot shows
closing prices of an artificial stock. The middle plot shows the log-ratios of the
closing prices (solid line) and one step ahead predictions (dashed line) and 2 stan-
dard deviations error bars. The prediction is correctly constant at p, the error
bars show that the proposed filter correctly captures the heteroskedasticity of the
series. The top plot shows the artificially generated true volatilities and the various
approximate inference results. The traditional unscented filter only propagates the
prior and gives nonsensical filtered results.
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Figure 2: The left plot shows a typical measurement update error; prior 1 ~
N(0,1) (solid), exact posterior p(zi|ly1 = 3) computed using a very fine grid
(dashed), Gaussian approximation from the one-step unscented filter using 5 points
(dash-dotted). The mean squared error in the posterior means of such updates and
the KL-divergence between best and approximated Gaussian is shown in the right
plot as a function of the observation y;. The x-axis is normalized by the stan-
dard deviation of the predictive distribution. The value y = 3 from the left plot
corresponds to little over 2 sd.



approaches seem to work very well for the inference problem in stochastic
volatility models that we considered. Interestingly enough, the factored form
of the observation dynamics in the volatility model makes the traditional
unscented Kalman filter break down.

Given the success of the novel algorithm on simple artificial problems we
hope to apply these techniques to real exchange data and extend the model
to incorporate stock volatility correlation in higher dimensional models.

In principle the introduced expectation propagation variant works for
models with an arbitrary topology. It can therefore be seen as an analog to
Laplace propagation [9]. We aim to investigate the nature of fixed points of
such an algorithm and test the scalability of the algorithm on higher dimen-
sional problems with wilder non-linearities and complexer structure.

For a specific model it should be possible to adapt the general approach
we have described and replace the Gaussian kernels in the quadrature approx-
imation with kernels that take advantage of properties of the transition and
observation models. Also, the best position of the quadrature points could be
determined with knowledge of the observation y; to make the measurement
update robust against outliers.
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