
Modeling and Reasoning
The systematic construction of an ontology

Lecture Notes

Th.P. van der Weide
Version of: 01-12-2007

The Art & Science of Enterprise Engineering

Modeling and Reasoning
The systematic construction of an ontology

Lecture Notes

Th.P. van der Weide

Contents

The DAVINCI Series 11

Course Description 15

1 Conceptual Data Modeling 19

1.1 What is a model? . 19

1.1.1 Model variety . 19

1.1.2 Model validity . 20

1.1.3 Using a model . 20

1.1.4 Observation and representation . 21

1.1.5 Model simplicity . 21

1.1.6 Types of models . 22

1.1.7 Model as ontology . 22

1.2 Conceptual modeling . 23

1.3 Communication via sentences . 23

1.4 Data, information and reality . 26

1.5 Removal of syntactic variation . 27

1.5.1 Splitting sentences . 27

1.5.2 Grouping by deep sentence structure . 28

1.5.3 Full qualification . 28

1.5.4 Standard names . 29

1.5.5 The initial capital convention . 29

1.5.6 Object Role Normalform . 29

1.6 Processing ORNF sentences . 29

1.6.1 Binary fact types . 30

1.6.2 Unary fact type . 32

1.6.3 Example . 34

1.7 Definitions overview . 36

Questions . 38

5

6 CONTENTS

2 The basic modeling technique 41

2.0.1 Complications . 41

2.1 Communication during modeling . 41

2.1.1 Schematically . 41

2.1.2 A conceptual detour . 42

2.1.3 Using natural language: proc and cons . 43

2.1.4 Controlled Language . 44

2.2 The process of modeling . 45

2.2.1 The participants . 45

2.2.2 The interaction . 46

2.3 Modeling the communication . 46

2.4 Architecture of an information system . 47

2.4.1 The user interface . 48

2.4.2 The information base . 48

2.4.3 The information grammar . 49

2.4.4 The information processor . 50

2.4.5 Turing’s Test Of Intelligence . 51

2.5 Grammars . 52

2.5.1 Formal grammars . 54

2.5.2 Handling context . 55

2.5.3 ORM represented as AGFL . 56

2.6 The formal model . 57

2.6.1 Object types . 57

2.6.2 Construction rules . 58

2.6.3 Bridge types . 58

2.6.4 Summary sofar . 59

2.6.5 Example . 59

2.6.6 Populating a conceptual schema . 62

2.7 Quality aspects for conceptual schemata . 62

2.8 Definitions overview . 63

Questions . 63

3 Object-Role Calculus - A sample session 67

3.1 An extended sample session: the presidential database . 67

3.1.1 Elementary sentences and juxta-position . 67

3.1.2 Statistical functions . 74

3.1.3 Multi-valued result . 75

CONTENTS 7

3.1.4 Combining information descriptors . 76

3.1.5 Complex examples . 77

3.1.6 Arithmetic and relational operators . 78

3.1.7 Rest . 80

3.2 ORC overview . 83

3.2.1 Constructs . 83

3.2.2 Priorities . 84

3.3 Definitions overview . 84

Questions . 84

4 Advanced modeling constructs 87

4.1 Higher-order fact types . 87

4.1.1 Objectification . 87

4.2 The meaning of a schema . 88

4.3 Constraints . 89

4.3.1 Unique role constraint . 90

4.3.2 Total role constraint . 92

4.4 Unique correspondence . 93

4.5 The shadow property . 93

4.5.1 Weak identification . 93

4.5.2 Strong identification . 95

4.6 Relations between schemata . 95

4.7 Schema transformation . 95

4.8 Frequently occurring constraints . 96

4.8.1 Frequency constraint . 96

4.8.2 Binary heterogeneous constraints . 96

4.8.3 Partitioning heterogeneous constraints . 97

4.9 Complex identification . 97

4.10 Schema Quality . 99

4.10.1 Schema validation . 99

4.10.2 Key length check . 100

4.10.3 Schema verification . 100

4.11 Definitions overview . 101

Questions . 102

8 CONTENTS

5 Object Grouping Mechanisms 105

5.1 Subtyping . 105

5.2 Specialization . 107

5.2.1 Multiple parents . 109

5.2.2 Specialization handling in ORC . 110

5.3 Generalization . 110

5.3.1 Generalization handling in ORC . 111

5.4 Dynamic Grouping . 111

5.4.1 Set type . 111

5.4.2 Extensional uniqueness constraint . 112

5.4.3 Set types in ORC . 112

5.4.4 Constraints on set types . 112

5.5 Definitions overview . 113

Questions . 113

6 The Modeling Algorithm 117

6.1 Sharing properties . 117

6.2 A formal algorithm . 118

6.3 Simple homogeneous case . 119

6.3.1 The initial steps 1 to 4 . 119

6.3.2 Step 5: Formal concepts . 119

6.3.3 The concept lattice . 120

6.3.4 Step 6: Constructing the subtype hierarchy . 120

6.3.5 Step 7: Composing the conceptual schema . 122

6.4 Transformation example . 122

6.4.1 The direct approach . 123

6.4.2 Qualifying attributes . 125

6.4.3 Object role transformation . 126

6.5 Heterogeneous example . 129

6.6 Some examples . 130

6.7 The computation of concepts . 131

6.8 Definitions overview . 131

Questions . 131

CONTENTS 9

7 Object-Role Calculus 133

7.1 Schema sentences . 133

7.2 Stating sentences . 134

7.2.1 Addition . 135

7.2.2 Deletion . 136

7.3 Asking sentences . 137

7.4 The underlying lexicon: Names and their meaning . 138

7.4.1 Object type names and their meaning . 138

7.4.2 Role names and their meaning . 139

7.4.3 The treatment of constants . 141

7.4.4 A sample lexicon . 141

7.4.5 Controlling ambiguity . 142

7.5 Concatenation of expressions . 143

7.5.1 The result table being a multiset . 144

7.5.2 Intermezzo: multisets . 145

7.6 Special constructs . 146

7.6.1 Correlation operator . 147

7.6.2 Set-like operators . 149

7.6.3 THE-operator . 150

7.6.4 DISTINCT operator . 151

7.6.5 Arithmetic operators . 151

7.7 Statistical Operators . 153

7.7.1 Head Operators . 153

7.7.2 Head-Tail Operators . 153

7.7.3 Head-tail version of comparison operators . 153

7.8 Specifying conditions . 153

7.8.1 Boolean constants . 154

7.8.2 Quantification . 154

7.8.3 Implication . 154

7.9 Priorities . 156

7.10 Business rules . 157

7.10.1 The first implication rule . 157

7.10.2 The second implication rule . 159

7.11 Combining . 160

7.12 Definitions overview . 161

Questions . 162

10 CONTENTS

8 Large Example 165

8.1 Video Rental Store . 165

8.2 Online Auction . 165

8.3 Web Content Management System . 166

Bibliography 167

Subject Index 171

The DAVINCI Series
Version:
30-08-05The subtitle of the DAVINCI series of lecture notes is The Art & Science of Enterprise Engineering. On

the one hand, this series of lecture notes takes a fundamental view (craft) on the field information systems
engineering. At the same time, it does so with an open eye to practical experiences (the art) gained from
information system engineering in industry.

The kinds of information systems we are interested in range from personal information appliances to
enterprise-wide information processing. Even more, we regard an information system as a system that
“handles” information, where “handling” should be interpreted in a broad fashion. The actors that do this
“handling” can be computers, but can equally well be other “symbol wielding machines”, but can also be
humans. The mix of humans and computers/machines in information systems makes the field of informa-
tion system engineering particularly challenging.

The concept of “information” itself is very much related to the concepts of data, knowledge and communi-
cation. Based on [FVV+98], we will (throughout the DAVINCI series) use the following definitions:

Data – Any representation in some language. Data is therefore simply a collection of symbols that may,
or may not, have some meaning to some actor.

Information – The knowledge increment brought about when a human actor receives a message. In other
words, it is the difference between the conceptions held by a human actor after interpreting a received
message and the conceptions held beforehand.

Knowledge – A relatively stable, and usually mostly consistent, set of conceptions posessed by a single
(possibly composed) actor. In more popular terms: “an actor’s picture of the world”.

Communication – An exchange of messages, i.e. a sequence of mutual and alternating message transfers
between at least two human actors, called communication partners, whereby these messages rep-
resent some knowledge and are expressed in languages understood by all communication partners,
and whereby some amount of knowledge about the domain of communication and about the action
context and the goal of the communication is made present in all communication partners.

When referring to an information system, we therefore really refer to systems that enable the communica-
tion/sharing of knowledge by means of the representation (by human actors), storage, processing, retrieval,
and presentation (to human actors) of the underlying representations (data). This also implies that we will
treat information retrieval systems, knowledge-based systems, groupware systems, etc., as special classes
of information systems.

The lecture notes in the DAVINCI series have been organized around four key key processes in an infor-
mation system’s life-cycle:

Definition process – A process leading to a definition description.

Where definition is defined as:

The requirements that should be met by a desired work system as well its system descrip-
tion including the descriptions of the system’s definition, design as well as documentation
for the operational system. These requirements will typically identify: what it should do,
how well it should do this, and why it should do so.

11

12 THE DAVINCI SERIES

Design process – A process leading to a design description.

Where design is defined as:

The identification and motivation of how a work system will meet the requirements set
out in its definition. The resulting design may (depending on the design goals) range from
high-level designs to the detailed level of programming statements or specific worker
tasks.

Realization process – The combination of a construction process and a deployment process.

Where construction process is defined as:

A process aiming to realize and test a system that is regarded as a (possibly artificial)
artifact that is not yet in operation.

Where deployment process is defined as:

A process aiming to make a system operational, i.e. to implement the use of the system
by its prospective users.

Architecting – The processes which tie definition, design and deployment and to the explicit and im-
plicit needs, desires and requirements of the usage context. Issues such as: business/IT alignment,
stakeholders, limiting design freedom, negotiation between stakeholders, enterprise architectures,
stakeholder communication, and outsourcing, typify these processes.

Domain modeling – Modeling of the domains that are relevant to the information system being developed.
The resulting models will typically correspond to ontologies of the domains. These domains can
pertain to the information that will be processed by the information system, the processes in which
the information system will play a role, the processing as it will occur inside the information system,
etc. Understanding (and modeling) these domains is fundamental to the other activities in information
system engineering.

For each these aspects, attention will be paid to relevant theories, methods and techniques to execute the
tasks involved. When put together, these aspects can be related as depicted in figure 1. Note that we regard
maintenance of systems as being functionality that should be designed “into” the system. If a system needs
to be maintained, and in most cases one indeed wants to, then the maintenance should be designed into the
workings of this system and/or its context.

In business
(in reality)

In actionIn depth

Davinci System
Development

Information
Management

Figure 1: Aspects of Information Systems Engineering

The use of the name DAVINCI originates from earlier work [Pro98] done on architecture-driven informa-
tion systems engineering. The work reported in [Pro98] was the result of a confrontation between industrial

THE DAVINCI SERIES 13

practice and a theoretical perspective on information systems and their evolution [Pro94]. The result was
a shared vision on the architecture-driven development of information systems by a Dutch IT consultancy
firm. In this shared vision, a foundation was laid for an integrated view on information system engineer-
ing. At that stage, the name “DAVINCI” was also selected. Not as some artificial acronym, but rather to
honor an inspiring artist, scientist, inventor and architect. To us he personifies a balance between art and
engineering, between human and technology.

After the development of the first DAVINCI version, a more elaborate version [Pro04] was developed at
the Radboud University Nijmegen in the form of lecture notes associated to a course on Architecture &
Alignment. In this version, a more fundamental outlook on information system development was added to
complement the practical orientation of the first version.

As a third step, we have now taken on the underlying philosophy of the first two DAVINCI documents,
and used this as the source of inspiration to shape an entire line of lecture notes for a number of mutually
related courses on different aspects of information systems engineering. In making this step we have also
been able to anchor some of the fundamental research results from the co-authors, on subjects such as in-
formation modeling [BHW91, BW92a, HW93, HPW93, PW94, BBMP95, CHP96, CP96, PW95, BFW96,
HPW97, Pro97, HVH97, FW02, FW04], information retrieval [BW90, BW91, BW92b, BB97, WBW00,
SFG+00, PB99, PPY01, WBW01], (enterprise) information architecture [JLB+04] and information system
engineering [Pro01, VHP04] into the core of the DAVINCI series.

14 THE DAVINCI SERIES

Course Description

Version:
01-02-07Short description

This course covers an important prerequisite in the information system life-cycle where the intention is to
obtain an (agreed) understanding of a given domain. In this course, students will be taught to demarcate a
domain and identify its ontology, i.e. a specification of its conceptualization comprising the core concepts
in the domain, their mutual relations and the laws (constraints) governing their behavior. Students will get
a deep understanding of conceptual modeling, and will be able to transform a model into a computational
environment in general, and a relational database structure and SQL in particular. This will be related to
the Unified Modeling Language UML.

The course is divided into 2 blocks:

1. Modeling and Reasoning

2. Transforming and Implementing

This document covers the first part of the course Domain Modeling.

Objectives
After this course the student

1. understands what a model is.

2. understands the ORM normalform for natural language sentences, and can transform a sentence into
this normalform.

3. can systematically derive a conceptual model from a structured domain description.

4. understands how the conceptual language ORC is derived, and can express conceptual operations in
terms of this language.

5. has a base understanding of formal reasoning in ORC.

6. can transform a conceptual model and its conceptual operations into a relational database structure
and SQL.

7. understands how the action-oriented approach generalizes the fact-oriented approach.

8. has a basic understanding of UML, and knows how to apply conceptual modeling during UML.

Topics
The course is organized in 2 blocks:

1. Modeling and Reasoning

15

16 COURSE DESCRIPTION

• Domain modeling is introduced as an activity that tries to describe how people communicate
in some universe of discourse. The students learn how a controlled language approach helps to
make an initial structuring.
• Sentences from the controlled language are analyzed for concepts, leading to an overall de-

scription of concepts and their relations. This is called the conceptual schema, also referred to
as a domain ontology.
• The conceptual schema is seen as an information grammar. It is discussed how this grammar is

the base for a conceptual domain language: Lisa-D.
• Students learn how to formulate domain properties and conceptual information system op-

erations in terms of Lisa-D. It is also discussed how Lisa-D can be used to formally prove
properties of the underlying application domain.
• As an information system creates a shadow world of the universe of discourse, special attention

is paid to the required relation between the formal and informal world.

2. Transforming and Implementing

• In this block the students will learn the principles of SQL as a general foundation to build
information systems.
• The students will learn syntax and get a clear impression of the semantics.
• Students learn how the conceptual schema can be transformed into a relational model in SQL.

They also learn how, in terms of this transformation, the conceptual information system opera-
tions (Lisa-D) can be transformed into SQL-statements.
• They will be trained in constructing SQL queries in non-trivial cases. The technique of working

with refinements is a basic tool, that also gives a clue to reason about the correctness of a query.
• The students get concrete hands on experience from an concrete SQL system.
• In this block we first discuss the Unified Modeling Language UML, and show how concep-

tual modeling explains submodels of UML formally and also gives a concrete assist for the
construction of these submodels.
• In conceptual modeling, we have used a fact-oriented approach. In this block we will discuss

how this can be generalized into an action-oriented approach.
• Especially we will discuss the nature and construction of the Object-Life model.

COURSE DESCRIPTION 17

Introduction to Domain Modeling
Version:
01-09-08”In theory is there is no difference between theory and practise. In practise there is”

(Jan LA van de Snepscheut)

Nowadays many methods exist for the development process of software ([KS98]). A number of examples
are:

• Iterative development is a well known example on which the the waterfall model ([Roy70]) is based.
The waterfall model is a clear model for managing the development proces because it separates this
process into several well defined phases. The Rational Unified Process (RUP) is an example of an
iterative development method ([BJR00]).

• Evolutionary development is based on the idea of developing an initial implementation (a prototype)
and then refining and completing this prototype in interaction with the user. This way of working
allows requirements and design decisions to be delayed.

• Incremental development as suggested in [MO80] combines the advantages of both iterative and
evolutionary development leading to a clear management model with more user interaction. Another
example of a hybrid, iterative model is the spiral model ([Boe88]) which combines incremental
development with explicit risk analysis thus improving the overall rate of success of the development
process.

• Reuse-oriented development focusses on reusing existing software components. COTS (Commercial
Off-The-Shelf systems, [Boe99]) is an example of industrial practise.

• Formal systems development is based on formal mathematical transformation. The best known ex-
ample is the Cleanroom process which was originally developed by IBM ([MDL87, Lin94]).

As different as all these development processes may be, there are fundamental activities common to all
these processes. One of these activities is requirements engineering (RE), although this activity has its own
rules in each development method. RE is the process of discovering the purpose for which the software sys-
tem is meant, by identifying stakeholders and their needs, and documenting these in a form that is amenable
to analysis, communication, negotiation, decision-making (see [AW03]) and subsequent implementation.
For an extensive overview of the field of RE we refer to [NE00].

Experts in the area of software engineering do agree that RE is the most import factor for the success of the
ultimate solution for reasons that this phase closes the gap between the concrete and abstract way of viewing
at phenomena in application domains (see [Som01], [Pre00] and [KS98]). As a consequence, during the
RE process, the involved information objects from the universe of discourse (UoD) have to be identified
and described formally. We will refer to this process as Information Modeling (IM). The resulting model
will serve as the common base for understanding and communication, while engineering the requirements.

In this course focus is on the process of Information Modeling. Information Modeling is seen as a linguistically-
based process between two participants, the domain expert and the system analyst. In this lecture we study
this process from the system analyst point of view.

Augustus 2008,

Th. P. van der Weide

18 COURSE DESCRIPTION

Chapter 1

Conceptual Data Modeling

Version:
17-11-07(Siep Weiland, Model Approximation of Dynamical Systems)The general modeling

problem invariably involves a trade-off between complexity and accuracy of mod-
els. Simple models are preferred above complex models and accurate models are
evidently preferred above models which have poor descriptive or predictive power.
To obtain high accuracy models, one usually needs to resort to complex models,
low complexity models are generally inaccurate.

1.1 What is a model?

According to the Merriam-Webster Online dictionary1 the word model is a noun, (assumed) to originate
from the Latin word modellus. The word can have the following meanings:

1. (obsolete) a set of plans for a building
2. (dialect British) COPY, IMAGE
3. structural design 〈a home on the model of an old farmhouse〉
4. a usually miniature representation of something; also: a pattern of something to be made
5. an example for imitation or emulation
6. a person or thing that serves as a pattern for an artist; especially : one who poses for an artist
7. archetype
8. an organism whose appearance a mimic imitates
9. one who is employed to display clothes or other merchandise (mannequin)

10. a type or design of clothing b : a type or design of product (as a car)
11. a description or analogy used to help visualize something (as an atom) that cannot be directly ob-

served
12. a system of postulates, data, and inferences presented as a mathematical description of an entity or

state of affairs
13. version

model
In this course we will see a model as system of postulates, data, and inferences presented as a mathematical
description of an entity or state of affairs, to be used as an example for imitation or emulation.

1.1.1 Model variety
universe
of
discourse

The central issue in this lecture is: A model tries to grasp (describe) the essence of some part of the world
around us. This part is referred to as the universe of discourse (UoD). This leads us to the question: what is

1See http://www.m-w.com/dictionary.htm

19

http://www.m-w.com/dictionary.htm

20 CHAPTER 1. CONCEPTUAL DATA MODELING

the essence? From practise it is known that different points of view may lead to rather different descriptions
of the same phenomenon. For example, different models of the universe have been developed:
• Aristoteles: earth and heaven

• Ptolemeus: heavenly bodies in orbit around the earth

• Copernicus: earth turning around the sun

• Kepler: ellipses
How can these different views all be correct models of the universe? For this question to answer, we
consider the reasons for making a model. We see a model as a framework to communicate about the
part of the world (to be) observed (the UoD). As a consequence, with a model is associated a criterion
that determines what kind of statements are valid statements. The set of all valid statements is our first
abstraction of the actual world being observed. A model then contains a description of this set of sentences.

1.1.2 Model validity

A model is presumed to be valid as long as it has not been contradicted by observation (the principle of
falsificationfalsification). This principle and its limitations has been described by Popper ([Pop59]).

For example, we could see a simple calculator as a model for human computing power. In fact several
models have been developed for this purpose, the most famous one being the Turing Machine. Until now,
no person has been able to perform a computation that could not be handled by a Turing Machine. So a
Turing Machine is still seen as a valid model of human computing. The confidence in this statement is
very large, there is probably no person that has any doubt about its validity. This confidence is known as
the Church-Turing Thesis: any real-world computation can be translated into an equivalent computation
involving a Turing machine.

Note that we may not have hope to do more than falsification. For a correctness proof, we would need
a description of the universe of discourse formal enough to be able to make such a proof. After having
presented this proof, we still would have the problem to show that this formal enough description of the
universe of discourse in fact is a correct description, bringing us back to our starting point.

1.1.3 Using a model

A model is to be used as an example for imitation or emulation. Or, in more general terms, we model
because modeling answers questions (see [HPW05]). While this is too generic an answer to solve much, it
does directly clarify our approach to conceptual modeling. By asking: Who asks the questions that need to
be answered? and Why these people ask those questions?, we immediately arrive at a view on conceptual
modeling that is deeply rooted in communication, involving language as a means to achieve communica-
tion.

The questions may reveal the following reasons for making a model:

1. To make certain behavioral predictions, for example strength computation for materials to be used in
a construction process. Such predictions usually have a quantitative nature.

2. Derivation of properties. Properties concern qualitative aspect os the universe of discourse.
simulation3. To make an emulation (also referred to as a simulation).

Simulation affords the opportunity to visit a world that would otherwise be impossible, difficult or imprac-
tical. For example, simulation may let us explore another planet, or inspect the implications of how we plan
the arrangements in a new to build house. A typical example of simulation is a graphical computer game.

Simulations can be used to highlight relevant aspects of a model, and to let the user try virtual manipulations
to see their effect. It is even possible to highlight invisible aspects. For example, an offside judgement in a
football game may be evaluated by manipulating the recordings of different cameras to obtain (calculate)
the required point of view.

1.1. WHAT IS A MODEL? 21

1.1.4 Observation and representation

A model is a description of the universe of discourse. In order to obtain a model, observations of the
universe of discourse are analyzed. Both observations and analysis will be made with a more or less specific
goal in mind. These goals determine the required properties of the model: its form, the type of information
it contains, precision, etc. Observation and analysis are separated activities of the modeling process. Even
if these modeling roles are played by a single person, it will make sense to make an explicit formulation of
the observations made. The observer of the universe of discourse is referred to as a viewer. A viewer can be

viewerseen as what described above as a criterion that determines what kind of statements are valid statements in
the UoD. The viewer perceives the universe of discourse, and constructs (conceives) a mental model of that
domain. Therefore, the information provided by a viewer is always subjective and reflects only the structure
of the domain as seen by the domain expert [BW03]. Strictly speaking, a model is a representation of the
mental model of that viewer, rather than a representation of the domain itself.

Viewer

Universe
of

Discourse
Description

Conception

perceiving describing

conceiving

Figure 1.1: Observing the universe of discourse

The viewer perceives the universe of
discourse, leading to a mental model
consisting of conceptions. In order to
communicate these conceptions, some
description mechanism has to be used.
Symbols are used in descriptions to rep-
resent (elements of) conceptions. Those
symbols have a meaning which is valid
only in that context.

One should be careful to avoid miscon-
ceptions. According to I. Kant (Critique
of Pure Reason, 1789)2:

Perception without concep-
tion is blind;
conception without perception is empty.

For example, pictures and tables are an efficient representation mechanism. The danger is that, while re-
vealing one point of view, (1) they hide underlying assumptions, (2) eliminate other possibilities and (3)
prevent comparisons without silently and unobviously.

A viewer with the intention to describe a universe of discourse is called an informant. Different informants
informantwill produce different perspectives on the same domain. Even more, a single informant may still produce

different perspectives on the same domain when modeling from a different interest. For example, a financial
versus a organizational description will each emphasize their own point of view. Due to the particular role
of the informant during modeling, the informant will later also be referred to as the domain expert. We will
assume the modeling process as an activity between a domain experts and a system analyst.

1.1.5 Model simplicity

Models may not give a complete description of a phenomenon. A model may be restricted to some specific
characteristics of the phenomenon, and therefore can only be used in the context of those characteristics.
The model may be convenient, while another model is used for more complex situations that the simpler
model is not capable to handle. As a rule of practise, a simpler model is preferred above a complexer model

ockhams-razorif both are sufficiently expressive. This principle is known as Ockham’s Razor: The simplest explanation is
usually the best.

The essence of the universe of discourse is obtained by leaving out unessential matters. This process of
abstraction

2See http://www.bartleby.com/60/144.html

http://www.bartleby.com/60/144.html
http://www.bartleby.com/60/144.html

22 CHAPTER 1. CONCEPTUAL DATA MODELING

omitting details is called abstraction. As a consequence, abstraction leads to a simplification of the observed
reality. This simplification depends of the chosen angle of incidence and the goal intended to achieve during
modeling. The consequence is that a modeler (system analyst) is capable to handle abstraction and ordering
conveniently.

Note that making models is a common human activity in daily life. Humans seem to be extremely abstraction-
driven, and can learn even from a small set of examples.

Example 1.1.1 The construction industry
A construction drawing is a model of a building as used in the construction industry, for example:

1. construction of a dogs house

2. construction of a building

3. construction of an office building complex
architectSuch a model is constructed by an architect. Making a model is recognized as a creative process. The

model is used:

1. to make calculations, for example to estimate in what quantity a material will be required.

2. to derive properties, for example about stability reliability.

3. to make a simulation, for example a virtual journey within the future building.

1.1.6 Types of models

As argued before, a model is set up with the intention to answer some kind of questions. Some examples
are:

1. scientific: a model describes phenomena from reality, the model should be capable to answer quan-
titative questions.

2. astronomy: the model should provide a description the population of heavenly bodies, their proper-
ties, their relations and their history.

3. linguistics: to describe the nature of communication, and its variation over time. A typical model is a
grammar, which describes how sentences are formed using some lexicon, the meaning of sentences,
and the pragmatics of their usage.

shadow
world

4. administration: to construct a shadow world. This shadow world should be powerful enough to an-
swer all kinds of questions about the state of affairs in the shadowed world, both involving the
phenomena it contains and the concepts that structure them.

We will be concerned with the administration type of models. Our goal is to enable the procedures that
keep the real world and the shadow world in check with each other. The shadow world then is used as a
simulation of the real world. The advantage is that the shadow world is more easily handled.

1.1.7 Model as ontology

In this course we will focus on the administration variant. In this variant modeling may also be seen as an
ontologyactivity to build an ontology. According to J.F. Sowa [Sow04]:

The subject of ontology is the study of the categories of things that exist or may exist in some
domain. The product of such a study, called an ontology, is a catalog of the types of things
that are assumed to exist in a domain of interest D from the perspective of a person who
uses a language L for the purpose of talking about D. The types in the ontology represent the
predicates, word senses, or concept and relation types of the language L when used to discuss
topics in the domain D.

1.2. CONCEPTUAL MODELING 23

We will use the terminology from data modeling techniques and use the term information grammar rather
than ontology. Ontologies are not only used in the context of information systems. Other application areas
are: e-Science (such as Bioinformatics), Medicine (terminologies), Information Retrieval, User Interfaces,
Linguistics and the Semantic Web ([BHL01]).

In Computer Science and Information Science ontologies are used to capture a shared understanding of
some domain of interest, in order to provide a formal and machine manipulable model of that domain.

1.2 Conceptual modeling

The intention of administrative modeling is to create a shadow world that can keep track of the wheeling
and reeling within the universe of discourse. The model provides an understanding of the observed world,
which makes it a tool of great value for management purposes. The model may also be used to build a
simulated world. An information system typically realizes a simulated world, and is very helpful as a tool
to obtain knowledge about the universe of discourse without the need to do a costly search in the real world.

The approach taken is to describe the conceptual model from the perspective of the language being used
for the purpose of talking about the universe of discourse. The conceptual model thus may be seen as the
grammar describing that language. A grammar consists of a lexicon and the set of rules by which sentences
from that language can be constructed.

Another way to put it: a model will describe the essential concepts within the universe of discourse, and
how they are related. The term conceptual modeling is used to stress this aspect of modeling.

conceptual
modeling

1.3 Communication via sentences

For communication to be successful, the participants of the communication should agree on a number of
things, such as:

1. the way how messages are exchanged. For example, the participants have agreed that messages are
exchanged by speech, and agree on communication rules. For example, they agree that only one
participant is speaking at each moment and the others are listening.

2. the way messages are constructed. In this course we assume messages to consist of sentences. Fur-
thermore, these sentences have a structure that is known to the participants. For example, the par-
ticipants have agreed to adopt the (universal) rules of the language Dutch to express their domain
specific sentences.

3. the meaning of sentences. When a member of the UoD is trying to ask a favor from another member
of the UoD, then both should agree to a sufficiently large extent on the actual meaning of the language
they use.

During modeling, however, a rather limited understanding of the full semantics is not necessary. The struc-
ture of the sentences is the essential element to model. The underlying assumption is: the sentence structure
is a sufficiently rich base for meaning.

Example 1.3.1 data communication
In a technical context, this agreement is referred to as a protocol. An example of a protocol is TCP/IP,
based on the OSI layers3:

• The Physical Layer defines the electrical and mechanical aspects of interfacing to a physical
medium for transmitting data, as well as setup, maintenance, and disconnection of physical
links. This layer includes the software driver for each communications device, plus the hard-
ware itselfinterface devices, modems, and communications lines.

3Cited from http://www.blackbox.com/tech_docs/tech_overviews/osi.html

http://www.blackbox.com/tech_docs/tech_overviews/osi.html

24 CHAPTER 1. CONCEPTUAL DATA MODELING

• The Data-Link Layer establishes an error-free communication path between network nodes
over the physical channel, frames messages for transmission, checks the integrity of received
messages, manages access to and use of the channel, and ensures the sequence of transmitted
data.
• The Network-Control Layer addresses messages, sets up the path between communicating

nodes, routes messages across intervening nodes to their destinations, and controls the flow
of messages between nodes.
• The Transport Layer provides end-to-end control of a communication session once the path has

been established, which enables the reliable and sequential exchange of data independent of
both the systems that are communicating and their locations in the network.
• The Session Layer establishes and controls system-dependent aspects of communication ses-

sions provided by the Transport Layer and the logical functions running under the OS in a
participating node.
• The Presentation Layer translates and converts transmitted encoded data into formats that can

be understood and manipulated by users.
• The Application Layer supports user and application tasks and overall system management,

including resource sharing, file transfers, remote file servers, and database and network man-
agement.

People communicate in a large variety of ways. The communication between people can be distinguished
into:

informal and
formal
communication

1. informal communication: such as body language

2. formal communication: such as written text

It has been shown that in practise informal communication is far more important than formal communica-
tion. For example, a facial expression may have a decisive influence on the meaning of a sentence. Note
that smileys or emoticons are an agreed formalism to add emotional value to written text (-_-).

modeling
mediator

informant

Domain Expert

informal
level

semi-formal
level

model builder
system analyst

formal
level

Figure 1.2: The telephone heuristic

For modeling purposes, as such circumstantial influences can only be useful when they adhere to rules,
conventions and ceremony, we restrict ourselves to communication formats that are sufficiently stable. As

telephone
heuristic

a result, we will concentrate on formal communication. This principle has been formulated as the tele-
phone heuristic: the only information carried over is the spoken text. This makes the information transfer
independent of the actual interaction.

The problem that is encountered next is the huge richness that natural language offers to its users, both on
structure as at the level of the lexicon. This richness can only be handled by the introduction of a normal

controlled
language

form for sentences. Such a restricted language is an example of a controlled language. The transformation
of sentences into this normal form requires a good understanding of the meaning of the sentences. As a
consequence, this is typically done by a domain expert.

Next we focus on the sentence itself. A sentence can do one of the following

fact oriented1. describe a fact
If we interpret sentences as describing facts, then the ordering of sentences is of minor importance.

1.3. COMMUNICATION VIA SENTENCES 25

action oriented2. describe an action
In this case the order of sentences is meaningful.

In this lecture we will consider sentences as facts.

Later we will introduce a strict format (normalform) for sentences, which makes it easier to derive the
essential parts of a sentence. We assume that in this normalform the structure of sentences is such that they

normalformcan be (easily) decomposed into the following components:

1. the kind of fact/action which determines the type of the sentence

2. the components and how they contribute to the fact/action.
ORNFThe resulting normalform will be called the ORM Normalform, abbreviated as ORNF. In the fact oriented

approach, we can say that a sentence is categorized by its predicate and determined by the involved objects
and their associated roles. This choice is the rationale for choosing the name object-role modeling. We

index
expression

will use the mechanism of index expressions to represent this structure. An index expression consists of a
header term, followed by a number of modifiers.
Example 1.3.2

The sentence

person Smith visits country Italy

will be decomposed into the following index expression:

visit agens (person being Smith) patiens (country being Italy)
agens
patiens

The header of the index expression represents the predicate of the sentence category. The subtrees
represent the various agents involved in this predicate. The labels mark their roles. Special roles
are agens (most commonly associated with the grammatical subject) and patiens (most commonly
associated with the grammatical object). Other objects will have a particle that clarifies their role.

Visit

agens

Person

patiens

Country

Smith Italy

being being

Figure 1.3: The index expression

This example demonstrates the structure of index expressions. We will not need further details of index
expressions. For the sake of completeness, a grammatical description of index expressions is given:

sentence

predicate roles

roles

role object�
�(

���predicate roles)
���

�

�
�

�

26 CHAPTER 1. CONCEPTUAL DATA MODELING

1.4 Data, information and reality

The information system provides a shadow world for the universe of discourse. In the concrete world there
are concrete objects, also referred to as a thing. In the abstract world of the information system for each
thing there is an (abstract) object as counterplayer. A major point of concern will be to guarantee a 1-1
correspondence between things and abstract objects. Besides, there should be a mechanism for uniquely
describing things and abstract objects in the communication between universe of discourse and information
system. A straightforward method would be to have a unique name for each thing in the universe of dis-
course. A name then will uniquely refer to a single thing in the UoD, while this same name is also capable
to identify the unique corresponding object in the formal world. However, this unique name requirement
is not realistic. For example, the name Fritz may address both a person and a cat in some universe of
discourse.

In practise things are grouped around some common properties. For example, cats are a group of animals
whose members are obviously dissimilar to those of the group of things denoted as dogs. Groups of related
things in the universe of discourse will lead to a type, i.e. a group of related objects. For example, in the
UoD of figure 1.4 a group of similar things is demonstrated, which leads to the type Person in the model.

Figure 1.4: Relating the system and the universe of discourse

Remark 1.4.1
In our approach, a concrete thing from the universe of discourse is represented in the information
system as an abstract object. This is done by storing the (relevant) facts of things. A fact in which
an object participates is a property of that object. The representation of a thing thus is the set of
properties of the associated object.

weak
identificationA sufficient condition to be able to uniquely identify objects and things, it that no two objects or

things have the same properties. This is called the Principle of Weak Identification.
standard name

A usual way to resolve ambiguous names is to provide the associated group as a context. In our example
we then get the cat Fritz and a person Fritz. The resulting correspondence is displayed in figure 1.5. In the
context of modeling, this unique reference is called the standard name of both the thing and the object. For
the moment we restrict ourselves to this simple format for standard names. In a later section we will see
that compound standard names are also possible when complex identifications are required.

Remark 1.4.2
Note that the introduction of a standard name for an object type guarantees that all objects of that

strong
identification

type have at least one different property: their standard name. This property is referred to as Strong
Identification.

1.5. REMOVAL OF SYNTACTIC VARIATION 27

Figure 1.5: A more detailed view

1.5 Removal of syntactic variation

The transformation of natural language sentences into ORNF is done in several steps. First we describe
the convention to eliminate the syntactic variation which is so common for natural language. Consider the
following sentences in the context of our running example:

In this company there are cooperators and departments. Cooperators have names,
departments have department names. A cooperator can work for only one depart-
ment. Janssen and Pietersen work for department Sales, and Klaassen works for the
Personnel department. A department may have at most 10 cooperators.

Note that this description contains sentences at different levels of abstraction.

1.5.1 Splitting sentences

We may distinguish two kind of sentences:

1. non-elementary sentences. The information conveyed by such a sentences can be split in several
sentences without changing the information content.

elementary
sentence

2. elementary sentences. Elementary sentences can not be split into smaller sentences without losing
information.

For example, consider the sentence

Janssen and Pietersen work for department Sales, and Klaassen works for the Per-
sonnel department.

The conjunction and is not functional in this sentence. Therefore, this sentence can be split without loss of
information into the following ones:

1. Janssen works for department Sales.

2. Pietersen works for department Sales.

3. Klaassen works for the Personnel department.

These sentences are elementary as is easily verified.

Another example:

28 CHAPTER 1. CONCEPTUAL DATA MODELING

The married couple Els and Jan possess a car with license plate DC-12-10.

This sentence contains a conjunction, yet it can not be split without loss of information. The reason is
that the married couple plays the role of car owner. The married couple is identified by the names of both
spouses. Note that this sentence is equivalent with

The married couple Jan and Els possess a car with license plate DC-12-10.

We will come back to this in a later section.

1.5.2 Grouping by deep sentence structure

There are several ways to formulate the same message. For example:

• Janssen works for department Sales.

• department Sales provides work to Janssen.
deep sentence
structureThe first sentence is an active voice formulation, the second sentence is in passive voice. The sentences

have the same deep sentence structure. Sentences with the same deep structure are grouped together into
the same sentence type. For example, the sentences above are grouped into the sentence type that is named
WorksFor.

The associated (concrete) facts will have a corresponding (abstract) fact object in the information system.
The corresponding object type will also be referred to as a fact type. The deep sentence structure describes
the linguistic format.

1.5.3 Full qualification

The sentence Janssen works for department Sales contains the following references to concrete objects
from the universe of discourse:

1. Sales is the unique name for some instance of ...

2. ... a meaningful kind of objects form the UoD. The name of this type of objects is department.
We say that the name Sales is qualified by the type name department.

fully
qualified3. ’Janssen’ is a unique reference to an instance of an unspecified type of objects.

We say that this instance is not qualified.

A requirement for sentences to be well formed is that all instances are fully qualified. The rationale is
that qualification is a step towards the forming of standard names. In order to meet this requirement, the
sentence is reformulated as: Cooperator Janssen works for department Sales.

Still the format of the sentence is not sufficiently well formed. From the sentence Cooperator Janssen
works for department Sales we can not really derive that Janssen is part of the sentence structure, or
that it is used to label a particular instance of the UoD. In order to make this distinction, concrete names
have a special notation: ”Janssen”. Concrete names are also referred to as lexical objects. They correspond

lexical objectto non-terminal symbols in the information grammar. Abstract object are also referred to as nonlexical
nonlexical
object

objects, they depend on lexical objects for their representation.

Using this naming convention, the example sentence is reformulated as: Cooperator ”Janssen” works
for department ”Sales”.

1.6. PROCESSING ORNF SENTENCES 29

1.5.4 Standard names

We are not yet satisfied with the reformulated sentence Cooperator ”Janssen” works for department
”Sales”. The problem is as follows. Cooperator ”Janssen” will probably correspond with a cooperator
having name ”Janssen”. So the name is an attribute of a cooperator. There may be other attributes for
cooperators, for example the mobile phone number of this person.

For a well formed sentence, it is required that abstract objects and concrete objects are clearly separated
by adding attribute types. After reformulation, our sample sentence is transformed into: Cooperator with
name ”Janssen” works for department with departmentname ”Sales”.

identifying
attributeA special property of the attribute name is that it is an identifying attribute. The expression Cooperator

with name ”Janssen” is therefore called the standard name for objects of type cooperator. The standard
name provides the unique correspondence between the formal and informal world.

Standard names are minimal. For example, the expression Cooperator with name ”Janssen” born in city
”Leeuwarden” implicitly expresses the combination name-birthplace is required for unique identification
of cooperators in the underlying UoD. Would this be not the case, then a sentence containing this expression
would be splittable.

1.5.5 The initial capital convention

A final modification of the sample sentence is the following naming convention:

• Type names are formed by a single word that starts with a capital letter

• all other letters are lower case

The result is the following sentence: Cooperator with Name ”Janssen” works for Department with
Departmentname ”Sales”.

1.5.6 Object Role Normalform

After all these modifications, the sentence is well formed, and ready to be processed to be actually mod-
elled. This normal form for sentences is called Object Role Normalform, abbreviated as ORNF. The dia-
logue between domain expert and system analyst should result in a significant set of sample sentences in
Object Role Normalform.

Summarizing, a sentence is in Object Role Normalform if:

1. the sentence is not splittable without loss of information

2. each instance is fully qualified

3. only standard names are used

4. the proper naming convention is applied

In figure 1.6 we see how an ORNF sentence is represented as an index expression.

1.6 Processing ORNF sentences

Processing an ORNF sentence start with the parsing of that sentence. The most important element of a
sentence is its predicate. The predicate has associated a number roles (subject, object, direct object, etc.)
The predicate corresponds to the sentence type.

30 CHAPTER 1. CONCEPTUAL DATA MODELING

Visit

agens

Person

patiens

Country

Surname

Smith

with with

Name

Italy

being being

Figure 1.6: ORNF sentence as index expression

1.6.1 Binary fact types

We consider the sentence

Cooperator with Name ”Janssen” works for Department with Departmentname ”Sales”

A more global view on the index expression representation of this sentence (see figure 1.7) is the nested
sentence structure as displayed in figure 1.8.

Works

agens

Cooperator

for

Department

Name

’Janssen

with with

Departmentname

’Sales’

being being

Figure 1.7: ORNF sentence as index expression

In the nested sentence structure, the node at the top level represents the whole sentence. The decomposition
is as in figure 1.7. Directly underneath the root we see the representations of the agents involved. Next
nested sentence structure shows from what instances they are composed, etc.

From the nested sentence structure (also referred to as parse tree) we generate figure 1.8. This figure has
drawn circles around the object instances to denote the corresponding object type. The role of fact types
are drawn by rectangles connected with the object type playing that role. The roles get associated their
so-called role-name. This figure is called a populated schema fragment. Note the dotted line in this figure,
that is used to demonstrate the division between abstract and concrete world. Fact types that bridge this gap

bridge typebetween the abstract world (Person) with the concrete world (Name) are called bridge types. Bridge types
form the only possibility to bridge this gap. Bridge types can only be binary fact types, i.e., fact types with
in which 2 object types play a role.

The instances that are drawn in the populated schema fragment are called a population. They populate the
schema fragment that is obtained by omitting the instances. The resulting schema fragment (see figure 1.10)

1.6. PROCESSING ORNF SENTENCES 31

Figure 1.8: Nested sentence structure of sample sentence

Figure 1.9: Sample sentence as populated schema fragment

Figure 1.10: The resulting schema fragment

32 CHAPTER 1. CONCEPTUAL DATA MODELING

is a compact representation of the part of the information grammar that corresponds to the sentence struc-
ture from the sample sentence.

This schema fragment provides the syntactic categories and how they are related, abstracting form concrete
verbalizations. The corresponding part of the information grammar:

• lexical object types (label types): Name, Departmentname

• nonlexical object types: Cooperator, WorksFor, Department

The corresponding grammar rules describe the standard names for objects of these categories. This gram-
mar is displayed in the following syntax diagrams:

sentence

WorksFor�
�Cooperator

�Department

�Name

�Departmentname

�

WorksFor

Cooperator works for
�� �Department�

�Department providing work to
�� �Cooperator

�

Cooperator

Cooperator with
�� �Name

Department

Department with
�� �Departmentname

Name

Name
�� �string

departmentname

Department name
�� �string

Note that we have allowed both the active voice and the passive voice formulation of facts of type WorksFor.

1.6.2 Unary fact type

As a next example, we consider the fact

Person with Name ”Pete” smokes

1.6. PROCESSING ORNF SENTENCES 33

Persoon

rookt

Rookt

Persoon

(Naam)

met

van

Naam

−− "Piet"

Persoon met Naam "Piet" rookt

Naam "Piet"

Persoon met Naam "Piet"

Zinsrepresentatie
Parseerboom Conceptueel schema

rookt

RooktPersoon

rookt

Rookt

Figure 1.11: Abstracting from sample sentence

Analyzing this sentence, we see an object type Person, a label type Name, a sentence type with predicate
Smoke and Person as its single participant. This is reflected in figure 1.11.

In figure 1.11 we see the parse tree of the sample sentence. The figure to the left of the parse tree has
drawn circles around the object instances to denote the corresponding object type. The role of fact types
are drawn by rectangles connected with the object type playing that role. The roles get associated their
so-called role-name. This figure is called a populated schema fragment.

The figure to right of the parse tree is obtained form the populated schema fragment by omitting the
population, and by using a shorthand notation for identifying bridge type. In this shorthand notation, we
write the identifying label type directly below the name of the corresponding object type. This schema
fragment is a compact representation of a fragment of the information grammar.

This schema fragment provides the syntactic categories and how they are related, abstracting form concrete
verbalizations. The corresponding part of the information grammar:
• lexical object types (label types): Name

• nonlexical object types: Person, Smokes
The corresponding grammar rules:

sentence

Smokes�
�Person

�Name

�

Smokes

Person smokes
�� �

Person

Person with
�� �Name

Name

Name
�� �string

34 CHAPTER 1. CONCEPTUAL DATA MODELING

1.6.3 Example

The following table is an example of how information is exchanged is some universe of discourse:

Room reservation organization:
Room Time Activity
20 Mon 9.00h VMC
20 Tue 14.00h VMC
33 Mon 9.00h AQD
33 Fri 17.00h SP

A straightforward way to formulate the facts that are stored in this table is:

• Room with Number 20 at Time with Dh ”Mon 9.00h” is used for Activity with Code ”VMC”.

• Room with Number 20 at Time with Dh ”Tue 14.00h” is used for Activity with Code ”VMC”.

• Room with Number 33 at Time with Dh ”Mon 9.00h” is used for Activity with Code ”AQD”.

• Room with Number 33 at Time with Dh ”Fri 17.00h” is used for Activity with Code ”SP”.

where Dh is an abbreviation for day-hour. Note that the sentence format is decided upon by the domain
expert, and to be followed by the system analyst. In a common sense interpretation, derived from the
example table, we see that actors play these roles independent of each other. For example, there does not
seem to be a dependence between the activity code and the room number (though this could very well
be the case!). Would there be any dependency between a proper subset of the roles, then this dependency
requires a special sentence type to express this dependency. Typical examples of such dependencies are:

functional
dependency

1. functional dependency: if the value of one role implies the value of another rol uniquely

multi-valued
dependency

2. multi-valued dependency: if the value combinations of some combinations of roles follow some
relational pattern.

Nr Code

Room Activ
ity

Dh

Time

Reservation
<1> at <2> is used for <3>

with

with

with

of

of

of
RoomNr

TimeDh

ActCode

Figure 1.12: Conceptual schema for room reservation

As a consequence we have a fact type with 3 (independent) roles, a ternary fact type. The resulting schema
is displayed in figure 1.12. The resulting grammar:

1.6. PROCESSING ORNF SENTENCES 35

sentence

Reservation�
�Room

�Time

�Activity

�

Reservation

Room at
�� �Time is used for

�� �Activity

Room

Room with
�� �Nr

Time

Time with
�� �Dh

Activity

Activity with
�� �Code

Nr

Nr
�� �string

Dh

Dh
�� �string

Code

Code
�� �string

Next we extend this example with the following table:

Activity naming:
Activity ActivityName
AQD ActiveQuery demo
SP Staff party
VMC VisioModeler class
Y2K Year 2000 seminar

The corresponding sentence format is: Activity has ActivityName. The resulting schema is shown in fig-
ure 2.19. The resulting grammar is:

36 CHAPTER 1. CONCEPTUAL DATA MODELING

sentence

Reservation�
�AName

�Room

�Time

�Activity

�ActivityName

�

AName

Activity has
�� �ActivityName

ActivityName

ActivityName
�� �string

Nr Code

Room Activ
ity

Dh

Time

Reservation
<1> at <2> is used for <3>

Activity
Name

ActName
<1> has <2>

with

with

with

with

of

of

of

of

RoomNr

TimeDh

ActCode

Figure 1.13: Conceptual schema for room reservation

.

1.7 Definitions overview
Model – A purposely abstracted domain (possibly in conjunction with its environment) of some ‘part’ or

‘aspect’ of the universe a viewer may have an interest in. For practical reasons, a model will typically
be consistent and unambiguous with regards to some underlying semantical domain, such as logic.

In the context of these lecture notes this is refined to:
A system of postulates, data, and inferences presented as a mathematical description of an entity or
state of affairs, to be used as an example for imitation or emulation.

Universe of discourse – That part of the world around is that is to be modelled. See also application
domains.

Application domain – That part of the world around is that is to be modelled in the context of the devel-
opment of some application. See also universe of discourse.

1.7. DEFINITIONS OVERVIEW 37

Falsification – A model is assumed to be valid until contradicted by observation.

Simulation – The imitative representation of the functioning of one system by means of the functioning
of another.

Viewer – An actor perceiving and conceiving (part of) a domain.

Informant – Is a synonym for: domain expert.

Ockham’s Razor – The simplest explanation is usually the best.

Ontology – The subject of ontology is the study of the categories of things that exist or may exist in some
domain. The product of such a study, called an ontology, is a catalog of the types of things that are
assumed to exist in a domain of interest D from the perspective of a person who uses a language L
for the purpose of talking about D. The types in the ontology represent the predicates, word senses,
or concept and relation types of the language L when used to discuss topics in the domain D.

Falsification – A person that can reveal and assign meaning to statements about the universe of discourse.
The domain expert role is further divided into an informant and a modeling mediator.

[architect (us)] ./definitions/architect/us –
System analyst – A person constructing a model of a universe of discourse from a semi-formal specifica-

tion. Also referred as model builder.

[architect (us)] ./definitions/architect/us –
Model builder – The person involved in the formal dialog with the modeling mediator, processing the

semi-formal specifications provided by the modeling mediator. The combination of modeling medi-
ator and model builder is also referred to as system analyst.

Modeling mediator – The person involved in the informal dialog with the domain expert, mediating be-
tween the domain expert and the model builder. The combination of modeling mediator and model
builder is also referred to as system analyst.

Elicitation – The activity in which the system analyst tries to obtain sample sentences form the domain
expert.

Abstraction – Omitting unessential details.

Controlled language – A controlled language is a form of language with special restrictions on grammar,
style, and vocabulary usage, close to natural language, but with a formal base. The objective of a
controlled language is to improve the consistency, readability, translatability, and retrievability of
information.

100% Principle – The information grammar should describe precisely all conceptual aspects.

Conceptualization principle – The information grammar should not describe any does not provide any
realization (implementation) aspect.

Turing test – An test to see if an human can make the distinction between the program in question and a
human respondent.

Shadow world – A (usually formal) world that keeps track of the wheeling and reeling in the universe of
discourse.

Closed world assumption – All facts not stored in an information system are assumed to be false. Not
that this requires facts with complete knowledge.

In the context of these lecture notes this is refined to:
Each possible fact is either true or false. As a consequence, only true facts need to be recorded.

Information system – A sub-system of an organizational system, comprising the conception of how the
communication and information-oriented aspects of an organization are composed and how these
operate, thus leading to a description of the (explicit and/or implicit) communication-oriented and
information-providing actions and arrangements existing within the organizational system.

Information grammar – A model of the underlying format of the messages and to grasp the essentials of
their meaning. This model is seen as grammar.

38 CHAPTER 1. CONCEPTUAL DATA MODELING

Information processor – The active component of an information system. It processes the incoming com-
mands.

Information base – The set of facts stored in an information system. This set contains all base statements
that are valid in the associated universe of discourse. If the closed world assumption holds, then all
other base statements are deemed to be false.

NIAM – aN Information Analysis Method

PSM – Predicator Set Model

RIDL – Reference and IDea Language

Lisa-D – Language for Information Structure and Access Descriptions. Lisa-D has also a symbolic inter-
pretation. In George Bernard Shaw’s ’Pygmalion’, professor Higgins, a linguistics prof, transforms
Eliza Doolittle into a lady, speaking her language very well, though a bit ’robotic’.

SQL – Structured Query Language

UML – Unified Modeling Language

Questions
Version:
01-12-071. We willen nader kijken naar het verschil tussen model en werkelijkheid, en richten ons op het aspect:

hoe goed kun je in het model over de werkelijkheid redeneren. Wat voor soort dingen kun je eruit
afleiden, en voor wat voor soort dingen is het ongeschikt. Doe dit aan de hand van de volgende
voorbeelden:

(a) De bouwtekening van de bolderkar.

(b) Een klassiek schilderij werkt met symbolen bijvoorbeeld:

Aap : symbool van duivel, ketterij, ontucht en veinzerij. Ook het bewijs van welstand en rijk-
dom.

Anker : symbool van de hoop (ook bijenkorf, spade en sikkel).
Appel : symbool van verlokking en zonde, maar ook het attribuut van Venus en het symbool

van liefde en vruchtbaarheid en, in afgeleide zin, van de huwelijksgemeenschap. Ook sym-
bool van de heerschappij (rijksappel).

Arend : symboliseert kracht en macht. Hij staat op de lezenaars in functie van boodschapper
tussen de aarde en de hemel.

(c) Geef zelf een voorbeeld van een model, waarvan de bruikbaarheid hoog is, maar dat grote
hiaten met de realiteit vertoont.

2. Splits de volgende zinnen zover mogelijk in kleinere zinnen, zonder dat de inhoud verloren gaat.

(a) Student Jan volgt vak DM en Studente Ria volgt vak P1.

(b) Studente Els heeft voor opgave 4 vak DM een 10 gehaald.

(c) Student Jan had voor opgave 3 van vak DM een 9 en voor opgave 4 een 10.

(d) Student Jan en studente Els doen het practicum van DM.

(e) Student Jan en studente Els doen samen de casus van DM.

(f) De student met studentnummer 12345 krijgt voor het vak DM het cijfer 8.

(g) De student met studentnummer 12345 volgt het vak DM en behaalt daarvoor het cijfer 8.

3. In some UoD designers of programming languages form an important issue. The following table is
an example of the way in which information is being exchanged in this UoD. Give the elementary
sentences that can be derived from this table. Then derive from these sentences an ORM schema.
Discuss the correctness of this schema, and explain that this schema does not contain unnecessary
concepts.

QUESTIONS 39

Designers:

Designer Language
Wirth Pascal
Kay Smalltalk
Wirth Modula-2

4. The following table describes presidential visits. For each visit, the name of the president, and the
country and year of visit is recorded. Give the elementary sentences that can be derived from this
table. Then derive from these sentences an ORM schema. Discuss the correctness of this schema,
and explain that this schema does not contain unnecessary concepts.

Presidential visits:

Politician Country Year
Clinton Australia 1994
Clinton Italy 1994
Clinton Australia 1995
Keating Italy 1994

5. A student administration records the results of students for subjects being offered. The following
table is an example of the way in which information is being exchanged in this UoD. Give the el-
ementary sentences that can be derived from this table. Then derive from these sentences an ORM
schema. Discuss the correctness of this schema, and explain that this schema does not contain un-
necessary concepts.

Student results:

student course rating
Bright S CS112 7
Bright S CS100 6
Collins T CS112 4
Jones E CS100 7
Jones E CS112 4
Jones E MP104 4

6. This exercise is a modification of previous exercise. The difference is that in this case course enroll-
ment is also being registered. If a student has enrolled into a course, and does not get a mark yet,
then the rating field is left open.

The following table is an example of the way in which information is being exchanged in this UoD.
Give the elementary sentences that can be derived from this table. Then derive from these sentences
an ORM schema. Discuss the correctness of this schema, and explain that this schema does not
contain unnecessary concepts.

Student results:

student course rating
Bright S CS112 7
Bright S CS100
Collins T CS112 4
Jones E CS100 7
Jones E CS112
Jones E MP104 4

7. The following table describes for students their class. Each class has assigned a mentor, the mentor
of each student also is recorded in the table.

Students:

Student# Name Class Mentor
001 Adams J 11A Hiltin D
002 Brown C 12B Baker P
003 Brown C 11A Hilton D

40 CHAPTER 1. CONCEPTUAL DATA MODELING

Give the elementary sentences that can be derived from this table. Then derive from these sentences
an ORM schema. Discuss the correctness of this schema, and explain that this schema does not
contain unnecessary concepts.

8. The tables below are used to administrate programming languages data.

Designers:

Designer Language
Wirth Pascal
Kay Smalltalk
Wirth Modula-2

Origins:

Designer Language Year
Wirth Pascal 1971
Kay Smalltalk 1972
Wirth Modula-2 1979

Give the elementary sentences that can be derived from this table. Then derive from these sentences
an ORM schema. Discuss the correctness of this schema, and explain that this schema does not
contain unnecessary concepts.

Chapter 2

The basic modeling technique

Version:
20-11-072.0.1 Complications
domain
expert,
system analyst

The complexity of information modeling is the nature of the human world to be modelled. Whereas a
physician has to model physical concepts and their relations, information modeling is directed towards
crossing the border between informal and formal where humans beings are required to cross this border. We
assume a domain expert as a person that can assign meaning to statements about the universe of discourse.
We assume a system analyst, also referred to as the architect, as the person making the model of this UoD.
Some specific problems:

1. The universe of discourse is defined as the part of reality that is being observed. But how do we
specify what part?

2. Domain experts may not report the actual UoD but their vision on this UoD.

2.1 Communication during modeling

A practical description of a universe of discourse typically is:

• detailed, in terms of relevant concepts of the UoD

• informal (concepts are not formally described)

As a consequence, such a description is hard to understand, and easily misunderstood, even by people that
are familiar with the universe of discourse. For a model we need a description that is:

• formal (and therefore may even be used as a juridical contract)

• concrete (a program should specify all details that are required by the computer)

2.1.1 Schematically

In figure 2.1 we see that the following parameters seem to be dominant: (1) the level of detailedness, and
(2) the level of formality. The ultimate goal, when building an information system, is to have a concrete
formal description. The description should be concrete, as the system should not be in doubt about the
intentions of the description. And the description should be formal, as computer systems can only be
programmed in a formal language.

A concrete formal description is very hard for human beings to generate. Usually, domain experts have an
understanding of their universe of discourse and can only provide an informal description, i.e., a description

41

42 CHAPTER 2. THE BASIC MODELING TECHNIQUE

abstract

concrete

informal formal

1

2

3

4

interpretation

compilation

modeling

Figure 2.1: Levels of abstraction and formality

using an informal language (such as natural language). Their understanding is usually at a very concrete
level, in terms of details of the universe of discourse.

In figure 2.1 these two parameters are correlated, enabling us to plot a modeling process seen from these
two parameters. In practice, route 4 is a typical path. The domain expert will almost immediately start
discussing about details. Transforming informal details into formal details is known to be an error prone
and costly route. The ideal route is route 1. In this case, the transformation from informal to formal is done
at the highest level of abstraction. A formal model may be seen as a best result from the modeling process.
Mapping this formal model onto the characteristics of the underlying hardware may be done automatically,
either by interpretation or by compilation.

2.1.2 A conceptual detour

In this lecture focus is on information modeling as an exchange process between a domain expert and
a system analyst. Our intention is to describe this exchange process, and the underlying assumptions on
its participants. This exchange process would be straightforward when domain expert and system analyst
would speak a common language. In general, this is not the case, as the language used by the domain
expert, the domain language, may be rather dissimilar from the language in which a system analyst has
been trained, syntactically, semantically and also pragmatically. As a consequence, a direct communication
process may not be possible, and a detour is required. This detour involves a common description in a
language close to both participants.

In general, when different areas of expertise meet, natural language may be seen as the base mechanism
for (human) communication. It is for this reason that each general modeling technique should support this
basis for communication to some extent. Using natural language in a formalized way can, for example, be
seen as a supplement to the concept of use cases (see [BRJ99]).

As a consequence, the quality of the modeling process is bounded by the quality of concretizing into a
semi-formal description augmented with the quality of abstracting from this description. This triangular
inequality is depicted in figure 2.2.

Roughly speaking, a domain expert can be characterized as someone with (1) superior detail-knowledge
of the UoD but often (2) minor powers of abstraction of that same UoD. The characterization of a system
analyst is the direct opposite. We will describe the required skills of both system analysts and domain
experts from this strict dichotomy and pay attention to the areas where they (should) meet. Of course, in
practice this separation is less strict. Note that as a result of the interaction during the modeling process the
participants will learn from each other. The system analyst will become more or less a domain expert, while

2.1. COMMUNICATION DURING MODELING 43

common language
semi-formal description

universe of discourse
informal specification

model
formal specification

describing
concretizing abstracting

modeling

Conceptual detour

Natural Language

Figure 2.2: A conceptual detour

the domain expert will develop a more abstract view on the UoD in terms of the concepts of the modeling
technique. This learning process has a positive influence on effectiveness and efficiency of the modeling
process, both qualitative (in terms of the result) and quantitative (in terms of completion time).

2.1.3 Using natural language: proc and cons

As stated in [Qui60], natural language is the vehicle of our thoughts and their communication. Since good
communication between system analyst and domain expert is essential for obtaining the intended infor-
mation system, the communication between these two partners should be in a common language. Conse-
quently natural language can be seen as a basis for communication between these two partners. Preferably
natural language is used in both the modeling process as well as the validation process. In practice, system
analyst and domain expert will have gained some knowledge of each other’s expertise, making the role of
natural language less emphasized, moving informal specification towards formal specification.

For the modeling process, natural language has the potential to be a precise specification language provided
it is used well. Whereas a formal specification can never capture the pragmatics of a system, an initial
specification in natural language provides clear hints on the way the users wants to communicate in the
future with the information system.

Since modeling can be seen as mapping natural language concepts onto modeling technique concepts, para-
phrasing can be seen as the inverse mapping intended as a feedback mechanism. This feedback mechanism
increases the possibilities for domain experts to validate the formal specification, see e.g. [DFW96] and
[Dal99]. Besides the purpose of validation, paraphrasing is also useful to (1) lower the conceptual barrier
of the domain expert, (2) to ease the understanding of the conceptual modeling formalism for the domain
expert and (3) to ease the understanding of the UoD for the system analyst.

Up to now we focussed on the positive aspects of the usage of natural language, but in practice there are
not many people who can use natural language in a (1) complete, (2) non-verbose, (3) unambiguous, (4)
consistent way, (5) expressed on a uniform level of abstraction. In the sequel of this section we will make
it plausible how the base skills for domain experts and systems analysts can reduce the impact of the these
disadvantages, as these are the main critical succes factors of information modeling, of which the efficiency
and effectiveness is a direct consequence.

Specifications in natural language tend to be verbose, hiding essentials in linguistic variety. Complex (ver-
bose) sentences will be feed back to the domain expert for splitting and judging significance for the problem
domain. A natural language specification may also get verbose by exemplification, providing examples (in-
stantiations) of the same sentence structure.

44 CHAPTER 2. THE BASIC MODELING TECHNIQUE

An often raised problem of natural language usage is ambiguity, i.e. sentences with the same sentence
structure yet having a different meaning. The system analyst should have a nose for detecting ambiguities.
A typical clue comes from establishing peculiarities in instantiated sentences. In order to decide about a
suspected ambiguity, the system analyst will offer the domain expert these sentences for validation.

On the other hand, the system analyst may also wish to elicit further explanation from the domain expert
by requesting alternative formulations or more sample sentences with respect to the suspected ambiguity.

Sentences of a natural language specification are often on a mixed level of abstraction. As a system analyst
has limited detail knowledge, and thus also limited knowledge at the instance level, a prerequisite for
abstraction is typing of instances and map these types on the concepts of a modeling technique. The analysis
of instances within a sentence is in fact a form of typing, attributing types to each of its components.

2.1.4 Controlled Language
controlled
langauge

A controlled language is a restricted form of natural language, with only a limited number of constructions,
and a restricted dictionary. Typically, a controlled language is a compromise between flexibility and ex-
pressivity of natural language and structure of formal language. Controlled languages are used when there
is a requirement to reduce the possibility of misinterpretation. An example is the communication between
airplane pilots and control units of airports.

An example of an early controlled language is the programming language COBOL (COmmon Business
Oriented Language) (1959). COBOL uses an English-like syntax for common programming statements.
A program division consists of sections. Sections consist of paragraphs, paragraphs consist of sentences.
A sentence is an elementary grouping of statements in COBOL. COBOL has a rich arsenal of data types
tuned for business applications (such as fixed-point arithmetics). COBOL arithmetic is simple but all fine
tunings that are required in business applications (such as the specification of rounding and the handling
of exceptions). Sections and paragraphs can be performed, as a counterpart of the procedure mechanism in
other programming languages. The overwhelming popularity of COBOL is still impressive. As an example,
consider the following COBOL Sentence:

Add Sales-Tax to Balance giving Amount-Due.

In a C-like language, this would be expressed as:

amountDue = salesTax + balance;

Another example is AECMA Simplified English (Association Europenne des Constructeurs de Matriel
Arospatial). This controlled language limits the length of instructional sentences to no more than 20 words,
forbids the omission of articles in noun phrases, and requires that sequential steps be expressed in separate
sentences. This language is used in aerospace industry.

Another example is ACE (Attempto Controlled English, Rolf Schwitter). The following fragment (specify-
ing the operations for updating a library database named LibDB) will illustrate the readability and expres-
sive power of ACE:

If a borrower asks for a copy of a book
and the copy is available
and LibDB calculates the book amount of the borrower
and the book amount is smaller than the book limit
and a staff member checks out the copy to the borrower

then the copy is checked out to the borrower.

If a copy of a book is checked out to a borrower
and a staff member returns the copy

then the copy is available.

In this course we will introduce the ORM controlled language.

2.2. THE PROCESS OF MODELING 45

2.2 The process of modeling

In this section we focus on the modeling process itself. What participants are assumed, and how do they
cooperate.

2.2.1 The participants

The participants in the modeling process are:

domain
expert

1. the domain expert. This participant has expert knowledge of the universe of discourse, and is capable
to generate significant well formed sample sentences to describe this domain. The domain expert
is also capable to validate a description of the universe of discourse, for example generated by the
system analyst.

The main concern of this participant is the completeness provided description of the universe of
discourse.

A more refined view to the domain expert is shown in figure 2.3.
System
analyst

2. the system analyst, also referred to as model builder. This participant is capable to derive the under-
lying grammar structure from well formed sample sentences. The system analyst is also capable to
construct a description of the model under construction, providing the domain expert the opportunity
to validate this model.

falsification
concernThe main concern of this participant is correctness of the resulting model. As has been argued, a

model is deemed to be correct unless it has been falsified, the correctness concern is also referred to
as the falsification concern.

modeling
mediator

informant model builder
system analyst

Domain Expert

informal
level

semi-formal
level

formal
level

Figure 2.3: The modeling participants

modeling
mediator,
system
builder

We restrict modeling as an activity between domain expert and system analyst. It might be argued that most
of the actual modeling in fact takes place in the dialog between the informant and the modeling mediator.
This is also referred to as the informal dialog. The informal dialog will be studied in a later course of the
DaVinci Series.

The skills of domain expert and system analyst are complementary, and together are sufficient for effective
modeling. A classification of skills is given in table ??. The expertise of the domain expert is detailed

domain knowledge
yes no

abstraction skill
yes
no

experienced analyst/manager
domain expert

system analyst
-

Figure 2.4: Skill overview

knowledge, not assuming skills to make abstractions. On the other hand, the system analyst is trained
in making abstractions, but is not assumed to be familiar with the concepts of the universe of discourse.
Communication is used to overcome the differences between these complementary skills.

46 CHAPTER 2. THE BASIC MODELING TECHNIQUE

2.2.2 The interaction

Dialogue
Document

formal
specification

Interpretation

Paraphrasing Modeling

Verification

Universe of Discourse

Personal
Models

Informal
Semantics

Formal
Semantics

Domain expert

Completeness
Principle

System Analyst

Falsification
Principle

Natural
language

Controlled
language

Formal
language

Expressing

Reconsidering

Figure 2.5: Domain expert and system analyst interaction

elicitation
The interaction process between domain expert and system analyst is displayed in figure ??. Elicitation
is the activity in which the system analyst tries to obtain sample sentences form the domain expert. We
will see in a later section that sentences should be in a well agreed format, enabling the system analyst to
understand the meaning of the sentence.

After the sample sentences have been elicitated, the system analyst derives from these sentences their
underlying model as a contribution to the domain model. The system analyst will also provide a number of
tests for consistency of the model (sofar). This quality process is called verification.

Finally, the system analyst generates sentences that are to be verified by the domain expert. The reason to
do this might be twofold. Either the system analyst provides the description of (part of) the model to test for
completeness, or the system analyst provides an assumption in order to test the validity of the underlying
model property.

2.3 Modeling the communication

As stated in the previous sections, we focus on the (formal) communication within the UoD. Therefore we
consider the UoD as a set of interacting agents. These agents are the members of the UoD. The term agent
is used to emphasize that we do not restrict ourselves to human participants. The automated parts of the
UoD also have a contribution to the communication within the UoD.

Human communication may be very complex. For example, psychological studies show that body language
seems to convey most of the information that is exchanged by human beings (and other living creatures!).
The problem is that such languages are hard to formalize. People may or may not recognize a signal uttered
by body language, are may disagree about its meaning.

information-
grammarFor modeling purposes we need a more stable basis. The term formal communication is used for such types

of communication where the format and meaning of the messages is agreed on by the members of the UoD.

2.4. ARCHITECTURE OF AN INFORMATION SYSTEM 47

The goal of the modeling activity is to make a model of the underlying format of the messages and to grasp
the essentials of their meaning. This model is referred to as the information grammar.

Based on this model, a system may be constructed to support the members of the UoD to obtain information
about their UoD. Such a system is referred to as an information system. Due to its nature, such a system
is used to register the history of the UoD, and to support the other members of the UoD with relevant
information.

UoD

UoD
+ information system

UoD
+ communication oriented

information system

Figure 2.6: Communicating members

At this point we get a problem of a philosophical nature. After building an information system, the UoD
will have a new member, the information system itself. As a consequence, the introduction of the infor-
mation system may have led to a modification on the formal communication within the UoD. This can be
represented by the following pseudo-formula:

IS = Model (UoD + IS)

where the problem is to solve IS from this recursive equation.

The goal of the modeling activity is to derive the information grammar describing the formal language
within the UoD. The information grammar should be a formal and abstract description of the UoD.

100% principle,
conceptualization
principle

As a consequence, the information grammar:

1. The 100% principle: The conceptual schema should describe precisely all (relevant) conceptual as-
pects

2. The conceptualization principle: but does not provide any realization (implementation) aspect (see
figure 2.1).

It is the actual focus on these principles that draws the distinction between the modeling technique de-
scribed in this book and other modeling techniques (such as ER). The problem is that such techniques rely
on modeling concepts that stem from an efficiency principle. By basing the modeling process on sentences,
the resulting model will be close to the concepts as used in the universe of discourse.

2.4 Architecture of an information system

The information system has been introduced as an agent capable to register the history of the UoD, and to
support the other members of the UoD with relevant information. The intelligence of this agent is based on
the knowledge of how members of that UoD communicate, as described in the information grammar.

48 CHAPTER 2. THE BASIC MODELING TECHNIQUE

2.4.1 The user interface

The user interface describes the common part of interaction between a computer (program) and a user. The
user interface allows the user to interact with the system. This interaction may be purely text based, or may
be based on a metaphor of direct manipulation of graphical images and widgets in addition to text.

information
system

environment Lisa-D

Figure 2.7: The user interface

The main tasks for the information system are:

• Accept information. This is the information that is re-
quired to keep the agent’s knowledge of the vicissitudes
of the UoD.

• Store information. The information system should be a
reliable partner. It is supposed to remember what has
been told.

• Process information. Processing can be very simple,
answering some concrete question about the state of
the UoD. However, more advanced questions are also
possible, questions that appeal to the reasoning capabil-
ities of the information system to derive information.
An information system may also be seen as a knowl-
edge system.

• Presentation of information. The information system
will also try to present the requested information in a
neat way, depending on the cognitive nature of the re-
questing agent. For example, a human agent will prefer
visual information, while a system agent needs a very
strict communication format (such as XML).

The communication with the information system is based on the information grammar. The information
grammar describes the peculiarities of the UoD. Lisa-D is a general purpose extension of the information
grammar, resulting in a complete formalized communication language.

2.4.2 The information base

information
system

information
base

environment Lisa-D

Figure 2.8: The information base

The information system is continuously informed about the
relevant happenings in the UoD. The sentences used are in-
stances according to the information grammar. For example,
the following mentions cold have been made to the informa-
tion system:

1. student 12345 enrolls in course A

2. student 23456 enrolls in course B

Using the information grammar, the information system is ca-
pable to detect the underlying structure of these sentences.
This enables the information system to correctly understand
these sentences. Besides they have the same structure, these
sentence mention different facts. In order to remember these
facts, the system maintains for each sentence type from the
information grammar a pool of instances that have been men-
tioned.

information base
In this case, the information system will store in the pool for fact type enrolls in the following actual enroll-
ments: (12345, A) and (23456, B). The fact pools together form the information base of the information
system.

Closed World
Assumption

2.4. ARCHITECTURE OF AN INFORMATION SYSTEM 49

The rationale behind this storing strategy is the closed world assumption, which states:

a fact is valid
⇔ the fact is stored in the information base

The information base thus is supposed to provide a complete description of the current state of the UoD.

In our model theoretic view, the information base is assumed to record its knowledge about (the current
state) of the universe of discourse as elementary sentences. Sentences are elementary when they can not be
split into a combination of smaller sentences with the same meaning. The consequence of this rule of being
elementary is that the information base does not suffer from redundancy. Or, each fact stores a separate
information fragment that is not available in another information fragment.

The information system will use an internal language to process the information base. Typically, the in-
formation base is organized according to the relational data model, and processed by the operational data
processing language SQL (Structured Query Language).

2.4.3 The information grammar

information
system information

grammar

information
base

environment Lisa-D

Figure 2.9: The information grammar

The information base forms the minimal required storage to
represent the current state of the universe of discourse. The
current state is being described by recording all statements
that are valid in the universe of discourse. The facts stored
are the elementary statements to be made about the universe
of discourse.

The description of these sentences, the rules to construct more
complex sentences, and the constraints that govern the con-
tents of the information base, are described in the informa-
tion grammar. The information grammar provides a model of
the underlying format of the messages that can be exchanged
by members of the UoD and to grasp the essentials of their
meaning.

In some more detail, the information grammar will describe:

• A description of the concepts that are communicated about in the UoD, and their relations. This
description is also referred to as the conceptual model. These concepts are grammatical units (so
called non terminal symbol) in the information grammar. The relations between the concepts are
modelled as context free rules in the information grammar. As a consequence, the context free rules
are used to describe the structure of the UoD.

• The constraints that govern the way this model may be instantiated (populated). Especially, there
may be constraints on state changes. In technical terms, restriction rules are non-context free rules in
the information grammar that restrict the context free structural derivations.

• The actual grammar rules. These rules describe how concepts are communicated. In this part the
communication units used in the user interface (forms, windows, etc) are also described.

• The lexicon describes the elementary names and their meaning. A lexicon is also referred to as name
space. This is the same approach as taken for natural language descriptions, they also discriminate
between grammar rules and a lexicon.

In this course, it is assumed that the information grammar does not change over time. In practise this is not
realistic, system evolution is more a rule than an exception. In such a situation, it will also be required to
answer historical questions. This will require to have an overview of the history of the conceptual schema,
and an historical overview of facts in terms of that conceptual history.

50 CHAPTER 2. THE BASIC MODELING TECHNIQUE

normal form specification

information objects

textual description

initial specification

informal specification

conceptual model

lexicon

sample population

Elicitation

Modelling
Validation

Collecting

Verbalization

Feed back

Reformulation

Grammatical Analysis

Production Abstraction

1

2

3

4

56

7

formal specification

grammar rules

constraints

Verification

8

Figure 2.10: The development cycle

In figure 2.10 the schema of the modeling process is further elaborated, in order to reflect these elements
of the information grammar.

For the description of the conceptual model, graphical techniques are used. The reason is that conceptual
models tend to be very large, and therefore not effectively accessible by a textual description. This is a
serious drawback for the validation of the conceptual model (see 2.10) We will use the graphical notation
originating from NIAM (aN Information Analysis Method), with extensions from PSM (Predicator Set
Model), ORM (Object Role Modeling) and FCO NIAM (Fully Communication Oriented NIAM).

We will also show how the information grammar may be depicted using the contemporary modeling tech-
nique UML (Unified Modeling Language).

2.4.4 The information processor
information pro-
cessor

information
system information

grammar

information
processor

information
base

environment Lisa-D

Figure 2.11: The information processor

The information processor accepts requests that are entered
via the user interface (section 2.4.1), takes care for their exe-
cution, and presents their results.

The main steps taken by the information processor are:

1. parse request according to the information grammar in
order to understand the nature of the request in terms
of conceptual database operations

2. translate the conceptual operations in terms of opera-
tion according to the actual database management sys-
tem used (usually SQL-based)

3. transform the results according to the rule to transform
the resulting data into information (as described in the
actual grammar rules)

2.4. ARCHITECTURE OF AN INFORMATION SYSTEM 51

The information processor is the active component of the in-
formation system. We take a straightforward approach, and assume the information system to be a single-
processor system. The reason is that data in the first part of this lecture is considered as a passive element.

In the second part of this lecture, we will have an more active view on data as active objects.

2.4.5 Turing’s Test Of Intelligence

Figure 2.12: Turing test for intelligence

Programming languages (see figure 2.13) may be characterized from its usability aspect, in terms of the
level of communication with the computer, as follows:

1. 1st generation: Machine Code
Such languages consist of hexadecimal codes and correspond to the operations a digital processor
can perform. For example, the Z80 processor will interpret the following code:

C3 05 00

as follows: proceed execution with the instruction at address 0100 (hexadecimal!).

2. 2nd generation: Assembly Language
In order to make life more easy for programmers, mnemonics are introduced for alle processor in-
structions. Furthermore, a mechanism to handle addresses by labels. The above instruction

jmp BDOS

The label BDOS is defined elsewhere in the assembly program, for example as follows:

BDOS equ 0005h

A program called assembler translates an assembly program into machine code.

3. 3th generation: Procedural Languages
Such languages are also called high-level programming languages. Examples are Algol, Pascal, C,
C++, and Java. These languages allow the programmer to focus on solving the problem without
worrying about the actual computer on which the program has to run. Special programs, called
compilers translate the program into the machine code for a specific computer.

SQL4. 4th generation: Non-procedural (declarative) Languages
In 4th generation languages, the programmer only specifies what has to be done rather than giving
a procedure of how this is actually obtained. A typical 4th generation language is SQL (Structured
Query Language).

52 CHAPTER 2. THE BASIC MODELING TECHNIQUE

Lisa-D5. 5th generation: (Controlled) natural languages
5th Generation systems recognize natural language like sentences.

Turing test
An example is the language Lisa-D (Language for Information Structure and Access Descriptions).
An interesting test for the quality of such a system it the Turing Test (see figure 2.12). The idea is as
follows. Human A ’converses’ via ’chat’ software with person B on the other side of an opaque wall
(via a computer terminal) in natural language about a desired topic. Human B eventually hands over
the conversation to Machine C. If A can tell the difference between B and C, then the machine is not
intelligent, otherwise it is.

1940 1950 1960 1970 1980 1990 2000 2010

problem
definition

human
oriented

machine
oriented

5th generation
Lisa-D

4th generation
SQL

3th generation
Algol, Pascal

assembly language

machine code

Figure 2.13: Programming language history

Figure 2.14: Captcha test

A practical variant of the Turing test is called captcha, which is an
acronym for completely automated public Turingtest to tell computers
and humans apart. A captcha (see for for example figure 2.14) is a test
that can be generated by a computer, such that humans can pass the test,
but not readily solvable for computer programs.

2.5 Grammars

Languages are widely used for communication purposes. They are restricted to formal human communica-
tion. Being formal, there are certain rules for the proper use of language. This is the basis for communica-
tion to be successful, as structure is a prerequisite for understanding. Generally accepted is the view that a
languages defines sentences as the base units for communication. The rules that sentences should adhere to
are called the grammar of that language. These rules are used in the context of this course in a rigid way, in
contrast to daily practise. Human beings have a great flexibility in recognizing sentences that do not obey
the grammar rules. Sentence fragments are used to convey a complete sentence, illformed sentences are
easily understood. The reasons why such forms of sloppy use of language still work are: sentences contain
information in a redundant way, sentences are presented in a context that clarifies missing information and
even provides opportunities for error correction.

The reason for the rigid approach in this course are twofold. The first reason is a quality argument. Sen-
tences uttered by an information system should be free of misinterpretation. The second reason is that an
information system should not be tempted with the meaning of incoming sentences.

2.5. GRAMMARS 53

The intention of a grammar is to describe what sentences are acceptable in a particular language. Grammars
are used by human beings both to construct wellformed sentences and to understand them. The base rule is
that a sentence is a sequence of words, intermingled with punctuation marks to enforce some structure in
the sentence, or to emphasize some part of it. Lexica define the words than are acceptable for a language.

Syntactical categories are used to describe the structure of sentences. Examples of syntactic categories are:
predicate, subject and object. For example, a valid sentence may consist of a subject, followed by a verb,
followed by an object. We use the AGFL formalism to describe this grammar rule for the syntactic category
sentence:

sentence:
subject, verb, object.

Another view at this rule is: during generation of a valid sentence, the syntactic category sentence may
be replaced by the sequence of subject, verb and object. The comma-symbol is used in the rule
to separate the syntactic category to be rewritten from the result of this rewriting. The comma symbol is
used to separate syntactical categories, the point symbol marks the end of the rule. Another examples of a
grammar rule is:

subject:
"I";
"you".

This rule expresses that the syntactic category subject may be rewritten either by the word ”I” or by the
word ”you”. The quotes thus mark the actual words. The semicolon is a separator for alternative rewrite
patterns. Using semicolons leads to a more compact notation for rules. The above example is a compact
notation for the following two rules:

subject: "I".

subject "you".

We add some more rules:

verb:
"amuse";
"call".

object:
"you";
"the man".

From this set of rules, we can derive sentences. We start with the syntactic category sentence, and apply
rules until all syntactic categories have been resolved. For example:

expression apply rule
sentence sentence: subject, verb, object.

subject, verb, object subject: "I".

"I", verb, object verb: "call".

"I", "call", object object: "you".

"I", "call", "you"

54 CHAPTER 2. THE BASIC MODELING TECHNIQUE

This is also an example of the usage of a grammar as a generative device, i.e., a device that can generate
sentences. Grammar rules may also be used to parse a given sentence, leading to the central start symbol
sentence:

expression apply rule
"I", "call", "you" object: "you".

"I", "call", object verb: "call".

"I", verb, object subject: "I".

subject, verb, object sentence: subject, verb, object.

sentence

This example shows the usage of a grammar as a parsing device. Invalid sentences will fail a trial reduction
to the start symbol sentence, for example:

expression apply rule
"I", "smell", "you" object: "you".

"I", "smell", object subject: "I".

subject, "smell", object ??

Besides natural language, grammars are also in use to define artificial languages, such as programming
languages. However, the descriptive capabilities of grammars go far beyond these examples, and are also
used to describe all kinds of formal structures.

2.5.1 Formal grammars

The example grammar of the previous subsection can generate meaningless sentences, for example:

expression apply rule
sentence sentence: subject, verb, object.

subject, verb, object subject: "I".

"I", verb, object verb: "call".

"I", "call", object object: "I".

"I", "call", "I"

The reason is that the second application of the rule object: "I". does not make sense, as earlier in
the derivation this rule was also applied. This is better stated as follows: in the context of "I", "call",
the rule object: "I". should not be applied. We need some mechanism to make rewrite rules behave
like this. In AGFL, syntactic categories get a mission statement upon application of the grammar rule in
the form of parameters that describe the specific content requirements.

Formal grammars provide the opportunity to study properties of grammars in an abstract way. Abstract
grammars use symbols as an abstraction of words and syntactic categories. Symbols that can be rewritten
are called nonterminal symbols, symbols that correspond to words are called terminal symbols. We will
not further go into the details of formal grammars.

Courses on formal grammar theory focus on the essentials of generative and parsing devices. An abstract
grammar is defined as a structure 〈N ,T ,S,R〉, where N is the set of nonterminal symbols (abstraction of
syntactical category), T is the set of terminal symbols (abstraction of words), S the start symbol (the main
syntactical category, in our example sentence), and R the set of grammar rules. The example grammar
of the previous subsection is represented as:

2.5. GRAMMARS 55

1. N =
{

S,A,B,C
}

2. T =
{

a,b,c,d,e, f
}

3. startsymbol: S

4. R: the rules are:

• S : A,B,C.

• A : a;b.
• B : c;d.

• C : e; f .

2.5.2 Handling context

Next we consider a grammar that describes the presence of the conjugation of the verb to walk. The con-
jugation depends on the person and the count of usage. Let the parameter PERSON register the requested
person, and the parameter NUMBER plurality. Then the grammar could look like:

sentence(PERSON,NUMBER):
subject(PERSON,NUMBER), verb(PERSON,NUMBER).

subject(FIRST,SINGULAR): "I".
subject(SECOND,SINGULAR): "you".
subject(THIRD,SINGULAR): "he"; "she", "it".

subject(FIRST,PLURAL): "we".
subject(SECOND,PLURAL): "you".
subject(THIRD,PLURAL): "they".

verb(FIRST|SECOND,SINGULAR): "walk".
verb(THIRD,SINGULAR): "walks".
verb(PERSON,PLURAL): "walk".

The rule

sentence(PERSON,NUMBER):
subject(PERSON,NUMBER), verb(PERSON,NUMBER).

describes the general construction for any value of the parameters PERSON and NUMBER. In the rule

subject(FIRST,SINGULAR): "I".

the parameters PERSON and NUMBER are completely specified. The bar symbol (|) allows the grouping of
alternatives:

verb(FIRST|SECOND,SINGULAR): "walk".

The possible substitutions for the parameters are specified by:

PERSON::FIRST|SECOND|THIRD.

NUMBER::SINGULAR|PLURAL.

56 CHAPTER 2. THE BASIC MODELING TECHNIQUE

A sample derivation of a sentence:

expression apply rule
sentence(THIRD,SINGULAR) sentence(THIRD,SINGULAR):

subject(THIRD,SINGULAR),
verb(THIRD,SINGULAR).

subject(THIRD,SINGULAR), verb(THIRD,SINGULAR) subject(THIRD,SINGULAR): "she".

"she", verb(THIRD,SINGULAR) verb(THIRD,SINGULAR): "walks".

"she", "walks"

Another example is:

expression apply rule
sentence(THIRD,PLURAL) sentence(THIRD,PLURAL):

subject(THIRD,PLURAL),
verb(THIRD,PLURAL).

subject(THIRD,PLURAL), verb(THIRD,PLURAL) subject(THIRD,PLURAL): "they".

"they", verb(THIRD,PLURAL) verb(THIRD,PLURAL): "walk".

"they", "walk"

2.5.3 ORM represented as AGFL

The information grammar displayed in figure 1.10 is represented in AGFL as:

• Sentence:: WorksFor; Cooperator; Department; Name; Departmentname.

• WorkFor:: Cooperator , "works for", Department.

• WorkFor:: Department , "providing work to", Cooperator.

• Cooperator:: "Cooperator with", Name.

• Department:: "Department with", Name.

• Name:: "Name", string.

• Departmentname:: "Department name", string.

For the information grammar from figure 1.11 we have the following corresponding AGFL grammar:

2.5.3.1 2

• Sentence:: Smokes; Person; Name.

• Smokes:: Person , "smokes".

• Person:: "Person with", Name.

• Name:: "Name", string.

For the schema fromfigure—2.19 we get:

• Sentence:: Reservation; AName; Room; Time; Activity; Nr; Dh; Code; ActivityName.

• Reservation:: Room, "at ", Time, "is used for", Activity.

2.6. THE FORMAL MODEL 57

• AName:: Activity, "has", ActivityName.

• Room:: "Room with", Nr.
• Time:: "Time with", Dh.
• Activity:: "Activity with", Code.

• Nr:: "Nr" , string.
• Dh:: "Dh", string.
• Code:: "Code", string
• ActivityName:: "ActivityName", string

2.6 The formal model

A main part of the information grammars is the overview of concepts and how they are related. This
overview is called the conceptual schema. We will first focus on the conceptual schema, and later see how
this is used as a base to construct the information grammar.

As conceptual schemata, in real applications, tend to be rather extensive, it has become common practise
to present conceptual schemata graphically. A conceptual schema in the form of as diagram has shown to
be a good format for discussion between domain expert and system analyst.

2.6.1 Object types

A conceptual schema consists (at least) of the following schema elements:

1. A set of label types (L). Each label type has associated a concrete domain (such as string, real or
integer). The concrete domain may also be an enumerated set of values.

2. A set of entity types (E). Entities correspond to the members of the universe of discourse.

3. A set of fact types (F). Facts describe the relations between members of the universe of discourse.

Each instance of these sets of types corresponds to some object sort. We will use the term object type
as a generic term. Each object type will correspond to a separate syntactical category in the information
grammar.

elementary
object typesLabel types and entity types are elementary object types. Fact types are constructed object types. The

construction rules will be discussed in the next section. The graphical representations of elementary object
types is displayed in figure 2.15.

Label−typeEntiteit−type

Figure 2.15: Graphical representation of elementary types

58 CHAPTER 2. THE BASIC MODELING TECHNIQUE

2.6.2 Construction rules

Roles are used as the primitive elements to construct new object types. The set of roles is denoted as P . A
fact type (f ∈F) basically is a set of roles (f ⊆P). Roles describe the kind of roles that are played in the
corresponding fact type. A role is displayed graphically as follows:

Predicator p

Figure 2.16. Graphical representation of a role

Each role p has associated a base type Base(p).

Base (p)

predicator p

Figure 2.17. Base of a role

The fact type in which role p is used is denoted as Fact(p). Roles are grouped into fact types by drawing
them next to each other. Sometimes the following representation is also used:

predicator p predicator q

feittype Fact (p) = Fact (q)

Figure 2.18. Fact type

2.6.3 Bridge types

A special sort of fact type is the bridge type. Such a fact type connects the abstract world of the information
system with the concrete world, the universe of discourse. A bridge type is a binary fact type, connecting a
label type with an entity type. Formally, a bridge type is a fact type with two roles p and q such that:

Base(p) ∈ E ∧Base(q) ∈L

Bridge types form the only possibility to go pass the border between the concrete and abstract world. This
is expressed by the following rule of wellformedness of conceptual schemata:

Base(p) ∈L ⇒Fact(p) is a bridge type

Bridge types have associated standard role names, leading to fixed verbalization rules for the facts stored
in this object type. The structure of these verbalizations is:

• entity with label

• label of entity

2.6. THE FORMAL MODEL 59

2.6.4 Summary sofar

At this point, a conceptual schema consists of:

1. a set L of label types; each label type has associated a concrete domain.

2. a set E of entity type.

3. label types and entity types are elementary object types.

4. a set P of roles

5. a set F of fact types. The fact types form a partition of the set P of roles.

6. Base(p) is the base of role p, denoting the object type playing the role associated with this role.

7. Fact(p) is the fact type in which p is used as a constructor.

2.6.5 Example

Nr Code

Room Activ
ity

Dh

Time

Reservation
<1> at <2> is used for <3>

Activity
Name

ActName
<1> has <2>

with

with

with

with

of

of

of

of

RoomNr

TimeDh

ActCode

Figure 2.19: Conceptual schema for room reservation

. The example schema from figure ?? is described via syntax diagrams by:

60 CHAPTER 2. THE BASIC MODELING TECHNIQUE

sentence

Reservation�
�AName

�Room

�Time

�Activity

�ActivityName

�

Reservation

Room at
�� �Time is used for

�� �Activity

AName

Activity has
�� �ActivityName

Room

Room with
�� �Nr

Time

Time with
�� �Dh

Activity

Activity with
�� �Code

Nr

Nr
�� �string

Dh

Dh
�� �string

Code

Code
�� �string

ActivityName

ActivityName
�� �string

Using AGFL, we obtain the following description:

• Sentence:: Reservation; AName; Room; Time; Activity; Nr; Dh; Code; ActivityName.

• Reservation:: Room, "at ", Time, "is used for", Activity.

2.6. THE FORMAL MODEL 61

• AName:: Activity, "has", ActivityName.

• Room:: "Room with", Nr.
• Time:: "Time with", Dh.
• Activity:: "Activity with", Code.

• Nr:: "Nr" , string.
• Dh:: "Dh", string.
• Code:: "Code", string
• ActivityName:: "ActivityName", string

It has the following formal description:

1. L = { Nr, Dh, Code, ActivityName }

2. E = { Room, Time, Activity }

3. P = {Reservation.room, Reservation.time, Reservation.act, RoomNr.with, RoomNr.of, TimeDh.with,
TimeDh.of, ActCode.with, ActCode.of, ActName.with, ActName.of }

4. F = { Reservation: {Reservation.room, Reservation.time, Reservation.act},
RoomNr: {RoomNr.with, RoomNr.of},
TimeDh: {TimeDh.with, TimeDh.of},
ActCode: {ActCode.with, ActCode.of},
ActName: {ActName.with, ActName.of} }

Note that F is a partition of the set of roles.

5. Base(p):
role base
Reservation.room Room
Reservation.time Time
Reservation.act Activity
RoomNr.with Room
RoomNr.of Nr
TimeDh.with Time
TimeDh.of Dh
ActCode.with Activity
ActCode.of Code
ActName.with Activity
ActName.of ActivityName

6. Fact(p):
role fact type
Reservation.room Reservation
Reservation.time Reservation
Reservation.act Reservation
RoomNr.with RoomNr
RoomNr.of RoomNr
TimeDh.with TimeDh
TimeDh.of TimeDh
ActCode.with ActCode
ActCode.of ActCode
ActName.with ActName
ActName.of ActName

62 CHAPTER 2. THE BASIC MODELING TECHNIQUE

2.6.6 Populating a conceptual schema
populationA conceptual schema describes concepts and how they relate. The state of the universe of discourse is then

described as an overview of the valid elementary sentences, i.e., the actual instances of the object types.
Such an overview is called a population of this conceptual schema. The consequence of the Closed World
Assumption is that all elementary sentences not comprised in a population can be concluded to be false in
the corresponding state of the universe of discourse. Formally: a population

1. assigns a set of sentences to each object type, constructed according to the construction rules as layed
down in the conceptual schema

2. such that all further constraints are satisfied.
Constraints will be introduced in chapter 4. As constraints are used to exclude well-constructed populations,
that nevertheless are no proper representation of any state of the universe of discourse.

Populations can be denoted as follows:

1. in a formal way, using notation from set theory

2. using a graphical format

3. using a table-notation
Figure 1.9 shows how a population is represented graphically. The table-notation lends itself best to be
used as an efficient storage format of the information base in a computer:

Werknemer Afdeling

Jan
Piet
Piet

Inkoop
PZ
Inkoop

Figure 2.20. Sample population

2.7 Quality aspects for conceptual schemata

The modeling task, as described in section 2.2.2, is a process of communication and negotiation between
the domain expert and the system analyst. Basically, this interaction between domain expert and system
analyst leads to a set of sample sentences in ORNF. This is called the semi-formal specification. From the
point of view of the system analyst, the constructed information grammar is correct is all this grammar
can generate all sample sentences. A first point to note is that there may be several information grammars
that meet the semi-formal specification. As a very trivial example, the grammar that simply generates each
sample sentence directly from the start symbol of the grammar, is a correct information grammar.

The question then is: what is the best information grammar to choose? We will restrict this to the question:
what is the best conceptual model given the semi-formal specification. We have the following conflicting
requirements:
• the system analyst should try to avoid unnecessary concepts. In other words, the conceptual model

should have a minimal number of concepts.

• the grammar should recognize all candidate concepts. The system analyst should recognize all sen-
tence parts where the domain expert might possibly want to add variation. The system analyst should
thus be capable to learn even from a very small set of examples.

Even then there may be more than one information grammar derivable from the semi-formal specification.
The system analyst might want to offer the domain expert feedback questions that enable the system analyst
to prefer one model above the other. The system analyst has to make the ultimate choice if the domain
experts preferences fail.

2.8. DEFINITIONS OVERVIEW 63

2.8 Definitions overview
Informal communication – Communication that is not based on an objective intermediate representation,

making the information transfer independent of the actual interaction.

Formal communication – Communication that is based on an objective intermediate representation, in
which the information transfer is independent of the actual interaction.

Telephone heuristic – Communication form where the way to carry over information is by written text.

Fact oriented – The fact-oriented approach interprets sentences as facts about the universe of discourse.
This approach is used data-intensive domains when the structure of the data is dominant. See also
action oriented.

Action oriented – The action-oriented approach interprets sentences as events occurring in the universe
of discourse. This approach is when the operations on the data are dominant. See also fact oriented.

ORNF – Object Role Normalform, a controlled language developed in the context of object-role model-
ing.

Agens – The role in a sentence that most commonly is associated with the grammatical subject.

Patiens – The role in a sentence that most commonly is associated with the grammatical object.

Index expression – A simple structure for sentences, having some similarity with mathematical expres-
sions. These expressions are used in the context of Information Retrieval, as they provide a fair
compromise between expressivity and feasibility. In the context of domain modeling they are a rep-
resentation for sentences structures in the contex of ORM.

Weak identification – A sufficient condition to be able to uniquely identify objects and things, stating that
no two objects or things have the same properties.

standard names – An agreed standard denotation for objects and things.

Strong identification – A sufficient condition to be able to uniquely identify objects and things, stating
each object has a standard name derived from the associated object type.

Elementary sentence – Sentences that can not be split into smaller sentences without losing information.

Deep sentence structure – Sentences with the same meaning may have distinct surface forms. These are
derived from an unobservable common source, the so-called deep structure underlying both sen-
tences.

[fully-qualified (us)] ./definitions/fully-qualified/us –
[lexical-object (us)] ./definitions/lexical-object/us –
[nonlexical-object (us)] ./definitions/nonlexical-object/us –
[identifying-attribute (us)] ./definitions/identifying-attribute/us –
[bridge-type (us)] ./definitions/bridge-type/us –
Functional dependency – A rule stating a functional relationship between two sets of attributes (rela-

tional data model).

[multivalued-dependency (us)] ./definitions/multivalued-dependency/us –
[elementary-object-types (us)] ./definitions/elementary-object-types/us –
Population – A conistent set of instances assigned to the concepts of a conceptual schema.

Questions
Version:
01-12-20071. The following table gives an overview of the participants of an athletic contest, the country they

represent and their birth country.

64 CHAPTER 2. THE BASIC MODELING TECHNIQUE

Athlete administration:
Athlete Country Birthplace
Ann Arbor USA USA
Bill Abbot UK ?
Chris Lee USA NZ

Give the elementary sentences that can be derived from this table. Then derive from thee sentences an
ORM schema. Discuss the correctness of this schema, and explain that this schema does not contain
unnecessary concepts. Also give the associated AGFL grammar.

2. In the following table a wholesale dealer describes how many software items have been sold to
retailers.

Sales administration:
Software item Retailer Quantity sold
SQL+ CompuWare 330

SoftwareLand 330
Zappo Pascal CompuWare 330

SoftwareLand 251
WordLight CompuWare 200

Give the elementary sentences that can be derived from this table. Then derive from thee sentences an
ORM schema. Discuss the correctness of this schema, and explain that this schema does not contain
unnecessary concepts.

3. In the following project administration for each employee it is registered how many hours they have
made on projects, and what expenses they had:

Project administration:
Employee Project Hours Expenses
E4 P8 24 200
E4 P9 26 150
E5 P8 14 100
E5 P9 16 110
E6 P8 16 120
E6 P9 14 110

Give the elementary sentences that can be derived from this table. Then derive from thee sentences an
ORM schema. Discuss the correctness of this schema, and explain that this schema does not contain
unnecessary concepts.

4. A university keeps track of the tute groups they organize for their students, and where and when they
have their weekly meetings:

Tutorial allocations:
Tute group Time Room StudentNr StudentName
A Mon CS-718 302156 Blogs FB

15.00 180064 Fletcher JB
278155 Jackson B
334067 Jones EP
200140 Kawamoto T

B1 Tue E-B18 266010 Anderson AB
14.00 348112 Bloggs FB

Give the elementary sentences that can be derived from this table. Then derive from thee sentences an
ORM schema. Discuss the correctness of this schema, and explain that this schema does not contain
unnecessary concepts.

QUESTIONS 65

5. Discuss the following statement:

if a population is not weakly identified, then there can be no unique correspondence with
the corresponding UoD.

6. The personnel administration of a university registers information of each employee as follows:

Personnel administration:
EmpNr Emp Name Dept Room Phone Phone Tenure/

Ext Access Contract-expiry
715 Adams A Computer Science 69-301 2345 LOC 01/31/95
720 Brown T Biochemistry 62-406 9642 LOC 01/31/95
139 Cantor G Mathematics 67-301 1221 INT tenured
430 Codd EF Computer Science 69-507 2911 INT tenured
503 Hagar TA Computer Science 69-507 2988 LOC tenured
651 Jones E Biochemistry 69-803 5003 LOC 12/31/96
770 Jones E Mathematics 67-404 1946 LOC 12/31/95
112 Locke J Philosophy 1-205 6600 INT tenured
223 Mifune K Elec. Engineering 50-215A 1111 LOC tenured
951 Murphy B Elec. Engineering 45-B19 2301 LOC 01/03/95
333 Russel B Philosophy 1-206 6600 INT tenured
654 Wirth N Computer Science 69-603 4321 INT tenured

Give the elementary sentences that can be derived from this table. Then derive from thee sentences an
ORM schema. Discuss the correctness of this schema, and explain that this schema does not contain
unnecessary concepts.

7. Beschouw de volgende zinnen:

(a) Student Jan volgt vak DM

(b) Studente Ria volgt vak P1

(c) Studente Els heeft voor vak DM een 10 gehaald

(d) Student Cor heeft voor vak III een 7 gehaald

Maak een grammatica die in staat is (in elk geval) deze zinnen voort te brengen.

8. Sales administration:
EmpNr Emp Name Subject Rating Committees
715 Adams A CS100 5

CS101
430 Codd EF
654 Wirth N CS300 BSc-Hons

CAL Advisory

9. Figuur 2.21 is een voorbeeld van de manier waarop men in een zeker UoD onderling informatie
uitwisselt. Geef de elementaire verwoordingen van de elementaire feittypen die hierin liggen opges-
loten. Leid vervolgens uit deze zinnen het ORM schema af. Motiveer waarom uw schema correct is.

66 CHAPTER 2. THE BASIC MODELING TECHNIQUE

Figure 2.21: US Federal Budget expenses

Chapter 3

Object-Role Calculus - A sample session

Version:
10-09-083.1 An extended sample session: the presidential database

In this section we introduce ORC by means of an extended sample session. This session is base on the
so-called presidential database has been used in literature as a base for comparison between modeling tech-
niques. We start from the following sample tables. Table 3.1 contains the administrations, their presidents
and their vice-presidents. Relevant information about presidents of the USA is being recorded in table 3.2.

Personal information about presidents is stored in table 3.3 Hobbies of presidents are described in table 3.4.
The presidential contribution of states is described in table 3.5. This leads to the conceptual schema from
figure 3.1.

3.1.1 Elementary sentences and juxta-position

We start with a number of examples showing the usage of the lexicon and the how simple sentences can be
formed by juxta-position.

1. Show all presidents
The object type President is populated by all presidents. To list all presidents, we use:

LIST President

The LIST command will display the resulting presidents by their standard names.

2. Who are the president spouses?
This is expressed as the concatenation of elementary names from the conceptual schema:

LIST Person being spouse of President

A person may be spouse of several presidents, and will then occur more than once in the list of
president spouses. If we dont want duplicates in the list, we require:

LIST DISTINCT Person being spouse of President

3. Which presidents have been married?
This is answered by:

67

68 CHAPTER 3. OBJECT-ROLE CALCULUS - A SAMPLE SESSION

Administration table
Administration number President name Vice president name
1 Washington G Adams J
2 Washington G Adams J
3 Adams J Jefferson T
4 Jefferson T Burr A
5 Jefferson T Clinton G
6 Madison J Clinton G
7 Madison J Gerry E
8 Monroe J Tompkins D
9 Monroe J Tompkins D
10 Adams J Q Calhoun J
11 Jackson A Calhoun J
12 Jackson A Van Buren M
13 Van Buren M Johnson R M
14 Harrison W H Tyler J
15 Polk J K Dallas G M
16 Taylor Z Fillmore M
17 Pierce F De Vane King
18 Buchanan J Breckinridge
19 Lincoln A Hamlin H
20 Lincoln A Johnson A
21 Grant U S Colfax S
22 Grant U S Wilson H
23 Hayes R B Wheeler W
24 Garfield J A Arthur C A
25 Cleveland G Hendricks T A
26 Harrison B Morton L P
27 Cleveland G Stevenson A E
28 McKinley W Hobart G A
29 McKinley W Roosevelt T
30 Roosevelt T Fairbanks C W
31 Taft W H Sherman J S
32 Wilson W Marshall T R
33 Wilson W Marshall T R
34 Harding W G Coolidge C
35 Coolidge C Dawes C G
36 Hoover H C Curtis C
37 Roosevelt F D Garner J N
38 Roosevelt F D Garner J N
39 Roosevelt F D Wallace H A
40 Roosevelt F D Truman H S
41 Truman H S Barkley A W
42 Eisenhower D D Nixon R M
43 Eisenhower D D Nixon R M
44 Kennedy J F Johnson L B
45 Johnson L B Humphrey H H
46 Nixon R M Agnew S T
47 Nixon R M Agnew S T
47 Nixon R M Ford G R
47 Ford G R Rockefeller N
48 Carter J E Mondale W F
49 Reagan R Bush G

Table 3.1: Administration table

3.1. AN EXTENDED SAMPLE SESSION: THE PRESIDENTIAL DATABASE 69

Presidential information
President name Birth year Years served Death age Party State born
Washington G 1732 7 67 Federalist Virginia
Adams J 1735 4 90 Federalist Massachusetts
Jefferson T 1743 8 83 Demo-Rep Virginia
Madison J 1751 8 85 Demo-Rep Virginia
Monroe J 1758 8 73 Demo-Rep Virginia
Adams J Q 1767 4 80 Demo-Rep Massachusetts
Jackson A 1767 8 78 Democratic South Carolina
Van Buren M 1782 4 79 Democratic New York
Harrison W H 1773 0 68 Whig Virginia
Tyler J 1790 3 71 Whig Virginia
Polk J K 1795 4 53 Democratic North Carolina
Taylor Z 1784 1 65 Whig Virginia
Fillmore M 1800 2 74 Whig New York
Pierce F 1804 4 64 Democratic New Hampshire
Buchanan J 1791 4 77 Democratic Pennsylvania
Lincoln A 1809 4 56 Republican Kentucky
Johnson A 1808 3 66 Democratic North Carolina
Grant U S 1822 8 63 Republican Ohio
Hayes R B 1822 4 70 Republican Ohio
Garfield J A 1831 0 49 Republican Ohio
Arthur C A 1830 3 56 Republican Vermont
Cleveland G 1837 8 71 Democratic New Jersey
Harrison B 1833 4 67 Republican Ohio
McKinley W 1843 4 58 Republican Ohio
Roosevelt T 1858 7 60 Republican New York
Taft W H 1857 4 72 Republican Ohio
Wilson W 1856 8 67 Democratic Virginia
Harding W G 1865 2 57 Republican Ohio
Coolidge C 1872 5 60 Republican Vermont
Hoover H C 1874 4 90 Republican Iowa
Roosevelt F D 1882 12 63 Democratic New York
Truman H S 1884 7 88 Democratic Missouri
Eisenhower D D 1890 8 79 Republican Texas
Kennedy J F 1917 2 46 Democratic Massachusetts
Johnson L B 1908 5 65 Democratic Texas
Nixon R M 1913 5 ? Republican California
Ford G R 1913 2 ? Republican Nebraska
Carter J E 1924 4 ? Democratic Georgia
Reagan R 1911 3 ? Republican Illinois

Table 3.2: Presidential information

70 CHAPTER 3. OBJECT-ROLE CALCULUS - A SAMPLE SESSION

Personal information
President name Spouse name President age Spouse age Number of children Marriage year
Washington G Custis M D 26 27 0 1759
Adams J Smith A 28 19 5 1764
Jefferson T Skelton M W 28 23 6 1772
Madison J Todd D D P 43 26 0 1794
Monroe J Kortright E 27 17 3 1786
Adams J Q Johnson L C 30 22 4 1797
Jackson A Robards R D 26 26 0 1794
Van Buren M Hoes H 24 23 4 1807
Harrison W H Symmes A T 22 20 10 1795
Tyler J Christian L 23 22 8 1813
Tyler J Gardiner J 54 24 7 1844
Polk J K Childress S 28 20 0 1824
Taylor Z Smith M M 25 21 6 1810
Fillmore M Powers A 26 27 2 1826
Fillmore M McIntosh C C 58 44 0 1858
Pierce F Appleton J M 29 28 3 1834
Lincoln A Todd M 33 23 4 1842
Johnson A McCardle E 18 16 5 1827
Grant U S Dent J B 26 22 4 1848
Hayes R B Webb L W 30 21 8 1852
Garfield J A Rudolph L 26 26 7 1858
Arthur C A Herndon E L 29 22 3 1859
Cleveland G Folson F 49 21 5 1886
Harrison B Scott C L 20 21 2 1853
Harrison B Dimmick M S L 62 37 1 1896
McKinley W Saxton I 27 23 2 1871
Roosevelt T Lee A H 22 19 1 1880
Roosevelt T Carow E K 28 25 5 1886
Taft W H Herron H 28 25 3 1886
Wilson W Axson E L 28 25 3 1885
Wilson W Galt E B 58 43 0 1915
Harding W G De Wolfe F K 25 30 0 1891
Coolidge C Goodhue G A 33 26 2 1905
Hoover H C Henry L 24 23 2 1899
Roosevelt F D Roosevelt A E 23 20 6 1905
Truman H S Wallace E V 35 34 1 1919
Eisenhower D D Doud G 25 19 2 1916
Kennedy J F Bouvier J L 36 24 3 1953
Johnson L B Taylor C A 26 21 2 1934
Nixon R M Ryan T C 27 28 2 1940
Ford G R Warren E B 35 30 4 1948
Carter J E Smith R 21 18 4 1946
Reagan R Wyman J 28 25 2 1940
Reagan R Davis N 41 28 2 1952

Table 3.3: Personal information

3.1. AN EXTENDED SAMPLE SESSION: THE PRESIDENTIAL DATABASE 71

Presidential hobbies
President name Hobby
Adams J Q Billiards

Swimming
Walking

Arthur C A Fishing
Cleveland G Fishing
Coolidge C Fishing

Golf
Indian Clubs
Mechanical Horse
Pitching Hay

Eisenhower D D Bridge
Golf
Hunting
Painting
Fishing

Garfield J A Billiards
Harding W G Golf

Poker
Riding

Harrison B Hunting
Hayes R B Croquet

Driving
Shooting

Hoover H C Fishing
Medicine Ball

Jackson A Riding
Jefferson T Fishing

Riding
Johnson L B Riding
Kennedy J F Sailing

Swimming
Touch Football

Lincoln A Walking
McKinley W Riding

Swimming
Walking

Nixon R M Golf
Roosevelt F D Fishing

Sailing
Swimming

Roosevelt T Boxing
Hunting
Jujitsu
Riding
Shooting
Tennis
Wrestling

Taft W H Golf
Riding

Taylor Z Riding
Truman H S Fishing

Poker
Walking

Van Buren M Riding
Washington G Fishing

Riding
Wilson W Golf

Riding
Walking

Table 3.4: Presidential hobbies

72 CHAPTER 3. OBJECT-ROLE CALCULUS - A SAMPLE SESSION

State name Administration entered Year entered
Massachusetts ? 1776
Pensylvania ? 1776
Virginia ? 1776
Connecticut ? 1776
South Carolina ? 1776
Maryland ? 1776
New Jersey ? 1776
Georgia ? 1776
New Hampshire ? 1776
Delaware ? 1776
New York ? 1776
North Carolina ? 1776
Rhode Island ? 1776
Vermont 1 1791
Kentucky 1 1792
Tennessee 2 1796
Ohio 4 1803
Louisianna 6 1812
Indiana 7 1816
Mississippi 8 1817
Illinois 8 1818
Alabama 8 1819
Maine 8 1820
Missouri 9 1821
Arkansas 12 1836
Michigan 12 1837
Florida 14 1845
Texas 15 1845
Iowa 15 1846
Wisconsin 15 1848
California 16 1850
Minnesota 18 1858
Oregon 18 1859
Kansas 18 1861
West Virginia 19 1863
Nevada 19 1864
Nebraska 20 1867
Colorado 22 1876
North Dakota 26 1889
South Dakota 26 1889
Montana 26 1889
Washington 26 1889
Idaho 26 1890
Wyoming 26 1890
Utah 27 1896
Oklahoma 30 1907
New Mexico 31 1912
Arizona 31 1912
Alaska 43 1959
Hawaii 43 1959

Table 3.5: Presidential information

3.1. AN EXTENDED SAMPLE SESSION: THE PRESIDENTIAL DATABASE 73

Figure 3.1: Presidential Database fragment

74 CHAPTER 3. OBJECT-ROLE CALCULUS - A SAMPLE SESSION

LIST President having spouse

In this case president Harrison for example, will result twice as this president married two times. To
remove these duplicates, we modify the query into:

LIST DISTINCT President having spouse

4. Who is the spouse of president Johnson?
In this query we add the usage of a label value:

LIST Person being spouse of President ”Johnson”

3.1.2 Statistical functions

1. How many individual presidents were there?
SQL 6.1.8The COUNT operator counts the number of facts that are derived from the information descriptor,

taking duplicates into account:

LIST COUNT President

2. How many presidential marriages were there altogether?
SQL 6.1.9

COUNT Marriage

Note that this number will not be equal to the number married presidents.

3. How many presidents have been married?
This is answered by:

LIST COUNT DISTINCT President having spouse

4. Show the average age at death of deceased presidents.
SQL 6.1.1The AVERAGE operator takes the average value of the results produced. Note that this operator takes

duplicates into account. so we get:

LIST AVERAGE Age being death age of President

Note that (1) presidents can occur at most once in the results from Age being death age of President.
(2) the information descriptor Age being death age of President will not produce presidents that are
still alive.

5. Show oldest death age at death of a president.
SQL 6.1.3,4,5

LIST MAXIMUM Age being death age of President

6. What is the total number of children resulting from presidential maariages?

LIST SUM Nr of children resulting from Marriage

There is also a grouping form for statistical functions.

1. What is number of presidents for each party?
The counting is supposed to group the membership tuples according to the party involved, and then
to count the tuples per group.

LIST COUNT GROUPWISE President being member of Party

3.1. AN EXTENDED SAMPLE SESSION: THE PRESIDENTIAL DATABASE 75

The information descriptor COUNT GROUPWISE President being member of Party has the following
result:

from upto
4 Party with Name ”Demo-Rep”
13 Party with Name ”Democratic”
2 Party with Name ”Federalist”
16 Party with Name ”Republican”
4 Party with Name ”Whig”

So the counting is done group wise, grouping by parties. The LIST operator will transform this into
the following answer:

4
13
2
16
4

2. Show the total number of number of children for each marriage.
SQL 6.1.2The number of children resulting from a marriage is described as Nr of children resulting from Mar-

riage. These facts are to be grouped by marriage, and the number of children is summed per marriage:

SUM GROUPWISE Nr of children resulting from Marriage

3.1.3 Multi-valued result

The construction

D1, D2, . . . Dk FROM D

combines the results of corresponding results from D1, D2, . . ., Dk, using D as a selection condition.

1. List the name, birth year and spouse names of all married presidents.
SQL 9.1.2

Name of, Nr of Year being birth year of, Name of Person being spouse of FROM
President having spouse

2. Show name and birth year of all presidents.

LIST Name of, Year being birth year of FROM President

This may also be formulated as

LIST Name of, Year being birth year of

as President does not impose any selection restriction.

3. Show name and birth year of all presidents having served 8 years.

LIST Name of, Year being birth year of FROM President having served Nr of years 8

4. Show the total number of marriages and the total of the number of children of all presidents.
SQL 6.1.2

76 CHAPTER 3. OBJECT-ROLE CALCULUS - A SAMPLE SESSION

LIST COUNT Marriage, SUM GROUPWISE Nr of children resulting from FROM Marriage

5. For each party, count the number of presidents who belonged to this party. List the name of each
SQL 8.1.1party, together with this count.

LIST NUMBER GROUPWISE President being member of, Name of FROM Party

The following will be displayed:

4, Party with Name ”Demo-Rep”
13, Party with Name ”Democratic”
2, Party with Name ”Federalist”
16, Party with Name ”Republican”
4, Party with Name ”Whig”

6. For each state, count the number of presidents born in that state. List the state name together with
SQL 8.1.2this count.

Analogous to the previous example:

LIST COUNT GROUPWISE President having as birth state, Name of FROM State

The result displayed is:

1, State with Name ”California”
1, State with Name ”Georgia”
1, State with Name ”Illinois”
1, State with Name ”Iowa”
1, State with Name ”Kentucky”
3, State with Name ”Massachusetts”
1, State with Name ”Missouri”
1, State with Name ”Nebraska”
1, State with Name ”New Hampshire”
1, State with Name ”New Jersey”
4, State with Name ”New York”
2, State with Name ”North Carolina”
7, State with Name ”Ohio”
1, State with Name ”Pennsylvania”
1, State with Name ”South Carolina”
2, State with Name ”Texas”
2, State with Name ”Vermont”
8, State with Name ”Virginia”

3.1.4 Combining information descriptors

In this section we discuss a number of operators that enable us to combine selection criteria.

1. Which democratic presidents were born in Texas?
We reformulate this question to bring it in ORNF, using the grammar as defined by the conceptual
schema. The presidents we are looking for in this information need should satisfy two conditions:
(1) being democratic and (2) being born in Texas. Being a democratic presidents is expressed as
President being member of Party with name ”Democratic”. The requirement to presidents being born
in Texas is formulated as President having as birth state State with Name ”Texas”. The operator
AND ALSO is used to combine these two requirements.

3.1. AN EXTENDED SAMPLE SESSION: THE PRESIDENTIAL DATABASE 77

LIST President having as birth state State with Name ”Texas” AND ALSO being member
of Party with Name ”Democratic”

This may be simplified as follows:

LIST President having as birth state State with Name ”Texas” AND ALSO being member
of Party with Name ”Democratic”

3.1.5 Complex examples

1. Show the age at death of the Democratic president who died the oldest.
SQL 6.1.3,4,5LIST Age beging death age of President (dying at Age = MAXIMUM Age being death age AND ALSO

being member of Party with Name ”Democratic”)

2. Show the age at death of the president who died the youngest.
SQL 6.1.6LIST Age beging death age of President dying at Age = MINIMUM Age being death age

3. For each party, calculate the total number of years served by presidents of that party, the number
SQL 8.1.3of presidents, and the average number of years served. List the party, total number of years served,

number of presidents, and average number of years served.

LIST Name of,
SUM GROUPWISE Number of years serving by President being member of,
COUNT GROUPWISE President being member of,
AVERAGE GROUPWISE Number of years serving by President being member of
FROM Party

We first consider the information descriptors in isolation:

(a) The information descriptor Name of a party produces the result:

from upto
”Demo-Rep” Party with Name ”Demo-Rep”
”Democratic” Party with Name ”Democratic”
”Federalist” Party with Name ”Federalist”
”Republican” Party with Name ”Republican”
”Whig” Party with Name ”Whig”

(b) The information descriptor SUM GROUPWISE Number of years serving by President being
member of produces the result:

from upto
28 Party with Name ”Demo-Rep”
73 Party with Name ”Democratic”
11 Party with Name ”Federalist”
67 Party with Name ”Republican”
6 Party with Name ”Whig”

(c) The information descriptor COUNT GROUPWISE President being member of produces the
result:

from upto
4 Party with Name ”Demo-Rep”
13 Party with Name ”Democratic”
2 Party with Name ”Federalist”
16 Party with Name ”Republican”
4 Party with Name ”Whig”

78 CHAPTER 3. OBJECT-ROLE CALCULUS - A SAMPLE SESSION

(d) The information descriptor AVERAGE GROUPWISE Number of years serving by President
being member of produces the result:

from upto
7.0 Party with Name ”Demo-Rep”
5.6 Party with Name ”Democratic”
5.5 Party with Name ”Federalist”
4.2 Party with Name ”Republican”
1.5 Party with Name ”Whig”

Combining these results leads to the answer displayed:

”Demo-Rep”, 28, 4, 7.0
”Democratic”, 73, 13, 5.6
”Federalist”, 11, 2, 5.5
”Republican”, 67, 16, 4.2
”Whig” , 6, 4, 1.5

3.1.6 Arithmetic and relational operators

1. Find those deceased politicians who served more than 10% of their lives as president. List their
SQL 7.1.3names and this percentage.

We use the LET mechanism to simplify this query.

LET Percentage of BE Nr of years serving by / Age being death age of

Then p Percentage pres if p is the precentage that a president served. Note that this relation only is
defined for deceased presidents, as only those presidents occurr in Age being death age of.

The restriction to percentages of more than 10% is obtained by the descriptor Percentage >2 0.1.
Note that the use of the head-tail operator is required as we need the relation between the percentage
and the associated president.

The answer now becomes:

Percentage >2 0.1, Name of
OF President

2. Give the name and age of president and spouse for those marriages where the president was at least
SQL 7.1.45 years older than the spouse and the spouse was less than 20 years old.

Name of President as president in, Age of president in,
Name of Person as spouse in, Age of spouse in
OF Marriage when president having Age ≥ 5 + Age of spouse in

THAT Marriage when spouse having Age > 20

3. Count the presidents who were members of the same party and who were born in the same state. List
SQL 8.1.4party, state of birth, and this count.

First we introduce the binary relation that presidents are member of the same party:

President being member of Party having as member President

This relation both is reflexive and symmetric. An asymmetric version is created by using alphabetic
order of president name as a restriction:

President being member of Party having as member President
INTERSECTION
President having Name < Name of President

3.1. AN EXTENDED SAMPLE SESSION: THE PRESIDENTIAL DATABASE 79

Next we add the condition that these presidents are to be born in the same state:

President being member of Party having as member President
INTERSECTION
President having Name < Name of President
INTERSECTION
President being born in State being birth place of President

This relation has to be counted according to party. Therefore we extend the relation to the party
involved:

(President being member of Party having as member President
INTERSECTION
President having Name < Name of President
INTERSECTION
President being born in State being birth place of President
) being member of Party

The resulting information descriptor thus relates the required presidents to their party. Next we count
the number of presidents for each party by:

NUMBER (President being member of Party having as member President
INTERSECTION
President having Name < Name of President
) being member of Party

The result then is obtained as:

NUMBER (President being member of Party having as member President
INTERSECTION
President having Name < Name of President
) being member of,

Name of
FROM Party

4. For each birth state / party combination, count the presidents who were born in that state and who
SQL 8.1.5were members of that party. List state, party and this count.

The combination of birth states and parties is made by introducing the following derived fact type:

LET Combinations BE being state in:State being birth state of, being party in:Party

This fact type is diplayed in the following figure:

Figure 3.2. Derived facttype Combinations

Then we get:

Name of State being state in,
Name of Party being party in,
NUMBER President being born in State being state in

INTERSECTION
President being member of Party being party in

OF Combinations

5. For each party, list the party name and the number of presidents born after the year 1850.
SQL 8.1.6The information descriptor President being born in Year > 1850 relates presidents to their birth year,

if born after 1850. Using the operator THE, this relation is transformed to a binary relation between
those presidents.

80 CHAPTER 3. OBJECT-ROLE CALCULUS - A SAMPLE SESSION

This allows us to extend the path, making a relation between those presidents and the parties they are
member of: (THE President being born in Year > 1850) being member of. The query then is:

(THE President being born in Year > 1850) being member of,
Name of
OF Party

6. List the names of presidents and the number of their marriages for those presidents who married
SQL 8.1.7more than once.

The construction NUMBER Marriage involving computes the number of marriages for each president.
We add the restriction on this of the number of marriages being greater than 1: NUMBER Marriage
involving >2 1 This leads to the query:

Name of,
NUMBER Marriage involving >2 1
OF President

7. Find those presidents who married at least twice and whose maximum number of children in any of
SQL 8.1.9their marriages exceeds their minimum number or children by at least 2. List their names, and the

maximum and minimum number of children.
Presidents that married at least twice are characterized by NUMBER President as president in Mar-
riage >2 1 For these presidents we require for their number of children:

(NUMBER President as president in Marriage >2 1)
AND ALSO
(NUMBER President)

3.1.7 Rest

1. Which presidents were no more than 10% older than their spouse(s) at the time of marriage! List
SQL 7.1.5,6,7their name, their age at marriage, their spouse’s age at marriage and the ratio of the president’s age

to his spouse’s age as a decimal number.

STATE OF BIRTH??

2. For those parties which had more than 8 presidents born after 1850, list the names of the parties
SQL 8.1.8and the corresponding number of presidents born after 1850.

The required answer:{
(pn,n)

∣∣∃p [pn is name of party p∧n n is number of presidents from that party born after 1850]
}

First we construct a relate parties to presidents born after 1850:

Party having as member President being born in Year > 1850

Each tuple 〈fr: p, to: 1850〉 in the result of this information descriptor corresponds to a particular
president from that part p being born after 1850. We number for each party, and require the number
to be greater than 8:

(NUMBER Party having as member President being born in Year > 1850) >2 8

Each tuple 〈fr: p, to: n〉 corresponds to a unique party p, having n presidents born after 1850 (where
n > 8). As we will need both party and number of this relation, we use the LET-construct to make
this relation accessible from both sides:

LET PartNr BE
being party in: (NUMBER Party having as member President being born in Year > 1850)
>2 8 :being number in

3.1. AN EXTENDED SAMPLE SESSION: THE PRESIDENTIAL DATABASE 81

The query then is obtained as:

being party in, being number in OF PartNr

3. If we want to produce as a result a table with 4 columns, where each row consists of the president
SQL 9.1.1name of the P TABLE and his birth year followed by the president name of M TABLE and spouse

name, for all possible combinations, we have to write the following SQL query:

4. List names, birth years, marriage years and spouses of all married presidents. Order by president
SQL 9.1.3name.

5. List president name, birth year, the administrations served as president and the vice presidents in
SQL 9.1.4each administration, in order of administration number.

6. List the names, birth years and hobbies of all presidents born before 1800. Order by birth year and
SQL 9.1.5president name.

7. List name, birth year, marriage years and spouse names of those presidents who were born before
SQL 9.1.61776 and married before 1800. Order the list on president name in ascending order.

8. List the name, birth year, age at marriage, spouse’s age at marriage and name, for all presidents
SQL 9.1.7who married when they were less than 20 years old, or who married a spouse less than 18 years of

age.

9. For each president with more than three children, list their name, their birth year and the number of
SQL 9.1.8children from all marriages. Order by number of children in descending order, and then by name.

10. Show the married presidents who have more than 3 hobbies and show in the same view for each
SQL 9.2president as well the number of marriages as the number of hobbies, ordered by decreasing number

of hobbies.

11. List all the facts of those presidential marriages which resulted in a number of children that is
SQL 10.1.1greater than the average number of children per presidential marriage.

Marriage resulting in Nr of children with Nr > AVERAGE Nr of Nr of Children resulting from
Marriage

The total role constraint justifies the following simplification:

Marriage resulting in Nr of children with Nr > AVERAGE Nr of Nr of Children

12. Show the name and age of the president who died the youngest.
SQL 10.1.2

Name of, Age being death age of OF
President dying at Age with Number of years = MINIMUM Number of years of Age being
death age of

Using the total role constraint on the role being death age of this can be simplified as:

82 CHAPTER 3. OBJECT-ROLE CALCULUS - A SAMPLE SESSION

Name of, Age being death age of OF
President dying at Age with Number of years = MINIMUM Number of years of Age

13. List the hobbies and names of all those presidents who served 8 years or longer.
SQL 10.1.3

Name of Hobby of, Name of OF
President having served Nr of years with Nr >= 8

14. Which presidents never won a election?
SQL 10.1.4

President BUT NOT having won Election

15. List the hobbies of presidents who served for (a) 12 years or more, (b) 8 years or more.
SQL 10.1.5

Name of Hobby of OF
President having served Nr of years with Nr >= 12 AND ALSO having served Nr of years
with Nr >= 8

16. Which state provided the largest number of presidents, and what is that number?
SQL 10.2.1

17. Find those states which entered the union before President Washington was inaugurated.
SQL 10.2.2,3,4The problem for this information need is that President Washington has been inaugurated more than

once.

State entering union in Year with Nr < ALL Nr of Year being inauguration year of President
with Name ”Washington G.”

18. List all the facts available about presidents who were inaugurated after Hawaii entered the union.
SQL 10.2.5

EVERYTHING OF
President being inaugurated in Year with Nr > Nr of Year being union entry year of State
with Name ”Hawai”

Name of, Nr of years being death age of OF
President in Marriage ???????

19. Find those states which entered the union the same year as President Eisenhower was born.
SQL 10.2.7

State entering union is Year being birthyear of President with Name ”Eisenhower D D”

20. Show for each state which president was the first-born out of that state (limit yourself to the period
SQL 10??between 1800 and 1850).

21. For each president who was born in a year in which at least one other president was born, list his
SQL 11.1.1name and birth year.

Name of, Nr of Year being birth year of OF
President being born in Year being birth year of ANOTHER President

Niet van toepassing Schema niet voorhanden

3.2. ORC OVERVIEW 83

22. List the name and birth year of those presidents who were inaugurated at least once within 45 years
SQL 12.1.1of their birth year.

Name of, Nr of Year being birth year of OF
President being inaugurated in Year with Nr ¡= 45 + Nr of Year being birthyear of THAT
President

23. List the election year and winner of those elections in which the winner received more than 80% of
SQL 12.1.2the votes in that election.

3.2 ORC overview

3.2.1 Constructs

construct meaning

D1 D2 R(D1)�R(D2)
THE D Restriction to head
DISTINCT D Duplicate removal

D1 INTERSECTION D2 R(D1)∩R(D2)
D1 UNION D2 R(D1)∪R(D2)
D1 MINUS D2 R(D1)−R(D2)
D1 AND {ALSO} D2 (THE D1) INTERSECTION (THE D2)
D1 OR {OTHERWISE} D2 (THE D1) UNION (THE D2)
D1 BUT NOT D2 (THE D1) MINUS (THE D2)

D1 THAT D2 D1 INTERSECTION THE D2

D1 ANOTHER D2 (D1 MINUS (THE D1)) THAT D2

*, /, +, - concatenating arithmetic operators
TIMES, DIVIDED BY, PLUS, MINUS head-tail arithmetic operators

<, ≤, >, ≥, =, 6= concatenating comparison operators
<2, ≤2, >2, ≥2 head-tail comparison operators

COUNT, SUM, AVERAGE Overall variant
.. GROUPWISE Grouping variant

D1 IMPLIES D2
(
R(D1)⊆R(D2)

)
?

D1 IS ALSO D2 (THE D1) IMPLIES (THE D2)

NO D
(
R(D) = ∅

)
?

84 CHAPTER 3. OBJECT-ROLE CALCULUS - A SAMPLE SESSION

3.2.2 Priorities

operator(s)

high concatenation

*, /, TIMES, DIVIDED BY

+, -, PLUS, MINUS

<, ≤, >, ≥, =, 6=,
<2, ≤2, >2, ≥2, 6=2

AND {ALSO}, OR {OTHERWISE}, BUT NOT, ∪, ∩, −

THAT, ANOTHER

THE, DISTINCT

COUNT, SUM, AVERAGE, GROUPWISE variants

IS ALSO, IMPLIES

low NO

3.3 Definitions overview

Questions
Version:
01-12-20071. Consider the populated schema from figure 7.2, and evaluate the following information descriptors:

(a) Person working for Department providing work to Person with Name ”Jan”

(b) Person in Contract from Person with Name ”Kees”

Figure 3.3: Interpreter model

2. Consider the populated schema from figure 3.3, and provide a Lisa-D formulation for the following
information needs:

(a) Which persons are speaking Greek?

QUESTIONS 85

(b) Who is born in France and speaks German?

(c) What languages are spoken in the country where Piet has been born?

(d) What languages are spoken by both Piet and Els?

(e) What languages are being spoken in a polyglot country?

3. Consider the schema from figure 7.2, and proof the equivalence of the following information de-
scriptors:

(a) Person working for Department

(b) Person in Contract for Department

(c) working for

Figure 3.4: Marriage and Parentship

4. Consider the conceptual schema from figure 3.4. Formulate the following information needs in terms
of ORC.

(a) Give the surnames of all persons being married with someone born in Arnhem.

(b) Give the surnames of all persons being married with someone born not in Arnhem.

(c) Give the surname of all persons being born in Nijmegen, married to someone born in Arnhem,
and having a grandchild born in Wijchen.

(d) Give the surname of all persons being born in a different city than the one they are married to.

(e) Give the surnames of the persons with children born in an different city.

5. (tentamen 2005)

We beschouwen een administratie waarin gegevens van studenten worden opgeslagen met de opleid-
ing die zij volgen. Studenten worden geı̈dentificeerd met een studentnummer. Verder worden gegevens
van docenten opgeslagen. Docenten worden, anders dan studenten, geı̈dentificeerd met een sofi-
nummer. Omdat Duits een belangrijke taal is voor deze instelling, worden studenten Duits ingeschakeld
om bijles Duits te geven aan andere studenten. Van zowel studenten die bijles geven, als van docen-
ten, wordt het salaris geadministreerd. Enige voorbeeldtabellen zijn:

Volgt:
Student Naam student Opleiding
S123456 Blair Engels
S123457 Bohr Natuurkunde
S123458 Kohl Duits
S123459 Schmidt Duits

86 CHAPTER 3. OBJECT-ROLE CALCULUS - A SAMPLE SESSION

Bijles:
Geeft bijles Krijgt bijles
S123458 S123456
S123458 S123459
S123459 S123456

Docenten:
Docent Telnr
02934124 024-3653652

06-12351672
09657829 024-3765431

Verdiensten:
Persoon Boekjaar Salaris
02934124 2004 20000
02934124 2005 21000
09657829 2005 30000
S123458 2005 10000
S123459 2005 5000

(a) Geef de elementaire verwoordingen van de elementaire feittypen die hierin liggen opgesloten.
Leid vervolgens uit deze zinnen het ORM schema af.

(b) Formuleer met behulp van ORC:

i. Hoe heten de studenten die bijles Duits krijgen van student Kohl?
ii. Zijn er studenten Duits die bijles Duits krijgen?

iii. Hoe heten de studenten die bijles Duits geven, maar zelf ook bijles krijgen in dat vak?

Chapter 4

Advanced modeling constructs

Version:
06-09-084.1 Higher-order fact types

Vak
(naam)

Student
(studentnr)

Resultaat
(nr)

12345
02121
12341

DM
DM
III

8.0
6.5
7.0

Figure 4.1: Ternary fact type

Sofar we have mainly seen unary and binary fact types. In this sec-
tion we focus on higher-order fact types. Consider the following
sample sentence:

Student with StudentNr 12345 gets for Course with
Coursename ”Domain Modeling” the Mark with
Number 8

It may be easily verified that this sentence is elementary, and can not
be split without loosing information. The resulting schema fragment,
a ternary fact type, is displayed in figure 4.1.

A slight modification of the sample sentence is:

Student with StudentNr 12345 takes Course with
Coursename ”Domain Modeling” and gets the Mark with Number 8

This sentence is not elementary, and can be split into the following sentences:

1. A sentence of type Registration:
Student with StudentNr 12345 takes Course with Coursename ”Domain Modeling”

2. A sentence of type Result:
Registration(Student with StudentNr 12345 takes Course with Coursename
”Domain Modeling”) gets the Mark with Number 8

Note that this latter sentence is a statement involving 2 roles! The first role refers to an elementary sentence
of type Registration. In the next section we will see how this kind of object referencing can be handled.
Furthermore, in this reformulated version, a registration can be done even when the mark is not (yet)
available.

4.1.1 Objectification

The mechanism to make it possible that sentences themselves can play a role in more complex sentences
is called objectification. This means that fact types can be the base of a role. Parsing the sentence Student
with StudentNr 12345 takes Course with Coursename ”Domain Modeling” leads to the following
populated schema fragment:

87

88 CHAPTER 4. ADVANCED MODELING CONSTRUCTS

Student Course

takes is taken by
(Studentnr) (Coursename)

Figure 4.2. Processing the registration

Adding the second sentence Registration(Student with StudentNr 12345 takes Course with Course-
name ”Domain Modeling”) gets the Mark with Number 8 extends this populated schema into:

Student Vak

volgt bezocht door

Resultaat

(Studentnr) (Vaknaam)

(Nr)

Figure 4.3. Adding the mark

The resulting conceptual schema fragment is:

Student
(studentnr)

Vak
(naam)

volgt bezocht door

(nr)
Resultaat

Figure 4.4. The resulting schema fragment

4.2 The meaning of a schema
incomplete
knowledgeA conceptual schema describes what kind of facts may be stored about the universe of discourse. Some

facts are known to be valid, other facts are known to be invalid. In figure 4.5 this situation is displayed.
This figure shows a third category of sentences, sentences that are not known to be valid or invalid. Such
indeterminate sentences are caused by incomplete knowledge of the underlying domain.

Incomplete knowledge is a complicating factor. For example, yes-no questions about the state of affairs is
unknown in case relevant information is missing. This requires the use of a 3-valued logic system.

CWA:
closed
world
assumption

In this course we will exclude incomplete or missing knowledge. As a consequence, we assume each
sentence to express a valid fact in the underlying domain, or an invalid one. This is shown in figure 4.6.
This is referred to as the Closed World Assumption. When confronted with incomplete sentences in ORM,

4.3. CONSTRAINTS 89

Figure 4.5: Knowledge of valid and invalid sentences

Figure 4.6: No missing knowledge

we will try to handle this incompleteness by adding special fact types that contain the available information
for that case. We will thus choose incomplete sentences, rather than incomplete knowledge

A consequence of this choice is that each state of the universe of discourse is uniquely characterized by the
set of facts that hold at that moment. The state thus may be represented by storing all those facts. At this
point we summarize the underlying principles for ORM:

Principle 1: complete knowledge

Principle 2: closed world assumption

Principle 3: All facts that can be stated about the universe of discourse are composed from a limited
number of elementary facts.

The conceptual schema describes these elementary facts are described by the concepts and their relations.
The latter principle is the motivation to to simply store the elementary facts, and to reconstruct all other
facts by applying reasoning rules. Examples of such reasoning languages are: ORC and SQL.

population
Storing elementary facts means the assignment of facts to all elements of the conceptual schema. Such
an assignment is called a population of the conceptual schema. Let Σ be a conceptual schema, and P a
population of this schema. Then we will shortly denote this as: IsPop(Σ,P). The semantics of a conceptual
schema is the set of all possible populations:

M (Σ) =
{

P
∣∣ IsPop(Σ,P)

}
constraintSofar, the conceptual schema describes only structural communication aspects. Exclusion of particular

instances is done via constraints. Constraints are rules that are required by the condition IsPop(Σ,P). This
strategy to describe a set of populations is called the exclusion principle. According to this principle, we
make a two-step description:

1. describe structural properties

2. exclude unwanted situations

4.3 Constraints

The conceptual model describes the concepts that are relevant in some universe of discourse and their
relations. The semantics of a conceptual schema is the set of populations that can be associated with the
schema.

The conceptual schema sofar describes the general structure of elementary sentences. This does not pro-
hibit sentences that are unwanted for some reason. For example, consider the following population of the
conceptual schema fragment from figure 4.8:

90 CHAPTER 4. ADVANCED MODELING CONSTRUCTS

Figure 4.7: Exclusion Principle

• Product with Name ”pluto” has Productcode 4123
• Product with Name ”trix” has Productcode 9231
• Product with Name ”country” has Productcode 4123

This population obviously is invalid! Constraints are used to exclude populations with unwanted features.

Figure 4.8: Sample schema fragment

The following constraints are very frequent, and have a special graphical notation.

• Uniqueness constraint

• Total role constraint

These constraints play a fundamental role during data with regards to the identity integrity of objects.

4.3.1 Unique role constraint

Reconsider the sample population of the schema fragment from figure 4.8. Although these sentences are
well-formed, their combination does not make sense as product codes (usually) should uniquely determine
the associated product. This restriction can be enforced by the following rule: no product code may appear

unique
role
constraint

more than once in the relation Coding. This rule is refer to as a unique role constraint, also referred to as
uniqueness constraint.

A unique role constraint is denoted graphically by putting an arrow above the involved roles (for a hori-
zontally drawn fact type), or an arrow next to the involved roles (for a vertically drawn fact type). I

Product
(productnaam)

heeft van

Productcode
(nr)

Figure 4.9. Adding a uniqueness constraint

4.3. CONSTRAINTS 91

A unique role constraint may involve more than one role, for example:

a
a
a

b
c
b

Figure 4.10. Restriction

In this example, an invalid tuple is stroken out. This example suggests a simple method to determine the
existence of a unique constraint. The system expert offers the domain expert a significant sample population
for validation. The domain expert responds by striking out a minimal number of tuples such that a correct
population results. For example, suppose the system analyst responded as follows:

Product
(productnaam)

Productcode
(nr)

mars
twix
bounty

4123
9231
4123

Figure 4.11. Excluded tuple

Then the system analyst concludes the existence of a unique role constraint.

Figure 4.12. Multi-role uniqueness constraint

4.3.1.1 Formal interpretation

partial
mappingConsider the following uniqueness constraint:

F

A B

x y

Figure 4.13. Partial mathematical function

A formal interpretation of a uniqueness constraint is the following: each population of fact type F is a
partial mapping from A into B. Another way to put this is:

B is functionally dependent from A within F. This is denoted as A F−→ B.

92 CHAPTER 4. ADVANCED MODELING CONSTRUCTS

functional
dependencyThe term functional dependency has been introduced in the relational datamodel ([?]. In ORC this con-

straint may be formulated as follows (see figure 4.14). Forbidden is: a mapped to b1 and a mapped to b2
while b1 6= b2 so we require:

a mapped to b1 and a mapped to b2 ⇒ b1 = b2

In ORC:
• Find mapping buddies: B being map of A mapping to B
• These buddies should be equal: B being map of A mapping to B IMPLIES B

Figure 4.14: Unique role via a path

Lemma 4.3.1
The uniqueness constraint over the role with connector name mapping to is expressed as: B being
map of A mapping to B IMPLIES B

Proof:

→ Assume uniqueness constraint, then let 〈fr: b1, to: b2〉 ∈R(B being map of A mapping to B). Conse-
quently for some a we have:
• 〈fr: b1, to: a〉 ∈R(B being map of A)
• 〈fr: a, to: b2〉 ∈R(A mapping to B)

and from the uniqueness constraint we conclude b1 = b2, and therefore: 〈fr: b1, to: b2〉 ∈R(B).
← Assume: B being map of A mapping to B IMPLIES B, and let a ∈ Pop(A) have two different images

b1,b2 ∈ Pop(B). Then we conclude: 〈fr: b1, to: b2〉 ∈R(B being map of A mapping to B). And thus:
〈fr: b1, to: b2〉 ∈R(B). Consequently: b1 = b2.

4.3.2 Total role constraint

A frequent occurring requirement is that a role is mandatory to be played. In the above example, chances
are that in the underlying universe of discourse there is a rule stating that each product should have a
productcode. This kind of constraint is called a rotal role constraint.

total
role
constraint

werkt bij

Werknemer
(naam)

Afdeling
(afdelingsnaam)

Figure 4.15. Sample schema fragment

In ORC

Cooperator IS ALSO working for Department

4.4. UNIQUE CORRESPONDENCE 93

4.3.2.1 Mathematical interpretation

Combing unique and total role leads to the mathematical concept of function:

F

A B

x y

Figure 4.16. Mathematical function

In this case, relation F is a function from A to B.

4.4 Unique correspondence

A special combination of uniqueness and total role constraint is the following:

F

A B

x y

Figure 4.17. Bijection

In this case, F is a bijective function from A to B. As a consequence, the instances from A and from B can
be identified with each other: each instance of A corresponds to a unique instance of B, and vice versa.

bijection
This situation occurs in bridge types. Identifying bridge types provide a bijection between the abstract and
the concrete world. This is for example the case when we say that a Cooperator is determined by a Name.

4.5 The shadow property

The modeling method described in this book is based on the following starting points:

1. unique correspondence between universe of discourse and information base.

2. complete knowledge

The standard naming convention ensures a 1-1 correspondence between things and their names. Using the
1-1 correspondence of the bridge types that relates abstract instances with their standard names. we can
conclude that a 1-1 correspondence between things and objects. This is displayed in figure 4.18.

4.5.1 Weak identification

We call a population weakly identified if the following holds:

if two instances in the population have the same properties, then these instances are the same.

As a consequence, each fact type has a uniqueness constraint covering all its roles.

94 CHAPTER 4. ADVANCED MODELING CONSTRUCTS

Figure 4.18: Identification in ORM

a
a
a

b
c
b

Figure 4.19. Ambiguous tuple

The reason is that both instances of the tuple 〈a,b〉 share (via a and b) the same properties.

Theorem 4.5.1
If there is a unique correspondence between the universe of discourse and a population, then this
population is weakly identified.

Proof:
Suppose we have a population that makes a unique correspondence with the UoD. Then each object
instance from this population has associated a unique thing from the UoD. If 2 object instances can
not be discriminated from each other, then these objects have to correspond with the same ting from
the UoD. Consequently, these object instances are equal.

In a weakly identified population, each object instance can be named uniquely by its (unique) combination
of properties. An ad-hoc name is obtained by omitting those properties of each object instance that do not
contribute to its unique naming. For example, if a population contains

1. a student with name ”Janssen” and age 19 that received for the course ”Domain Modeling” the mark
8,

2. a 18 years old student ”Janssen” with mark 8 for the course ”Storage and Retrieval”, and
3. a 19 years old student ”Pietersen” with mark 9 for the course ”Domain Modeling”.

Then this population is weakly identified. A sample set of ad-hoc names for these students is:

1. student with name ”Janssen” and age 19
2. student of age 18
3. student with name ”Pietersen”.

If a population is not weakly identified, then this population is called ambiguous.

4.6. RELATIONS BETWEEN SCHEMATA 95

4.5.2 Strong identification

A conceptual schema is called strongly identified if each admissible population is weakly identified. The
advantage of this schema property is that no special need is required to maintain the property of unique
correspondence with the universe of discourse.

A simple cure to prevent populations from being ambiguous is to require a unique standard name for each
object instance. The reason is that all objects can be discriminated by their standard name.

Theorem 4.5.2
By using unique role and total role constraints strong identification can be enforced. This is equiva-
lent with the requirement of a (unique) standard name for each object type.

A consequence is that the ORM Normalform requirement for sample sentences will guarantee that ORM
schemata are strongly identified.

4.6 Relations between schemata

Two conceptual schemata Σ1 and Σ2 are called equivalent, notation Σ1 ≡ Σ2 if:

Each population of Σ1 is also a population of Σ2 and vice versa.

In that case the associated the associated information grammars are equivalent. In order to show that the
schemata Σ1 and Σ2 are equivalent, it is sufficient to show that (1) each elementary transaction on Σ1 can be
reformulated as an elementary transaction on Σ2 and (2) vice versa. An elementary transaction is a sentence
of the form

ADD S1, S2, . . ., Sn

in which the omission of any sentence Si would make the transaction invalid.

Note that a counter example is sufficient to prove that two schemata are inequivalent. So if we can construct
a population of Σ1 that is no valid population of Σ2 then we may conclude that these schemata are not
equivalent.

4.7 Schema transformation

A schema transformation is a rule to transform an conceptual schema into an equivalent alternative schema.
As an example, we consider object-to-role transformation.

is researcher

Person

(Name)

is student

is teacher

Figure 4.20. Several properties

In this schema fragment, the object type Person has associated 3 unary fact type with role names respec-
tively (1) is student, (2) is teacher and (3) is researcher. A sample sentence is Person with Name ”Janssen”
is student. Another way to model this situation is as follows:

96 CHAPTER 4. ADVANCED MODELING CONSTRUCTS

{student, teacher, researcher}

Person

(Name)

is

Figure 4.21. After object-to-role transformation

In this schema fragment the object type Person has associated a bridge type, relating it to a special enu-
merated label type with population

{
student, teacher, researcher

}
. This schema fragment also admits the

sentence Person with Name ”Janssen” is student. It is easy to see that both schema fragments accept the
same sentences. As a consequence, these schema fragments are equivalent.

4.8 Frequently occurring constraints

4.8.1 Frequency constraint

The frequency constraint is used to constrain how many times a role may or must be played by objects from
the associated object type. In the example below, it is required that each cooperator can be working for a
number of projects that may range from 0 up to 3. On the other hand, each project should have a number
of cooperators within the range 1..6.

Werknemer

0..3 1..6

werkt voor
Project

Figure 4.22. Occurrency frequency constraint

4.8.2 Binary heterogeneous constraints

The equality constraint is used to indicate that an object type has an equal participation in different fact
types. Such a constraint is called a heterogeneous constraint. Consider the following schema fragment:

is member ofemploys

PersonDepartment Amount

verdient is salaris van

=

Figure 4.23. Relating related roles in different fact types

In the associated universe of discourse, each person that is employed by a department also has a salary, and
vice versa. The constraint is represented by a small circle containing the symbol that corresponds with the
constraint. In case of subset constraints, the connection with the involved roles should be such that left and
right argument are clear from the diagram.

In ORC the constraint of the above example is expressed by the following rule:

4.9. COMPLEX IDENTIFICATION 97

being member of EQUALS earning

4.8.3 Partitioning heterogeneous constraints

Another kind of constraint is used to express a connection between any number of participations in different
fact types. The following example shows that a person may not work in a project and also be the manager
of that project:

Werknemer

werkt voor

Project

leidt

X

Figure 4.24. Exclusive membership for all instances

In ORC this is formulated as:

NO Cooperator is managing Project AND working for Project

The exclusion relation is represented by the times-symbol. A dot-symbol is used to denote a total hetero-
geneous requirement. These constraints may also be combined.

R1

R2

R3

T

Figure 4.25. Role partitioning

In this case, each instance of object type T should play exactly one of the roles R1, R2 or R3.

4.9 Complex identification

In the cases sofar entity types were identified by a unique label type.

98 CHAPTER 4. ADVANCED MODELING CONSTRUCTS

Student

met

(naam)

(naam)

Student

=

Figure 4.26. Simple bridge

There are situations were entity types require a more complex identification. Consider the following exam-
ple. The identity of a house consists of the combination of street and street number. The street is assumed to
have its own identification, whereas the street number is identified by a label value. Consider the following
fragment:

(nr)

(naam)
Huis

Huisnr

Straat

heeft

in

Figure 4.27. Sample schema fragment

In this schema fragment, each house has associated a unique street and a unique street number. Populations
in which different houses have associated the same combination of street and street number are however
possible in this schema. The following schema fragment adds a heterogeneous uniqueness constraint. This
constraint expresses that combinations of street and street name should be unique.

U

(nr)

(naam)
Huis

Huisnr

Straat

heeft

in

Figure 4.28. Unique combinations

Next we focus on the identification of streets as a unique combination of a street name and a city. This
leads to:

4.10. SCHEMA QUALITY 99

U

(nr)
Huisnr

heeft

U

Huis

heeft

(naam)

(naam)
in

Straat

in

Stad

Straatnaam

Figure 4.29. Complex Identification

4.10 Schema Quality

Validation of a conceptual schema is concerned with the question: did we model the right universe of
discourse? This has to do with the relation between the conceptual schema and the universe of discourse.
Another question is: did we model the universe of discourse right? This has to do with internal quality
checks on the conceptual model.

4.10.1 Schema validation

In order to verify the validity of a conceptual schema, we consider questions like: Are all sample sentences
processed in the conceptual schema?

• Are meta rules represented in the schema?

• Is the supplied sample population a valid population of the schema?

Besides, we check for suspicious constructs. For example, suppose the schema would contain the following
fragment (taken from [Hal89]):

Person
(surname)

Degree
(code)

Gender
(code)

Figure 4.30. Sample schema fragment

A sample population of this schema is:

Person Degree Gender
Adams BSc M
Brown BA F
Collins BSc M

According to this schema, in the underlying universe of discourse a person with a degree also has a gender,
and vice versa. From our intuitive knowledge of the universe of discourse, we recognize this as a dubious
construct. By considering a sample sentence:

100 CHAPTER 4. ADVANCED MODELING CONSTRUCTS

Person with surname Adams seeks degree with code BSc and has gender with code
M

we see that this sentence is not elementary, and should have been splitten into:

• Person with surname Adams seeks degree with code BSc

• Person with surname Adams has gender with code M

Person
(surname)

Gender
(code)

Degree
(code)

Figure 4.31. After splitting

Of course, the system analyst will check (by offering a sample population, or by a direct question) whether
this universe of discourse has the rule that each person with a degree also has a gender, and vice versa.
If this is confirmed by the domain expert, then there will be a heterogeneous equality constraint between
these two roles of persons.

4.10.2 Key length check

This brings us to a general quality issue. The roles that constitute a uniqueness constraint within a fact type
are also referred to as a key for that fact type. This term is inherited from technics to construct efficient
storage techniques. From the example above, we derive the following rule:

If an n-ary fact type has a key over less than n−1 roles, then this fact type does not correspond
to an elementary sentence, and must be split.

In the above example, one could argue that the combination of degree and gender follows a special rule.
In that case, splitting of the sentence would lead to loss of information. In relational database theory, this
would be an example of a multi-valued dependency. In conceptual modeling the solution would be to make
a special objectified fact type for the relation between degree and gender.

4.10.3 Schema verification

In order to check the conceptual schema on wellformedness we check for consistency between the various
parts of the schema. A schema may contain contradictory parts. For example:

4.11. DEFINITIONS OVERVIEW 101

Cooperator

working for

Project

X

is managing

Figure 4.32. Sample schema fragment

the following rules have been added:

1. Each cooperator works on a project.

2. Each project has a supervisor.

The resulting schema is contradictory, it can not be populated. Generally spoken, a population check is a
good mechanism to check for internal schema consistencies.

4.11 Definitions overview
Incomplete knowledge – When not all roles of facts have a known value.

Closed world assumption – All facts not stored in an information system are assumed to be false. Not
that this requires facts with complete knowledge.

In the context of these lecture notes this is refined to:
Each possible fact is either true or false. As a consequence, only true facts need to be recorded.

CWA – Closed World Assumption

Population – A conistent set of instances assigned to the concepts of a conceptual schema.

Constraint – A rule to exclude populations as valid instantiations of the conceptual schema.

Exclusion principle – A modeling strategy that starts with a structural description of objects, and then
adds constraints to exclude unwanted instances.

Unique role constraint – A constraint that enforces that instances can play a (set of) role(s) at most once.

Total role constraint – A constraint that enforces instances to play a (set of) role(s).

Partial mapping – A mapping that does not assign an image to all originals.

Functional dependency – A rule stating a functional relationship between two sets of attributes (rela-
tional data model).

Bijective function – a function that assignes a unique image to each original, such that each image is
associated with a unique original.

Total function – A function that assigns an image to each original.

Weak identification – A sufficient condition to be able to uniquely identify objects and things, stating that
no two objects or things have the same properties.

Strong identification – A sufficient condition to be able to uniquely identify objects and things, stating
each object has a standard name derived from the associated object type.

standard names – An agreed standard denotation for objects and things.

102 CHAPTER 4. ADVANCED MODELING CONSTRUCTS

Schema equivalence – Two conceptual schemata are equivalent if they represent the same language.

Schema transformation – An operator to transform a conceptua schema into an equivalent obe.

Frequency constraint – A constraint that bounds the frequency of instances to play a (set of) role(s).

Binary heterogeneous constraint – A binary constraint involving more than one fact type.

Partitioning heterogeneous constraint – A constraint to pratition instances over several fact types.

Complex identification – Identification involving a standard name with more than one component.

Key length check – A simple heuristic to check splittability of fact types.

Questions
Version:
01-12-20071. Consider the conceptual schema obtained in exercise 2.1 from section 2. Extend this schema with

unique role and total role constraints.

2. Consider the conceptual schema obtained in exercise 2.6 from section 2. Extend this schema with
unique role and total role constraints.

3. Describe the ternary unique role elicitation schema.

Hint: dont forget that we restrict ourselves to elementary fact types, thus remember the key length
check.

Hint: enumerate all patterns for unique role constraints, and determine an excluded population as in
the binary case.

4. Express the relationship between the following kinds of constraints:

(a) total role and frequency constraint

(b) unique role and frequency constraint

5. Is it possible that a schema is strongly identified but not populatable?

6. Give an example of fact types for each of the following kinds of behavior:

(a) reflexive

(b) symmetric

(c) transitive

(d) irreflexive

(e) asymmetric

7. A company uses the following tables to administrate its store and sales.

(a) Store:
Article Description Unit price Size Current storage Minimal storage

B43 Jeans trouser 29,00
48
50
52

4
7
5

3
5
3

B47 Jeans trouser 34,00
50
52

4
7

2
2

V02 Vest 34,00
50
54

3
3

2
2

.
V21 Vaas 5,95 8 1

QUESTIONS 103

(b) Sales:
Date Time Article Size Number
05-03-2007 16:52h B43 50 2
05-03-2007 16:52h V21 1
06-03-2007 10:28h B43 50 1
.

Answer te following questions

(a) What elementary sentences can be derived from the fact types that are enclosed in the tables
above?

(b) Derive the conceptual schema from these elementary sentences.

(c) Add all constraints that may be assumed reasonably.

(d) Give the sample population of the conceptual schema corresponding to the above tables.

Elementary sentence types are:

• Artikel (Artikelcode) is van Artikelsoort.
• Artikel (Artikelcode) heeft stukprijs Euros.
• Artikel (Artikelcode) in Maat (Maatnr) heeft actuele voorraad Aantal (Nr).
• Artikel (Artikelcode) in Maat (Maatnr) heeft minimum voorraad Aantal (Nr).
• Artikel (Artikelcode) in Maat (Maatnr) heeft actuele voorraad Aantal (Nr).
• Artikel (Artikelcode) in Maat (Maatnr) heeft minimum voorraad Aantal (Nr).
• op Datum (Ddmmyy) om Tijdstip(Hhmm) is van Artikel (Artikelcode) Aantal (Nr) stuks verkocht.
• op Datum (Ddmmyy) om Tijdstip (Hhmm) is van Artikel (Artikelcode) in Maat (Maatnr) Aan-

tal (Nr) stuks verkocht

Figure 4.33: Conceptual schema for room reservation

104 CHAPTER 4. ADVANCED MODELING CONSTRUCTS

Chapter 5

Object Grouping Mechanisms

Version:
07-09-08In the previous sections we studied object types in isolation. In this section we will consider groupings of

object types. We distinguish two main variants: homogeneous and heterogeneous groupings.

In this chapter we will frequently consider object types from the point of view of the roles they play. We
will the role name and the corresponding object type to denote a role. For example, in figure 7.9 a person
can play the roles being enrolled in Year and being graduated in Year, but also the role has Name.

5.1 Subtyping

As a first example, consider the following groups of persons and their properties (i.e., the roles they can
play):

1. Person:

• identified by: has Id
• has Name
• has Birthdate

2. Student

• identified by: has Id
• has Name
• has Birthdate
• has Studentnumber

3. Philosophy student

• identified by: has Id
• has Name
• has Birthdate
• has Studentnumber
• takes Philosophycourse

Note that the object types Person, Student and Philosophy student all have the same identification, but
differ in the properties they have. So far, we have postulated that each object type should have a unique
identification, as each thing from the application domain has assigned a unique group.

specialization
As can be seen in this example, each group is a further specialization. For example, a student is a special
kind of person. For this special kind of person a student number also is administrated. Specialization is
introduced as a mechanism to handle such cases.

105

106 CHAPTER 5. OBJECT GROUPING MECHANISMS

From the example specialization relation we conclude that each student has person as main identity, and
thus may be seen as a specialized version of a person. Furthermore, is should be clear when a person is also
qualified as a student.

As another example, we consider a broker with two main sales lines: cars and houses. Although these
are very different products, they also will have assigned a number of common properties by the broker.
However, in ORM it is considered bad modeling practise to have the same fact type more than once in a
conceptual schema. Generalization is introduced to cover such situations.

The following is an example:

1. Car:

• identified by: has Chassisnumber
• has Licenseplate

2. House

• identified by: has Address
• has Inhabitant

3. Brokerobject (1)

• identified by: has Chassisnumber
• has Licenseplate
• has Price

4. Brokerobject (2)

• identified by: has Address
• has Inhabitant
• has Price

5. Brokerobject (1+2)

• has Price
generalization

Here we consider two object types of a different nature. However, both object types are treated ’equally’ at
the level where extra properties (having a price) are assigned. This is a heterogeneous form of grouping. The
group can be seen as a generalization (abstraction) where the original identity of objects is not considered.

subtyping
Specialization and generalization may be seen as two variants of subtyping. In both cases we have object
types that are related via a subset relation on their population. As a consequence, object instances may have
related more than one object type. For example, a philosophy student in the above example has related 3
object types: (1) Philosophy student (2) Student (3) Person

type
relatedWe will call object types A and B of schema Σ type related, denoted as TypeRelated(A,B), if their pop-

ulations may share object instances. This means that in the set M (Σ) of valid schema populations (see
section 4.2) there exists a population P such that P(A) G P(B). Note that this relation is a reflexive and
symmetric relation.

Type relatedness has a special impact on the optimization of the evaluation of ORC expressions:

Lemma 5.1.1
Let D1 and D2 be ORC expressions, then ¬TypeRelated(end(D1),start(D2)) ⇒ D1 D2 ≡∅

As a consequence, each instance x in a population P has assigned a (non-empty) set Types(x|P) of object
types. Then obviously:

Lemma 5.1.2
A,B ∈ Types(x|P)⇒TypeRelated(A,B)

5.2. SPECIALIZATION 107

We will call object instances x and y type related, denoted as TypeRelated(x,y) if (in population P) they
share object types: Types(x|P) G Types(y|P). These shared object type obviously are type related. The
restriction is a consequence of the type relatedness relation not being transitive.

Lemma 5.1.3
TypeRelated(x,y|P)⇒∀A,B [A,B ∈ Types(x|P)

⋂
Types(y|P)⇒TypeRelated(A,B)]

type
relatedness

During analysis, we start from type relatedness between object instances (the examples provided) and
derive type relatedness between object types. This will be elaborated in chapter 6.2.

5.2 Specialization

As an example we consider the following significant population:

Cooperator Sort Department Lease car Bus pas
Janssen S Personnel 10-GY-RZ -
Pietersen J Sales - 128123
Dekker J Personnel - 389212
Klaassen S Sales 06-SX-LN -

Figure 5.1: Programming language history

This population (apparently) describes 2 sorts of cooperators, senior and junior cooperators. Senior coop-
erators and junior cooperators have different properties. The following schema fragment is compatible with
this sample population:
An extra constraint is required to enforce the difference between senior and junior cooperators. For exam-
ple: Person having Sort ’S’ IS EQUAL TO using Leasecar.

Figure 5.2: Sample schema frag-
ment

This semantic issue of the universe of discourse may also be modeled
directly in the conceptual schema by applying an inverse object-role-
transformation, leading to the following schema:

Figure 5.3. Sample schema fragment

108 CHAPTER 5. OBJECT GROUPING MECHANISMS

We might as well identify the unary fact types by the subsets they
induce. This leads to the following variant to model this universe of
discourse:

Figure 5.4. Sample schema fragment

Specialization in ORM is a mechanism that allows the introduction
of specializations directly as follows::

Figure 5.5. Using subtyping

subtype
determining
rule

Each subtype has associated a subtype determining rule. This rule describes what objects of the super type
are member of the subtype. In the example above, we see that a Senior is defined as:

Senior IS Cooperator having Sort ”S”

The subtype determining rule is tested on instances of the immediate supertype. As a consequence, the
subtype determining rule may only involve properties of that supertype. As subtype relation is graphically
depicted by an arrow:

A

B

Figure 5.6. Subtype relation

5.2. SPECIALIZATION 109

In this schema, B is a subtype of A with subtype determining rule R. The population of a subtype is derived
from the population of the supertype by applying the subtype defining rule:

Pop(B) = Pop(a)[R]
=

{
x ∈ Pop(A)

∣∣R(x)
}

5.2.1 Multiple parents

A object type may be a subtype of more than one supertype. In this case, the membership condition is the
conjunction of the membership rules associated with that subtype. For example:

Vrouw

Persoon

Aziaat

JapnseVrouw

Figure 5.7. Multiple inheritance

In this example, Japanese females are persons that are both females satisfying rule FA and asians satisfying
rule AA.

Pop(JapaneseFemale) = Pop(Female)[FA]
⋂

Pop(Asian)[AA(x)]

=
{

x ∈ Pop(Female)
∣∣FA(x)

}⋂{
x ∈ Pop(Asian)

∣∣AA(x)
}

T
1 Tk

[R]k[R]1

Figure 5.8. Subtype with multiple parents

In general, let S be subtype of object types T1, . . . ,Tk according to subtype determining rules T1 IS R1, . . . ,Tk IS Rk

respectively. Then

Pop(S) =
k⋂

i=1

Pop(Ti)[Ri]

So for example, if Lai is instance of object type Person, then Lai will also be instance of subtype Fe-
male, and of subtype Asian. So Lai is candidate to pass the tests FA and AA for membership for subtype
JapaneseFemale.

pater
familiasGenerally, a subtype hierarchy should be a directed acyclic graph with a unique top element. The top is

referred to as the pater familias of that hierarchy. The pater familias is the object type determines the
identity of all object types in the hierarchy.

110 CHAPTER 5. OBJECT GROUPING MECHANISMS

5.2.2 Specialization handling in ORC

Subtypes may be treated in ORC just like other object types (see section 7.4.1). A more effective approach
is to use the subtype determining rule to involve the semantics of the subtype.

Let S be subtype of object types T1, . . . ,Tk according to the following subtype determining rules T1 IS R1, . . . ,Tk IS Rk

respectively. Then the meaning of information descriptor ONm(S) is defined as:

R(ONm(S)) = R(R1 AND ALSO . . . AND ALSO Rk)

The AND ALSO operator expresses the conjunction between the diverse inheritances.

5.3 Generalization

As an example, we consider the following subtype situations:

Voertuig

Auto Brommer
(kenteken) (verz.nr)

Persoon

Student Docent

(sofinr)

Figure 5.9. Different kinds of subtypes

The left example has the object type Person as pater familias, and specifies two special kinds of persons:
Student and Teacher. The right example is rather different. It introduces the object type Vehicle as a gen-
eralization of the object types Car and Motorbike. Obviously, cars and motorbikes have a different nature,
and will be identified differently. As a consequence, it does not make sense to see a car as a special kind of
vehicle; in that case a car would be identified as a vehicle!

mixed
identityThe difference between specialization and generalization is the inheritance of identity. In a specialization,

the subtype inherits its identity form the supertype. In a generalization, the generalized object type inherits
its identity from its specifiers. As a consequence, a generalized object is an object type of mixed identity.
The generalization hierarchy is graphically represented by dotted arrows.

A generalization hierarchy should be free of identity ambiguity. This means that type related object types
can not be generalized. In such a case, a specialization would be more appropriate.

Formally, let D1, . . . ,Dk be a set of object types that are mutually not type related. Let G be the generaliza-
tion of these object types, then we have:

Pop(G) =
k⋃

1=i

Pop(Di)

We call D1, . . . ,Dk the specifiers of object type G. Generalizations are useful when different object types
specifierdo play similar roles. Generalization is a mechanism to avoid schema redundancy, as it provides the oppor-

tunity to introduce a generic object type describing the common roles that can be played by its specifiers.

5.4. DYNAMIC GROUPING 111

5.3.1 Generalization handling in ORC

Let G be the generalization of specifiers D1, . . . ,Dk. Then the name ONm(G) of object type G is interpreted
in ORC as follows:

R(ONm(G)) = R(D1 OR OTHERWISE . . . OR OTHERWISE Dk

5.4 Dynamic Grouping
identification
by
enumeration

Another special case is when the dynamics of grouping conflict with the statics of the subtyping mechanism.
This is the case when a group of object instances can have its own identity. For example, a school class
could be partitioned in anonymous groups to work on exercises. The groups do not have special properties,
except that the group is assigned a score for that exercise. Thus the group thus may only be identified by
enumerating its members.

We will discuss two methods to handle this particular kind of instance grouping.

1. via a special kind of object type, the so-called set type

2. via a special kind of constraint, the so-called extensional uniqueness constraint that is coupled to the
rules for object identification.

5.4.1 Set type
Set
typeFirst we discuss the set type as a special constructor for objects. The following schema fragment models

this situation:

van
(nr)

Student
(naam)

behaalt

Cijfer

Figure 5.10. Set type

base
typeThe set type is drawn as a circle around its associated base type. With each set type we assume an implicit

fact type Contains. Usually this fact type is left implicit, and left out of the conceptual schema.

The set type over some base object type is populated by sets of instances from that base object type, so:

x ∈ Pop(Group)⇒x⊆ Pop(Student)

The instances of a set type are identified by the members of the set. So instances of a set type are different
if and only if they have associated different members.

A typical ORNF sentence associated with this situation is:

Group consisting of Student with Name ”John” and Student with Name ”Mary” gets Mark 10

112 CHAPTER 5. OBJECT GROUPING MECHANISMS

5.4.2 Extensional uniqueness constraint

Identification by enumeration is also expressed by a special kind of uniqueness constraint. Instances of set
types are identified by their members. In figure 5.4.2 the set Group is modeled via the fact type Contains.
The special identification of the set is enforced by the extensional uniqueness constrained on the role in of
this fact type.

Figure 5.11. Different kinds of subtypes

The meaning of this constrains is as follows. For each population of this schema (fragment) it should hold
that:

∀x [x in g ⇔ x in h] ⇒ g = h

Note that this usage of the extensional uniqueness constraint is equivalent with saying that Group is a set
type having Student as its base type.

5.4.3 Set types in ORC

A set type may be addressed by its name, as any other object type. In order to verbalize the element-
set relation, the special keywords IN and CONTAINING can be used. For example, the following ORC
expression asks for the groups in which student Jan is participating:

Group CONTAINING Student with Name ”Jan”

The partners of this student are obtained by:

Name of Student IN Group CONTAINING Student with Name ”Jan” BUT NOT ’Jan’

5.4.4 Constraints on set types

ORM provides special constraints to regulate the membership relation on sets. For example, the following
schema restricts membership to a dual membership:

Figure 5.12. Description of couples

5.5. DEFINITIONS OVERVIEW 113

5.5 Definitions overview
Subtyping – Either specialization or generalization .

Specialization – A modeling construct to define a subclass of an object type.

Generalization – A modeling construct to group different object types into a generic object type.

Subtype determining rule – A rule that describes the membership condition for a specialized object type.

Pater familias – The top-most object type of a specialization hierarchy.

Specifier – An generalized objet type in a generalization construction.

Extensional uniqueness constraint – A constraint that makes it possible to identify a set of instances by
its members.

Questions

Figure 5.13: Missing dependencies

1. Schrijf JapanesFemale als
{

x ∈ Person
∣∣F(x)

}
.

2. Consider the following table that provides information on participation and results of students for
courses from some educational institution. Some courses consist of a number of parts as in the case
of R&D1 and R&D2. Such courses are referred to as a course lines. For each course or course part,
the name of the teacher and his/her phone number is recorded in the table. Each participation year of
a student to a course (part) is recorded in the table, and, if available, the result.

StudentNr Studie Course(line) Part Teacher TelNr Year Mark
S091234 IK R&D 1 Swinkels 51234 2007-2008 8
S092345 IC R&D 2 Bergsma 53421 2006-2007 3
S092345 IC R&D 2 Pietersen 54433 2007-2008
S105432 IC R&D 2 Pietersen 4433 2007-2008 7
S106543 IC DM Boomsma 53421 2007-2008 9

(a) Derive elementary sentences for the elementary fact types that are present in this table.

(b) Derive from these sentences an ORM schema. Motivate why this schema is correct, and give
arguments why this schema is minimal with respect to this sample table.

3. We kwamen ergens de volgende (min of meer self-explanatory) tabellen tegen voor enerzijds het
bijhouden van artikelen in een eenvoudig winkel+magazijn en anderzijds voor verkopen in de winkel.
We tonen hierna in tabelvorm steeds een voorbeeldpopulatie.

Je mag met je kennis van dit UoD zelf aanvullende, realistische aannames maken over van kracht
zijnde beperkingregels (bij mogelijke twijfel over het realiteitsgehalte van deze aannames, moet je
die aannames expliciet vermelden!).

114 CHAPTER 5. OBJECT GROUPING MECHANISMS

Voorraad:

Huidige Minimum
Artikelcode Artikelsoort Stukprijs Maat voorraad voorraad

B43 Spijkerbroek e29,-
48
50
52

4
7
5

3
5
5

B47 Spijkerbroek e34,-
50
52

4
7

2
4

V02 Vest e34,-
50
54

3
2

3
2

V21 Vaas e5,95 8 1

Uit deze eerste (voorraad)tabel kunnen we bijvoorbeeld de volgende (al dan niet elementaire) ver-
woording opmaken: De spijkerbroeken met artikelcode B43 kosten allen e29,- per stuk en van maat
48 daarvan zijn momenteel 4 stuks in voorraad. Als van die maat van dat artikel nog maar 3 stuks in
voorraad zijn, dan moet bijbesteld worden. Van maat 52 van dat artikel zijn nog 5 stuks in voorraad.
Van de vazen (artikelcode V21) zijn momenteel 8 stuks in voorraad.

Verkopen:

Datum Tijdstip Artikel Maat Aantal
05-03-2003 16:52u B43 50 2
05-03-2003 16:52u V21 1
06-03-2003 10:28u B43 50 1

(a) Geef de elementaire verwoordingen van de elementaire feittypen die hierin liggen opgesloten.

(b) Leid vervolgens uit deze zinnen het ORM schema af. Motiveer waarom jouw schema correct
is, en bovendien minimaal met betrekking tot de verstrekte voorbeeldtabellen.

(c) Vermeld in je schema de constraints die redelijkerwijze voor het beschreven applicatiedomein
zullen gelden.

(d) Geef een voorbeeldpopulatie die precies de informatie beslaat die in bovenstaande voorbeeldta-
bellen is gegeven.

Figure 5.14: Schema for exercise 1

4. Is the schema from figure 7.16 populatable?

5. What is wrong in the following schema from figure 7.18?

QUESTIONS 115

Figure 5.15:

116 CHAPTER 5. OBJECT GROUPING MECHANISMS

Chapter 6

The Modeling Algorithm

Version:
07-09-08
CDSP

The way to go about to construct a conceptual model in practical situations is called CSDP (Conceptual
Schema Design Procedure, see [Hal89]). In this chapter we will discuss the modeling algorithm from a
more formal point of view, and focus on a special part, and discuss how from from a significant set of
sample sentences, for example resulting from input tables provided by the domain expert, a conceptual
framework can be generated. We will also explicitly point out where (extra) input from the domain expert
is required.

6.1 Sharing properties

Things from the universe of discourse are are usually organized in groups of thing s with similar properties
and/of behavior. Things that are represented in the information system to be associated with this universe,
will reflect this similarity. Thus the objects corresponding to the things of the universe of discourse will
have similar properties, which is reflected in the the roles they can play. Note that some role(s) are used to
identify the thing, and (thus) also to identify the associated object instance within the information system.

We start our analysis from a sample population, although in practise the specification of the universe will
also be expressed on a more global level as domain rules. Let x1, . . . ,xn be the object instances derived from
the sample population, and R1, . . . ,Rn the sets of roles they play respectively. Consider objects xi and x j,
then we have the following cases:

Case 1: unrelated roles: Ri G R j.
Then xi and x j are not directly type related.

Case 2: related roles: This is denoted as xi ∼1 x j.
There are two possibilities:

1. Sharing of identifying role:]
Then xi and x j are type related. This will lead to a specialization relation if the property differ-
ences are structural.

2. Not sharing identifying role:]
There is a generalization relation that is used to describe generic properties.

Note that the relation ∼1 is reflexive and symmetric, but not transitive.
role
sharing
clusters

Let ∼ be the transitive closure of ∼1, then ∼ is an equivalence relation. So we may split up the object
instances

{
x1, . . . ,xn

}
in role sharing clusters, i.e., classes of object instances that have a direct or indirect

role relationship. Note that as an effect of the transitive closure, unconnected instances may end up being
type related. For example, suppose a sales organization sells both cars and houses. Some cars and houses

117

118 CHAPTER 6. THE MODELING ALGORITHM

share the role having Price, while unpriced houses and cars do not share any property. Due to transitivity,
these cars and houses will fall within the same role sharing cluster. 1

As a consequence, we are grouping sample object instances according to their potential of sharing roles.
However, the modeling algorithm we will discuss does not require such a grouping. Grouping though makes
the algorithm more efficient.

As an example, we consider the following table:

has represents born in
Name Country Country

x0 Ann Arbor USA USA
x1 Bill Arbot UK -
x2 Chris Lee USA NZ

The information within this table may be described by the following kind of elementary sentences:

1. Athlete with Name ”Ann Arbor” represents Country ”USA”

2. Athlete with Name ”Ann Arbor” is born in Country ”USA”

The role sharing clusters are easily centered around the object types:

1. Athlete, playing roles:

• with Name
• represents Country
• is born in Country

2. Name, playing roles:

• naming Athlete

3. Country, playing roles:

• is represented by Athlete
• is birthplace of Athlete

6.2 A formal algorithm

Given a role sharing cluster, the following steps then are taken:

1. Group sample sentences and determine the deep structure sentences

2. Select object references

3. Select associated roles

4. Build corresponding object-role context

5. Perform formal concept analysis

6. Post-process concept lattice into subtype hierarchy

7. Group roles according to sentence type

The first 4 steps are called the initial steps. The result of this algorithm is a conceptual (ORM) schema,
including a subtyping structure and total role constraints.

1See lemma

6.3. SIMPLE HOMOGENEOUS CASE 119

6.3 Simple homogeneous case

We start with the following example taken from Halpin ([Hal89]), and modified slightly to suit our needs.

6.3.1 The initial steps 1 to 4
role
significant
population

In this example, from the sample sentences provided, we derive 9 instances playing relates roles, and thus
fall within case 2 or 3 from previous section. The following pattern for the properties of these instances is
derived from the sample sentences. From the domain expert we know that this is a significant population
with respect to the variety of playing roles, or role significant population for short. A role is denoted with
special emphasize when it is an identifying role. In the example below, has Id is the identifying role for
object type Person.

has Id has Age watches tv reads paper has favorite has favorite prefers
NrHours NrHours Channel Paper News

R1 R2 R3 R4 R5 R6 R7

x1 5001 41 0 10 The Times
x2 5002 60 0 25 The Times
x3 5003 16 20 2 9 The Times
x4 5004 18 20 5 2 Daily Mail TV
x5 5005 13 35 0 7
x6 5006 17 14 4 9 Daily Sun
x7 5007 50 8 10 2 Daily Sun NP
x8 5008 33 0 0
x9 5008 13 50 0 10

property
pattern

On the fly we introduced an abbreviated notations for the roles in this example. We see that some property
patterns occur more than once, and thus may be eliminated. We restrict this table to the various property
patterns:

R1 R2 R3 R4 R5 R6 R7

G1 =
{

x1,x2
}

1 1 1 1 0 1 0
G2 =

{
x3,x6

}
1 1 1 1 1 1 0

G3 =
{

x4,x7
}

1 1 1 1 1 1 1
G4 =

{
x5,x9

}
1 1 1 1 1 0 0

G5 =
{

x8
}

1 1 1 1 0 0 0

This table describes how patterns and roles are related. A value 1 in a cell of the table states that the property
is recorded in the associated property pattern, the value 0 is used when this is not the case. As such, we may
see this table as describing a relation σ between the set G =

{
G1, . . . ,G5

}
of property patterns and the set

R =
{

R1, . . . ,R7
}

of properties. We will write σ(g,r) when property r is recorded in property pattern g.

6.3.2 Step 5: Formal concepts
formal
contextIn Formal Concept Analysis (FCA) the structure 〈G,R,σ〉 as described in the previous subsection, is called

a formal context. Formal concepts are derived from this context by using the following operators. The first
operator, ComProps, takes a set of property patterns as its input, and determines what properties they have
in common:

ComProps(G) =
{

r ∈R
∣∣∀g∈G [σ(g,r)]

}

120 CHAPTER 6. THE MODELING ALGORITHM

On the other hand, given a set R of roles, ComPats(R) denotes the property patterns that record all roles
from R:

ComPats(R) =
{

g ∈ G
∣∣∀r∈R [σ(g,r)]

}
Some examples are:

• ComProps(
{

G1,G2
}

=
{

R1,R2,R3,R4,R6
}

• ComProps(
{

G5
}

=
{

R1,R2,R3,R4
}

• ComProps(G) =
{

R1,R2,R3,R4
}

• ComProps(∅) = R

• ComPats(R) =
{

G3
}
)

• ComPats(∅) = G

• ComProps(
{

G1,G2,G3
}
) =

{
R1,R2,R3,R4,R6

}
• ComPats(

{{
R1,R2,R3,R4,R6

}}
=
{

G1,G2,G3
}

The latter two examples demonstrate the special case, where a set G of property patterns and a set R of
roles are associated as follows:

ComProps(G) = R

ComPats(R) = G

Such a combination C = (G,R) is called a formal concept. Formal concepts are important in many appli-
formal
concept

cation fields. Also for the modeling activity these formal concepts will show their usefulness as we will
discuss in this chapter. G is called the support of concept C, while R is its specification. G is also called the
extension of C, and R its intention.

6.3.3 The concept lattice

Each formal context has associated a set of formal concepts. In our example, we have the following con-
cepts:

1. C1 : (
{

G1,G2,G3
}
,
{

R1,R2,R3,R4,R6
}
)

2. C2 : (
{

G2,G3
}
,
{

R1,R2,R3,R4,R5,R6
}
)

3. C3 : (
{

G3
}
,
{

R1,R2,R3,R4,R5,R6,R7
}
)

4. C4 : (
{

G2,G3,G4
}
,
{

R1,R2,R3,R4,R5
}

5. C5 : (
{

G1,G2,G3,G4,G5
}
,
{

R1,R2,R3,R4
}

Concepts may be better supported or may be more specific. For example, concept C2 is more specific than
concept C1 because concept C2 adds an extra property to concept C1. In general, a concept C = (G,R) is
more specific than concept D = (H,S) if S ⊆ R. An equivalent formulation is: concept C = (G,R) is more
specific than concept D = (H,S) if G⊆ H.

6.3.4 Step 6: Constructing the subtype hierarchy

It is useful to construct a line diagram that presents the concepts where the lines represent the relation being
more specific. For our example we get:

6.3. SIMPLE HOMOGENEOUS CASE 121

Figure 6.1. The concept diagram

We may read this diagram as follows. All object instances considered play the roles
{

R1,R2,R3,R4
}

. The
object instances associated with concept C2 play all roles inherited by concept C1, and besides also role R5.
A special case is related to the concepts C2 and C3. Together they represent the notion of possibly playing
role R7. Combining these insights, we group concepts into candidate object types as shown in figure 6.3.4.

Figure 6.2. The concept diagram

We propose the candidate specialization hierarchy to the domain expert for acceptance, and trying to find
proper names for the specializations introduced. The specialization determining rule basically is derived
from the commonality of the attributes of the associated concept. For example, the concept C1 has associ-
ated groups G1,G2,G3, and thus the object instances x1,x2,x3,x4,x6.x7:

has Id has Age watches tv reads paper has favorite has favorite prefers
NrHours NrHours Channel Paper News

R1 R2 R3 R4 R5 R6 R7

x1 5001 41 0 10 The Times
x2 5002 60 0 25 The Times
x3 5003 16 20 2 9 The Times
x4 5004 18 20 5 2 Daily Mail TV
x6 5006 17 14 4 9 Daily Sun
x7 5007 50 8 10 2 Daily Sun NP

We might notice (or at least the domain expert should tell the system analyst) that these precisely are
those instances with R4 > 0. We assume this leads to the following names with their associated subtype
determining rules:

122 CHAPTER 6. THE MODELING ALGORITHM

1. Journalreader IS Person reading newspaper Hours > 0

2. Televisionwatcher IS Person looking at television Hours > 0

3. Newsreader IS Journalreader AND Televisionwatcher
The result is a specialization hierarchy. Each role also has associated its potential total role constraint.

6.3.5 Step 7: Composing the conceptual schema

Next we complete the resulting schema and find the following conceptual schema:

Figure 6.3. The concept diagram

6.4 Transformation example

As a next example, we consider the following sample table (also taken from [Hal89]):

has has is has has has plays
Name Sex smoker Starsign Height Office Sport

A Adams F Y Aquarius - - -
B Brown M Y - 170 - -
C Collins M N - 190 308 basketball
D Davis F Y Gemini - - -
E Evans M Y - 190 - -
F Fomor M N - 180 505 basketball, tennis
G Gordon F N Aquarius - 406 -
H Hastings M Y - 165 - -
I Iveson M N - 165 305 -
J Jones M N - 179 502 -

This table shows a role significant population for persons. First we will do a direct analysis. Then we add
some extra information of the domain expert on the meaning of attribute values, and show how this is
handled to form a more detailed specialization schema.

We se from this table that the role plays Sport lists all sports that are played by that person. After validation
with the domain expert, this combination of sports is known to have not a conceptual meaning. It will
therefor be treated as a single-valued attribute, and not as an attribute to be modeled using a set type.

6.4. TRANSFORMATION EXAMPLE 123

6.4.1 The direct approach

The table presents the role plays Sports as a multi-valued role. We will interpret this as a normal role that
is played more than once. Applying the method of the previous section then leads to the following property
pattern table:

has has is has has has plays
Name Sex smoker Starsign Height Office Sport

G1 =
{

A,D
}

1 1 1 1 0 0 0
G2 =

{
B,E,H

}
1 1 1 0 1 0 0

G3 =
{

C,F
}

1 1 1 0 1 1 1
G4 =

{
G
}

1 1 1 1 0 1 0
G5 =

{
I,J
}

1 1 1 0 1 1 0

The following concepts are generated from this table:

1. C0 = (
{

G1,G2,G3,G 4,G5
}
,
{

has Name, has Sex, is smoker
}
)

2. C1 = (
{

G1,G4
}
,
{

has Name, has Sex, is smoker, has Starsign
}
)

3. C2 = (
{

G2,G3,G5
}
,
{

has Name, has Sex, is smoker, has Height
}
)

4. C3 = (
{

G3,G4,G5
}
,
{

has Name, has Sex, is smoker, has Office
}
)

5. C4 = (
{

G3,G5
}
,
{

has Name, has Sex, is smoker, has Height, has Office
}
)

6. C5 = (
{

G3
}
,
{

has Name, has Sex, is smoker, has Height, has Office, plays Sport
}
)

7. C6 = (
{

G4
}
,
{

has Name, has Sex, is smoker, has Starsign, has Office
}
)

8. C7 = ({},
{

has Name, has Sex, is smoker, has Starsign, has Height, has Office, plays Sport
}
)

These concepts lead to the following concept lattice:

Figure 6.4. The concept lattice

Next we transform the concept lattice into a conceptual schema. The candidate concepts resulting from the
grouping are displayed in the following figure:

124 CHAPTER 6. THE MODELING ALGORITHM

Figure 6.5. The concept lattice

The property patterns associated with concept C1 suggest that this candidate concept may be named Fe-
male. This has to be validated by the domain expert! Analogously, concept C2 is named Male, while C3
is referred to as NonSmoker. We also conclude, as we have a significant population, that specializations
Female and Male are total and disjoint. The candidate object type consisting of C4 and C5 is obviously
named MaleNonSmoker.

Note that the concepts C6 (the female non-smokers) and C7 will not result in object types. Both concepts
have no roles associated, and thus need not be present in the conceptual schema. Besides, the bottom
concept C7 would lead to an object type that is structurally empty as there are no persons that are both
female and male. This leads tot the following specialization structure:

1. Female IS Person has Sex ”F”.

2. Male IS Person has Sex ”M”.

3. NonSmoker IS Person BUt NOT is smoker.
This leads to the following conceptual schema:

6.4. TRANSFORMATION EXAMPLE 125

Figure 6.6. The resulting conceptual schema

6.4.2 Qualifying attributes

Label values are concrete attributes of abstract object types. The following kind of attributes are distin-
guished:

Nominal
An attribute (domain) is called nominal it its values are unordered. The only operators for these
values are equality tests:

distinctness = 6=

Examples: ID numbers, eye color, zip codes

Ordinal
An attribute (domain) is called ordinal if its value are ordered. The following operators are available
for such domains:

distinctness = 6=
order < >

Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in tall, medium,
short
However, there is no distance measure between value.

Interval
An attribute (domain) is referred to as interval if also there is a distance measure between values.
The available operators are:

distinctness = 6=
order < >
addition + −

Examples: calendar dates, temperatures in Celsius or Fahrenheit.

Ratio
An attribute (domain) is called a ratio if it is an interval attribute domain that has a zero value, and
for which the ratio between values has a meaning. For example, the expression twice as much has a
meaning for such an attribute domain. The operators for such a domain are:

distinctness = 6=
order < >
addition + −
multiplication ∗ /

Examples: temperature in Kelvin, length, time, counts

Attribute domain may also be classified as follows:

Discrete Attribute A discrete attribute has a finite or countably infinite set of values.
Examples: zip codes, counts, or the set of words in a collection of documents.

Continuous Attribute A continuous attribute takes real numbers as attribute values.
Examples: temperature, height, or weight.

Numerical domains are sometimes ordered by using so-called landmarks. Landmarks are numbers which
separate the real axis into intervals (temperature of water: 0 and 100 degrees). These landmarks are facts
from physics and not personal relevancies. Each interval is a qualitative region (where the material behaves
in some sense very similar).

126 CHAPTER 6. THE MODELING ALGORITHM

6.4.3 Object role transformation

At this point we reconsider the specialization hierarchy that resulted in section 6.4.1. During the discussions
with the domain expert, the system analyst might notice that the domain expert uses a classification for the
attribute Height. When people are below 1.80m they are also called small, otherwise they are called large.
The system analyst decides to punt a landmark on this attribute, deriving from this attribute the following
attributes:

• is small

• is large

This leads to the following significant population: property pattern table:

has has is has has is is has plays
Name Sex smoker Starsign Height large small Office Sport

A 1 1 1 1 0 0 0 0 0
B 1 1 1 0 1 0 1 0 0
C 1 1 1 0 1 1 0 1 1
D 1 1 1 1 0 0 0 0 0
E 1 1 1 0 1 1 0 0 0
F 1 1 1 0 1 1 0 1 1
G 1 1 1 1 0 0 0 1 0
H 1 1 1 0 1 0 1 0 0
I 1 1 1 0 1 0 1 1 0
J 1 1 1 0 1 0 1 1 0

This context is richer than the context of section 6.4.1. This leads to a richer conceptual structure:

1. C0 = (
{

A,B,C,D,E,F,G,H, I,J
}
,
{

has Name, has Sex, is smoker
}
)

2. C1 = (
{

A,D,G
}
,
{

has Name, has Sex, is smoker, has Starsign
}
)

3. C2 = (
{

B,C,E,F,H, I,J
}
,
{

has Name, has Sex, is smoker, has Height
}
)

4. C3 = (
{

B,H, I,J
}
,
{

has Name, has Sex, is smoker, has Height, is small
}
)

5. C4 = (
{

C,E,F
}
,
{

has Name, has Sex, is smoker, has Height, is large
}
)

6. C5 = (
{

C,F,G, I,J
}
,
{

has Name, has Sex, is smoker, has Office
}
)

7. C6 = (
{

C,F, I,J
}
,{has Name, has Sex, is smoker, has Height, has Office})

8. C7 = (
{

C,F
}
,{has Name, has Sex, is smoker, has Height, is large, has Office,

plays Sport})
9. C8 = (

{
G
}
,
{

has Name, has Sex, is smoker, has Starsign, has Office
}
)

10. C9 = (
{

I,J
}
,
{

has Name, has Sex, is smoker, has Height, is small, has Office
}
)

11. C10 = ({},{has Name, has Sex, is smoker, has Starsign, has Height, is large, is small, has Office, plays Sport})

The conceptual structure is displayed in the following figure:

6.4. TRANSFORMATION EXAMPLE 127

Figure 6.7. The resulting conceptual schema

The next step is to transform this conceptual structure into an ORM schema. First we note that the concepts
C3, C8, C9 and C10 do not introduce new roles to be played, and thus do not contribute to the nomination
of object types. The derived attributes is small will also not be represented as object types in the ORM
schema, as they are derived properties. The formal concepts C4, C6 and C7 together form a candidate object
type that can play the role plays Sport. This leads to the following candidate object types:

128 CHAPTER 6. THE MODELING ALGORITHM

Figure 6.8. The candidate object types

The names of the specializations are obtained from the domain expert, leading to the following specializa-
tion defining rules:

1. Female IS Person has Sex ”F”.

2. Male IS Person has Sex ”M”.

3. NonSmoker IS Person BUT NOT is smoker.

4. TallNonSmoker IS Male AND ALSO NonSmoker AND ALSO has Height ¿= 180.

This leads to the following conceptual schema:

6.5. HETEROGENEOUS EXAMPLE 129

Figure 6.9. The resulting schema

6.5 Heterogeneous example

As a next example, consider a company with trucks and buses that also administers houses. Trucks and
buses are identified by their license plate, house by the combination of zip-code and house number. As
different as trucks, buses and houses are, in the administration they are type related as they all are assigned
a (commercial) value. From the sample sentences we know that trucks and buses are identified by their
registration number (RegNr), and houses by the combination of street number (Snr) and ZipCode.

Assume the domain expert has provided us with the following role significant population:

with has has has has has riding has has
RegNr Snr ZipCode Value Cargo Maxload on Dest Video License

A 98-ST-03 9000 0 16 Spain Philips
B NR-17-HD 12000 7500 0 Spain A
C PT-91-VY 15000 0 25 France Philips
D FH-99-YZ 14000 0 20 Italy
E 1 6525 ED 275000

Note that we have objects of different identities in this table. As the all play the role has Value, they form a
role sharing cluster. The corresponding property pattern table:

with has has has has has riding has has
RegNr Snr ZipCode Value Cargo Maxload on Dest Video License

A 1 0 0 1 1 1 1 1 0
B 1 0 0 1 1 1 1 0 1
C 1 0 0 1 1 1 1 1 0
D 1 0 0 1 1 1 1 0 0
E 0 1 1 1 0 0 0 0 0

This leads to the following formal concepts:

1. C0 = (
{

A,B,C,D,E
}
,
{

has Value
}
)

2. C1 = (
{

A,B,C,D
}
,
{

with RegNr, has Value, has Cargo, has Maxload, riding on Dest
}
)

3. C2 = (
{

A,C
}
,
{

with RegNr, has Value, has Cargo, has Maxload, riding on Dest, has Video
}
)

4. C3 = (
{

B
}
,
{

with RegNr, has Value, has Cargo, has Maxload, riding on Dest, has License
}
)

5. C4 = (
{

E
}
,
{

has HouseNr, has ZipCode, has Value
}
)

6. C5 =({},{with RegNr, has HouseNr, has ZipCode, has Value, has Cargo, hasMaxload, riding on Dest, has Video, has License})

130 CHAPTER 6. THE MODELING ALGORITHM

Figure 6.10. The resulting schema

Figure 6.11. The resulting schema

6.6 Some examples

In this section we shortly discuss some examples. Consider the following significant tabel:

has represents born in
Name Country Country

x0 Ann Arbor USA USA
x1 Bill Arbot UK -
x2 Chris Lee USA NZ

In this case we get a concept lattice with two candidate object types. However, no specialization determin-
ing rule may be formulated.

6.7. THE COMPUTATION OF CONCEPTS 131

6.7 The computation of concepts

6.8 Definitions overview
CSDP – Conceptual Schema Design Procedure

FCA – Formal Concept Analysis

Formal context – A structure consisting of a set of objects, a set of attributes and a relation between
objects and attributes.

Formal concept – A pair consisting of a set of objects and a set of attributes that mutually are interpreted
in terms of each other by the context relation.

Role significant population – A population that is significant with respect to the variety of playing roles.

Concept lattice – The formal concepts arranged according to the subconcept relation.

Questions

1. Apply the formal modeling algorithm on exercise 5.2.

2. Furthermore, in this example we have two nominal attributes: has Sex and is smoker. In order to
involve more of the semantics of the universe of discourse in the conceptual model, we could split
the property has Sex into the following two properties:

• is male
• is female

and the property is smoker into

• is a smoker
• is a nonsmoker

However, in our previous analysis both the difference between male and female as the difference
between smoker and nonsmoker was present in the specialization schema. Therefore we will not
further elaborate on these attributes.

3. Consider label type Starsign from the example in section 6.4, and apply formal modeling on this
label type.

132 CHAPTER 6. THE MODELING ALGORITHM

Chapter 7

Object-Role Calculus

Version:
10-09-08In the previous sections we have seen how the base sentences obtained from the domain expert have been

converted into a base grammar. However, this grammar is only capable to represent the way facts are
described in the universe of discourse. In this chapter we extend this grammar such that is may also be used
to formulate a query to be processed by the information system (see section 2.4.1).

We will assume a provisional information system with a most simple user interface. The system is waiting
for a request from the user, and prompts the user by displaying a >-sign as follows:

>

The user is to enter a request, upon which the system will respond. Next the system will ask for a next
request. A request is a (series of) sentence(s) from the grammar to be described in this chapter, followed
by a full stop symbol.

The conceptual language to communicate with the information system has the following categories of
sentences:

schema
sentences1. schema sentences: these are the sentences that describe the schema elements that constitute the con-

ceptual model. From these sentences the information grammar is derived.

stating
sentences

2. stating sentences: a stating sentence informs the information system about new facts in the universe of
discourse, or about the withdrawal of the validity of facts specified. The information base is modified
accordingly.

asking
sentences

3. asking sentences: such a sentence gives the specification of an information need. The system will
respond with a list of stating sentences, corresponding to the facts that satisfy the specification.

7.1 Schema sentences

Initially the information system does not contain any conceptual schema specification and thus also has
an empty information base. At this moment, the information system will only recognize sentences from
its base grammar. This base grammar is such that the user can enter a sentence to describe a conceptual
schema. In this course schema sentences will be discussed only briefly.

A schema sentence is a complex sentence that describes all schema elements successively. First the label
types are introduced. Next the entity types, followed by the description of the fact types. We will not discuss
these schema sentences in detail but assume they are sufficiently self-explaining. The next sample session
describes the introduction of the schema displayed in figure 7.1

133

134 CHAPTER 7. OBJECT-ROLE CALCULUS

> ADD SCHEMA TYPE Example
LABEL TYPE
Name HAS DOMAIN String VERBALIZED AS ’Name’ *; # default name

ENTITY TYPE
Person (Name) VERBALIZED AS ’Person’ ’with’ 〈1〉; # default name
Department (Name);

FACT TYPE
Contract (
in: Person (from) working for,
has: Department (for) providing work to
VERBALIZED AS 〈1〉 ’works for’ 〈2〉

);

CONSTRAINTS
C1: Total role on Contract.in : TOTAL ROLE Contract.in
C2: Unique role on Contract.in : UNIQUE ROLE Contract.in

ENDSCHEMA.
Accepted

This schema describes two so-called constraints. Constraints will be discussed in the next chapter. For sake
of the example, we introduced two constraints referred to as C1 and C2. The first constraint requires each
person to be involved in some contract, while the second constraint enforces that a person may not be
involved in more than one contract at a time.

Person
(Name)

Department
(Departmentname)

Contract

working for
provifing work to

from

in has
for

<1> works for <2>

Figure 7.1: Sample schema

The information system checks the schema sentence for being well-formed, and then builds the associated
information grammar. From that point the user may address the information system in terms of the newly
formed language constructs.

7.2 Stating sentences

The format of stating sentences is based on the formats of the elementary sentences as specified during the
analysis phase. In general, a stating sentence has one of the following formats:

• ADD S1, S2, . . ., Sn.

• DEL S1, S2, . . ., Sn.

where S1, . . ., Sn are elementary sentences. Each elementary sentence verbalizes some fact that is to be
recorded as a true fact by the information system. These sentences modify the contents of information base
as follows:

effect
addition• If the information base contains population Pop, then the population after

7.2. STATING SENTENCES 135

ADD S1, S2, . . ., Sn.

is the minimal extension of population Pop that contains the elementary sentences S1, . . ., Sn. If no
such extension exists, then the information system reports an extension error, and does not alter the
information base.

effect
deletion• If the information base contains population Pop, then the population after

DEL S1, S2, . . ., Sn.

is the maximal subset of population Pop that does not contain the elementary sentences S1, . . ., Sn.
If no such subset exists, then the information system reports an deletion error, and does not alter the
information base.

The sentences

S1, S2, . . ., Sn

are processed as a group. If n > 1, then we will refer to this group as a transaction. Transactions allow the
user to enter or delete several facts with a single command. However, as we will see in the next chapter,
there may be constraints that prohibit elementary facts to be entered outside the context of a transaction.
For example, suppose we register both address and birth date from persons. These facts are obviously
independent facts, and thus will correspond to different fact types. If we require the information system
always to have registered both address and birth date, then there is no way to enter this information via
single-sentence additions.

7.2.1 Addition

We demonstrate the extension of the information base as a consequence of additive stating sentences via a
sample session. After entering the conceptual schema of figure 7.1, the information system has constructed
its information grammar, and its information base contains an empty population of this conceptual schema.
As a first fact we enter:

> ADD Person with Name ”Jan” works for Department with Name ”Sales”.
Accepted

unquote conven-
tionThe addition of this fact first requires the introduction of both Person with Name ”Jan” and Department with

Name ”Sales”. We will denote the abstract object Person with Name ”Jan” as Jan, and analogously the ab-
stract object Department with Name ”Sales” is denoted as Sales. The resulting population is schematically
displayed as:

Information base:
Person

Jan
Contract

Jan Sales
Department

Sales

Next we enter:

> ADD Person with Name ”Piet”.
Rejected due to violation of constraint C1: Total role on Contract.in

The information system has not accepted Piet to be entered, as this would violate constraint C1 stating that
each person should have a contract. Note that the information system can not itself extend the population
by guessing a department for Piet. The rejection does leave the population intact. We proceed with:

> ADD Department with Name ”PZ”.

136 CHAPTER 7. OBJECT-ROLE CALCULUS

Accepted

Contrary to the previous case, there is no rule that requires each department to have some person under
contract. So there is no problem in the addition of department PZ to the information base. The resulting
population:

Information base:
Person

Jan
Contract

Jan Sales

Department
Sales
PZ

Then we enter a multi-sentence command:

> ADD Person with Name ”Piet” works for Department with Name ”Sales”, Person with Name ”Kees” works
for Department with Name ”PZ”.

Accepted

Both sentences are processed, leading to:

Information base:

Person
Jan
Piet
Kees

Contract
Jan Sales
Piet Sales
Kees PZ

Department
Sales
PZ

Finally we enter:

> ADD Person with Name ”Klaas” works for Department with Name ”Admin”.
Accepted

The resulting population is displayed in figure 7.2.

Person
(Name)

Department
(Name)

Contract

working
for

provifing
work to

from

in has
for

<1> works for <2>

Jan
Piet
Kees
Klaas

Sales
PZ
Admin

Jan Sales
Piet Sales
Kees PZ
Klaas Admin

Figure 7.2: The schema populated

7.2.2 Deletion

We demonstrate the deletion of fact types via our sample session. We start with the population from fig-
ure 7.2. We start with the removal of Kees:

> DEL Person with Name ”Kees”.
Accepted

7.3. ASKING SENTENCES 137

As a consequence, all information stored about Kees is also to be deleted. This results in the following
population:

Information base:

Person
Jan
Piet

Contract
Jan Sales
Piet Sales

Department
Sales
PZ

Next we request:

> DEL Person with Name ”Piet” works for Department with Name ”Sales”.
Accepted

Removing this fact leaves person Piet without a contract, which would violate constraint C1. This can only
be resolved by also deleting person Piet. This results in:

Information base:
Person

Jan
Contract

Jan Sales

Department
Sales
PZ

Next we remove the department PZ:

> DEL Department with Departmentname ”PZ”.
Accepted

The result is obvious:

Information base:
Person

Jan
Contract

Jan Sales
Department

Sales

Finally we also remove department Sales. Due to constraint C1, the resulting population is empty. In prac-
tice, the information system will be reluctant to carry out such long-range delete cascades. In this case, the
information system might want to ask the user if the deletion of person Jan is really intended.

7.3 Asking sentences

The conceptual schema describes the concepts that are valid in the universe of discourse. This schema is
derived from the structure of the elementary sentences as provided by the domain expert. Each concept thus
has associated a sentence format that can be used to address this concept and its instances. In the previous
section this format was used to communicate individual facts to the information system.

In this section we discuss how the elementary sentence formats can be dressed using linguistic constructs
to allow the construction of semi-natural asking sentences. This leads to a general format to formulate an

information
descriptor

information need. This format is called information descriptor. The processing of asking sentences contains
the following elements:

1. parse the information descriptor

2. evaluate the query

3. present its result

138 CHAPTER 7. OBJECT-ROLE CALCULUS

Example 7.3.1
If the user would be interested in the cooperators of the department Sales, then this can be done by
reformulating this request in terms of the information grammar, leading to:

> LIST Person working for Department ”Sales”.
Person with Name ”Jan”.
Person with Name ”Piet”.
Person with Name ”Kees”.
Person with Name ”Klaas”.

Gerund
Information descriptors do not follow directly the structure of elementary sentences, more subtle constructs,
derived from the elementary sentence format, are used to get better readable information descriptors. In
particular, gerundium constructions will be used as they improve the readability of information descriptors.

7.4 The underlying lexicon: Names and their meaning

The retrieval grammar is constructed in two steps. First we introduce a lexicon, that is derived from the
lexiconconceptual schema. In this lexicon we can find the meaningful terms and their meaning that have been

introduced in the nformation grammar. Secondly we will discuss rules for sentence construction. In this
section we will focus on the underlying lexicon.

The sentence construction rules provide mechanisms to derive new facts from the information stored in the
information base, the population of the conceptual schema. If we see the conceptual schema as a roadmap
for connections between the elements of this schema, then a path corresponds to a simple way to com-
bine information from the information encountered on its way. A single path makes connections between
instances from one object type with instances of another object type (see figure 7.3).

Figure 7.3: A path expression

result
tableWe will represent the outcome of an information descriptor as a two-column table, containing the starting

and ending points of the paths that are associated with that information descriptor. The cells of this table
contain the standard names of the abstract objects they refer to. The table is referred to as the result table
for that information descriptor.

7.4.1 Object type names and their meaning

Names of object types are elementary ORC expressions. The name of an object type can be used to desig-
nate the population of that object type. The name

Person

refers to (yields) the set of all cooperators that are currently known to the system. The corresponding path
consists of the object type named Person. Formally, let A be the name of object type X , then start(A) = X
and end(A) = X . We will also say that A has reach [X,X]. In the sequel we will use the function ONm(X)

reachto denote the name of object type X .

If we assume the population as depicted in figure 7.2, then we have the following meaning for these ele-
mentary ORC names (using the unquote convention):

7.4. THE UNDERLYING LEXICON: NAMES AND THEIR MEANING 139

Person:

from upto
Jan Jan
Piet Piet
Kees Kees
Klaas Klaas

Another example of an elementary path constructed from the name of an object type is the name Contract.
The meaning of this information descriptor is an overview of what persons work for what departments. The
resulting table will present the facts from its population:

Contract:

from upto
Jan works for Sales Jan works for Sales
Piet works for Sales Piet works for Sales
Kees works for PZ Kees works for PZ
Klaas works for Admin Klaas works for Admin

Formally the meaning of an information descriptor D is denoted as R(D). So we have for example:

R(Person) =

from upto
Jan Jan
Piet Piet
Kees Kees
Klaas Klaas

7.4.2 Role names and their meaning

Roles are the basic mechanisms to build conceptual structures. A role may also be used to select a com-
ponent from such a constructed object, or to find a compound object matching some component. For this
purpose, each role has assigned the following two names:

1. role name

2. inverse role name
role name

A role name consists of a number of words with lower case letters, separated by spaces. The role name
connects the base object of that role to the facts it is involved in. So for example the meaning of role name
in is:

R(in) =

from upto
Jan Jan works for Sales
Piet Piet works for Sales
Kees Kees works for PZ
Klaas Klaas works for Admin

So the first tuple in this table relates the object Jan to the fact instance Jan works for Sales. Formally, let r
be a role with role name N, then we have:
• start(N) = Base(r)
• end(N) = Fact(r).

Note that this information is not very useful on its own. It will only be meaningful in larger constructs. We
will see examples later. For the inverse role name we get:

invere
role name

R(from) =

from upto
Jan works for Sales Jan
Piet works for Sales Piet
Kees works for PZ Kees
Klaas works for Admin Klaas

Formally, let r be a role with inverse role name N, then we have:

140 CHAPTER 7. OBJECT-ROLE CALCULUS

• start(N) = Fact(r)
• end(N) = Base(r).

connector nameBesides their role name and inverse role name, roles may have assigned a so-called connector name. The
connector name provides a mechanism to refer to fact instances seen from the point of view of some
particular object. For example, in the schema of figure ?? we see that connector names

working for

and

providing work to

have been associated to the roles of fact type Contract. Both role names refer to fact instances of fact type
Contract. Role names are elementary information descriptors. They associate the participating object types
of the fact type as follows. The connector name working for connects those cooperators and departments
that are combined via the population of the associated fact type. Note that connector name providing work
to connects departments to cooperators.

Generally spoken, the connector name of role p connects the object Base(p) to the base object type of the
other role (the co-role) of a binary fact type. As a consequence, the meaning of connector name works for
is the following result table:

R(workingfor) =

from upto
Jan Sales
Piet Sales
Kees PZ
Klaas Admin

Connector names are the most frequently used elements in information descriptors. The format of a con-
nector name is obtained from the standard fact name by writing it in a gerundial format. By considering
both active and passive voice, both roles can be named. Let r be a role in a binary fact type, then the other

co-rolerole of this fact type is denoted as CoRole(r). If r has assigned connector name C, then this connector has
the following ending points:

• start(C) = Base(r)
• end(C) = Base(CoRole(r)).

In figure 7.4 the various names for role names have been are summarized. For each name the corresponding
path through the information structure is shown.

A B
rolename

F
connector name (A -> F -> B)

inverse rolename

role p CoRole (p)

Figure 7.4: Role names

7.4. THE UNDERLYING LEXICON: NAMES AND THEIR MEANING 141

7.4.3 The treatment of constants

In ORC constants are seen as valid information descriptors. The reason for this choice is that the relation
between abstract and concrete instances can be made using the concatenation of information descriptors
(see next section). As a result, the meaning of a constant is a two-column table. Formally, let c be a constant,
then c is an information descriptor with meaning:

R(c) =
from upto
c c

Besides names for object types and roles, constants are also described in the lexicon.

7.4.4 A sample lexicon

We consider the conceptual schema from figure 7.1 that is formally depicted in section 7.1. Note that in this
figure the bridge types have been explicitly mentioned. Usually we denote the concepts by their name. For
the purposes of this section, we have to distinguish between abstract objects and their names. The lexicon is
an alphabetically sorted list of names. For each name the meaning is described by providing the beginning
and ending of the corresponding path, and how this has to be evaluated.

Figure 7.5:

Usually there are no special names associated with the roles form bridge types. In practise it will suffice
only to have connector names available. The connector names with and of are a reasonable choice in all
cases. As a consequence, these names will occur more than once in the dictionary. The resulting lexicon is
displayed in table 7.1.

The multiple occurrence of a name in the lexicon is not forbidden. The interpretation of such a name is
simply the union of the individual meanings. Assuming population from figure 7.2, we get:

R(with) =

from upto
Jan ’Jan’
Piet ’Piet’
Kees ’Kees’
Klaas ’Klaas’
Sales ’Sales’
PZ ’PZ’
Admin ’Admin’

142 CHAPTER 7. OBJECT-ROLE CALCULUS

Name from upto meaning

Contract F F
{
〈fr: x, to: x〉1

∣∣ x ∈ Pop(F)
}

Department E2 E2
{
〈fr: x, to: x〉1

∣∣ x ∈ Pop(E2)
}

Departmentname L2 L2
{
〈fr: x, to: x〉1

∣∣ x ∈ Pop(L2)
}

for F E2
{
〈fr: x, to: x(r2)〉1

∣∣ x ∈ Pop(F)
}

from F E1
{
〈fr: x, to: x(r1)〉1

∣∣ x ∈ Pop(F)
}

has E2 F
{
〈fr: x(r2), to: x〉1

∣∣ x ∈ Pop(F)
}

in E1 F
{
〈fr: x(r1), to: x〉1

∣∣ x ∈ Pop(F)
}

Name L1 L1
{
〈fr: x, to: x〉1

∣∣ x ∈ Pop(L1)
}

of L1 E1
{
〈fr: x(r4), to: x(r3)〉1

∣∣ x ∈ Pop(B1)
}

of L2 E2
{
〈fr: x(r6), to: x(r5)〉1

∣∣ x ∈ Pop(B2)
}

Person E1 E1
{
〈fr: x, to: x〉1

∣∣ x ∈ Pop(E1)
}

providing work to E2 E1
{
〈fr: x(r2), to: x(r1)〉1

∣∣ x ∈ Pop(F)
}

with E1 L1
{
〈fr: x(r3), to: x(r4)〉1

∣∣ x ∈ Pop(B1)
}

with E2 L2
{
〈fr: x(r5), to: x(r6)〉1

∣∣ x ∈ Pop(B2)
}

working for E1 E2
{
〈fr: x(r1), to: x(r2)〉1

∣∣ x ∈ Pop(F)
}

Table 7.1: The lexicon for the example

7.4.5 Controlling ambiguity

A consequence of the choice to allow spaces in names associated with roles is end up with an ambiguous
language. For example, suppose a lexicon contains the following:

Name from upto meaning
...
for
...
working
...
working for
...

Then the information descriptor working for can be parsed in more than one way. Either we assign meaning
to this statement using the entry working for, or we interpret this sentence as the concatenation of working
and for, or we simply take the combination of these both meaning interpretations.

In ORC the naming rules state that the resulting grammar may not be ambiguous (as is the case in our
example). There are special techniques to efficiently check this grammar property, but these are outside the
scope of this course.

7.5. CONCATENATION OF EXPRESSIONS 143

7.5 Concatenation of expressions

From elementary information descriptors more complex ones can be constructed. The simplest way to
generate new ORC expressions is juxta position: simply concatenating two expressions leads to the new
ORC expression. For example, the expression

Person working for Department with Name ”Sales”

is the concatenation of the following information descriptors: (1) Person, (2) working for, (3) Department,
(4) with, (5) Name and (6) ”Sales” (see figure 7.6).

Figure 7.6: Concatenated path

The semantics of the concatenation of two information descriptors is the combination of their respective
result tables. The intuition behind is that an information describes a frame for paths between two object
instances. The meaning of concatenation (denoted as�) is to extend the paths from the first descriptor with
those from the second one. The result registers for each path that can be constructed this way the beginning
and ending points. For example:

from upto
”jan” ”dutch”
”els” ”german”

�
from upto
”dutch” ”teacher1”
”german” ”teacher2”

=
from upto
”jan” ”teacher1”
”els” ”teacher2”

which probably provides an answer to the question what teachers can be assigned to students.

The table concatenation operator� gets two result tables as its arguments, and produces a new result table.
This operator describes the effect of concatenation of information descriptors. Let D1 and D2 be information
descriptors, the the meaning of their concatenation D1D2 is defined as:

R(D1 D2) = R(D1) � R(D2)

Furthermore:
• start(D1 D2) = start(D1)
• end(D1 D2) = end(D2).

An important question at this point is: if we concatenate more than two information descriptors, is it then
required to use parentheses to enforce the evaluation order. For example, the expression 2 + 3 + 4 may be
evaluated either as (2+3)+4 or 2− (3+4). Due to this independence it is justified to omit the evaluation
order. Consequently, the operator + is called associative. An example of a non-associative operator is −/

associativefor example, we have (2−3)−4 =−5, while 2− (3−4) = 3. Concatenation of information descriptors is
associative. This is a consequence of the associativity of the �-operator.

144 CHAPTER 7. OBJECT-ROLE CALCULUS

Lemma 7.5.1
(D1D2)D3 = D1(D2D3)

Proof:
Two information descriptors are similar if they have the same result independent of the current pop-
ulation. We thus have to show that for each population of the underlying conceptual schema:

R((D1D2)D3) = R(D1(D2D3))

⇒ Assume 〈fr: a, to: d〉 ∈R((D1D2)D3),

then for some c we have: 〈fr: a, to: c〉 ∈R(D1D2) and 〈fr: c, to: d〉 ∈R(D3) (due to the definition
of the �-operator)

and thus for some b we have: 〈fr: a, to: b〉 ∈R(D1) and 〈fr: b, to: c〉 ∈R(D2) (also by the definition
of the �-operator).

We conclude: 〈fr: a, to: d〉 ∈R(D1(D2D3)).

⇐ Left as an exercise for the reader.

Note that the concatenation of information descriptors is not restricted in any sense. As a consequence, the
use of ORC is not hindered when formulating a nonsense expression like

Department working for Person with Name ”Jan”

is probably due to mistakenly using the wrong role name. The problem is illustrated as follows by the
following two flaws:

• end(Deparment) 6= start(workingfor).
• end(workingfor) 6= start(Person).

The reason is that instances of the object types named Department and Person are different in any popula-
tion. Consequently, in any population the expression above has an empty result:

R(Department working for Person with Name ”Jan”) = ∅

7.5.1 The result table being a multiset

A more complex example of table concatenation is the following:

from upto
”jan” ”dutch”
”els” ”german”

�

from upto
”dutch” ”teacher1”
”german” ”teacher2”
”german” ”teacher3”
”french” ”teacher4”

=

from upto
”jan” ”teacher1”
”els” ”teacher2”
”els” ”teacher3”

In this example we see that student els can have both teacher2 and teacher3 as teacher. Mote that each
entry in the result table corresponds to a possible connection between beginning point and ending point.
Next suppose teacher can teach more than one course. Then this will result in double entries in the result
table, as more connections are possible in this case:

from upto
”jan” ”dutch”
”jan” ”german”

�
from upto
”dutch” ”teacher1”
”german” ”teacher1”

=
from upto
”jan” ”teacher1”
”jan” ”teacher1”

The first entry in the result table connects jan to teacher1 via course dutch. The second entry connects them
via the course german.

7.5. CONCATENATION OF EXPRESSIONS 145

x1 y1

x2 y1

D

Figure 7.7: Path and population {〈x1,y1〉3,〈x2,y2〉}

7.5.2 Intermezzo: multisets
occurrence
frequencyFormally, the result of an ORC query is a multiset of tuples. In a multiset, each tuple has associated an oc-

currence frequency. A collection in which elements may occur more than once is called a bag. A convenient
way is to describe a multiset by a frequency function. Formally, a multiset is a pair (A,m) where:

1. A is some set

2. m : A→ INI ; m(a) is called the multiplicity of a in multiset (A,m).

A conventional way to denote a multiset as a set of ordered pairs:
{
(a,m(a)

∣∣a ∈ A
}

. Some examples:

• the multiset
{

a,b,b
}

is written as:
{
(a,1),(b,2)

}
,

•
{

a,a,b
}

is written as
{
(a,2),(b,1)

}
,

•
{

a,b
}

is written as
{
(a,1),(b,1)

}
.

We will write x ∈k A to explicitly state that x is an element of A with occurrence frequency k.

7.5.2.1 Size of a multiset

The size of a multiset is the number of elements it contains, taking into account the multiplicity of the
elements:

#(A,m) = ∑
a∈A

m(a)

So we have #
{
(a,1),(b,2)

}
= 3 and #

{
(a,1),(b,1)

}
= 2.

7.5.2.2 Subset relation

We call (B,n) a sub(multi)set of (A,m), denoted as B,n) ⊆ (A,m) if all elements from (B,n) are also
available in (A,m) with at least the multiplicity they have within (B,n).

B⊆ A∧∀x∈B [n(x)≤ m(x)]

We also say that (A,m) is a super(multi)set of (B,n).

Some examples:
{
(a,1),(b,1)

}
⊆
{
(a,1),(b,1)

}
,
{
(a,1),(b,2)

}
⊆
{
(a,1),(b,3),(c,1)

}
.

146 CHAPTER 7. OBJECT-ROLE CALCULUS

7.5.2.3 Union of multisets

The union is two multisets is obtained by merging them into a new bag, respecting their multiplicity. For
example:

{
(a,1),(b,3),(c,1)

}
∪
{
(c,1),(d,3)

}
=
{
(a,1),(b,3),(c,2),(d,3)

}
. The union of two multisets

thus may also be seen as their minimal common supermultiset. This operator is formally defined as:

(A,m)∪(B,n) = (A∪B,m+n)

where the frequency function m+n : A∪B→ INI is defined as:

(m+n) (x) =

 m(x)+n(x) x ∈ A∧ x ∈ B
m(x) x ∈ A∧ x 6∈ B
n(x) x 6∈ A∧ x ∈ B

7.5.2.4 Intersection of multisets

The intersection of multisets is defined as the maximal common subset of these multisets. For example,{
(a,1),(b,3),(c,1)

}
∩
{
(c,1),(d,3)

}
=
{
(c,1))

}
. This operator is formally defined as:

(A,m)∩(B,n) = (A∩B,min(m,n))

where the frequency function min(m,n) : A∩B→ INI is defined as:

min(m,n) (x) = min(m(x),n(x))

7.5.2.5 Difference of multisets

The difference of multisets is obtained by removing from a multiset the elements that also occur in a second
multiset. For example,

{
(a,1),(b,3),(c,1)

}
−
{
(b,1),(c,2),(d,3)

}
=
{
(a,1),(b,2)

}
. This operator is

formally defined as:
(A,m)−(B,n) = (A∩B,max(m−n,0)

7.5.2.6 Cartesian product of multisets

The cartesian product of two multisets is defined as:

(A,m)× (B,n) = (A×B,m ·n)

where the frequency function m ·n : A×B→ INI is defined as:

(m ·n) (x,y) = m(x) ·n(y)

7.6 Special constructs

ORC contains a number of special constructs to combine information descriptors into more complex de-
scriptors.

7.6. SPECIAL CONSTRUCTS 147

7.6.1 Correlation operator

A very powerful mechanism from natural language is the possibility to use indicatives. Words like ’this’,
’those’, etc. are used to refer to some other construct in the same sentence, or even in another sentence.
An example is the statement: if a person lives in a country, then this person will speak the languages being
spoken in that country. Another example: an interpreter speaks the language of some country but also an-
other language. Indicatives provide a powerful mechanism to improve the effectiveness of communication,
but can also be a source of misinterpretation. An indicative for example may be interpreted differently by
different persons, but an indicative could also become a dangling reference after the addition of a new
sentence to the text.

In ORC indicatives are introduced in a very restricted way to cover for those cases where a sentence can not
be expressed without the usage of indicatives. This special usage is referred to as the correlation operator.
We will introduce this operator in both a positive (that) and a negative (another) way.1

The correlation operator couples instances from the start and end of the information descriptor. Conse-
quently, this operator does only make sense for information descriptors that have the same beginning and
ending point.

For example, in figure 7.8 we register the elementary facts about persons, their native country, the lan-
guage(s) spoken in those languages, and the language(s) spoken by the registered people. An obvious
question in this universe of discourse would be: who are native speakers? In terms of the base facts, this
sentence may be reformulated in two steps as follows. First we handle the part about speaking the appro-
priate language: which persons speak a language that is being used in their birth country.

Specifying the birth country requires an indication that the country is the native country of the person we
mentioned earlier in the information descriptor. This is formulated as: which persons speak a language that
is being used in the country being the birth country of that particular person.

Figure 7.8: A simple interpreter administration

Next we modify the formulation via a pure syntactic transformation into the more strict format from ORC.

Person speaking Language being used in Country being birth country of THAT Person

1A more general usage of indicators would require a mechanism to explicitly refer to other elements in a sentence. This may be
solved by the introduction of variable. Variables fall outside the scope of this course

148 CHAPTER 7. OBJECT-ROLE CALCULUS

This information descriptor describes a path that relates persons to persons. The qualification THAT Person
restricts the those cases where a persons are related to themselves. Before describing the semantics for-
mally, we derive the meaning of this sentence intuitively. For the evaluation of this expression we assume
the following population:

Speaks
Jan Flemisch
Els German
Marie French

Used
Flemisch Belgium
German Germany
French Belgium

Birth
Jan Belgium
Else France
Marie Belgium

The information descriptor Person speaking Language being used in Country being birth country of evalu-
ates to:

R(Person speaking Language being used in Country being birth country of)

=

from upto
Jan Jan
Jan Marie
Marie Jan
Marie Marie

The qualification THAT Person restricts this table to the the reflexive tuples:

R(Person speaking language being used in Country being birth country of THAT Person)

= R(Person speaking language being used in Country being birth country of) ∩R(Person)

=

from upto
Jan Jan
Jan Marie
Marie Jan
Marie Marie

∩
from upto
Jan Jan
Marie Marie

=
from upto
Jan Jan
Marie Marie

Formally, let D be an ORC information descriptor with start(D) = end(D) = X for some object type X.
Then the following sentences are also valid ORC information descriptors:

1. positive correlation: D THAT ONm(X), with the following meaning:

R(D THAT ONm(X)) =
{
〈fr: x, to: y〉n

∣∣ 〈fr: x, to: y〉 ∈n R(D)∧ x = y
}

2. negative correlation: D ANOTHER ONm(X), with the following meaning:

R(D ANOTHER ONm(X)) =
{
〈fr: x, to: y〉n

∣∣ 〈fr: x, to: y〉 ∈n R(D)∧ x 6= y
}

Next we consider an example of negative correlation. Suppose we are interested in the languages for which
there is an interpreter. We reformulate this sentence using the basic sentences from our conceptual schema
(figure 7.8). A first formulation is: which languages are being spoken by a person that also speaks another
language. We refine this a step further into: which languages are being spoken by a person speaking another
language. The negative correlation is expressed in ORC as:

Language being spoken by Person speaking ANOTHER Language

7.6. SPECIAL CONSTRUCTS 149

7.6.2 Set-like operators

Information descriptors can be combined into new information descriptors by a number of operators. The
first group contains operators such as union, intersection and set difference. These operators come in two
variants. The first variant operates on the left columns of its arguments, the second variant processes both
columns.

7.6.2.1 Set-like front operators

The front versions of the set operators are obtained by performing the set operator on the left columns of its
arguments. The result should however be transformed into a result table. The first column of a result table
T is obtained by π1T by applying the function π1. For example:

π1

from upto
Jan Jan
Jan Marie
Marie Jan
Marie Marie

=
{

Jan, Jan, Marie, Marie
}

The transformation of a multiset into a result table is performed by the so-called square operator:

{
Jan, Jan, Marie, Marie

} 2 =

from upto
Jan Jan
Jan Jan
Marie Marie
Marie Marie

Using these conventions, the front versions of the set operators are introduced as:

expression R(expression)

P AND ALSO Q
[
π1R(P) ∩ π1R(Q)

]2
P OR OTHERWISE Q

[
π1R(P) ∪ π1R(Q)

]2
P BUT NOT Q

[
π1R(P) \ π1R(Q)

]2
As an example, we consider the information descriptor

Person working for Department with Departmentname ”Sales” OR working for Department with
Departmentname ”Admin”

Then we have:

R(Person working for Department with Departmentname ”Sales”) =
from upto
Jan ”Sales”
Piet ”Sales”

and

R(working for Department with Departmentname ”Admin”) =
from upto
Klaas ”Admin”

150 CHAPTER 7. OBJECT-ROLE CALCULUS

Combining these results we get:π1

from upto
Jan ”Sales”
Piet ”Sales”

∪ π1
from upto
Klaas ”Admin”

2

=
[{

Jan,Piet
}
∪
{
Klaas

}]2
=

[{
Jan,Piet,Klaas

}]2
=

from upto
Jan Jan
Piet Piet
Klaas Klaas

7.6.2.2 Set-like head-tail operators

The head-tail versions of the elementary set operators are defined as:

expression R(expression)

P INTERSECTION Q R(P)∩R(Q)
P UNION Q R(P)∪R(Q)
P MINUS Q R(P)\R(Q)

7.6.3 THE-operator

Information descriptors relate beginning and ending points of paths through the information structure. For
example, the information descriptor

Person working for Department with Departmentname ”Sales” OR working for Department with
Departmentname ”Admin”

evaluates to the following result tabel:

R(Person working for Department with Departmentname ”Sales”) =
from upto
Jan ”Sales”
Piet ”Sales”

If we want to restrict this result to its first column, then we use the keyword THE:

THE Person working for Department with Departmentname ”Sales” OR working for Department
with Departmentname ”Admin”

The result is:

R(THE Person working for Department with Departmentname ”Sales”) =
from upto
Jan Jan
Piet Piet

The operator THE restricts an information descriptor to its beginning point:

expression R(expression)

THE P
[
π1R(D)

]2

7.6. SPECIAL CONSTRUCTS 151

7.6.4 DISTINCT operator

7.6.5 Arithmetic operators

Binary operators on concrete domains may be used to combine the result of information descriptors. For
example, if the underlying domain is numeric, then operators like +, -, *, / are used to combine values
arithmetically. We will discuss two formats for arithmetic operators.

Figure 7.9: Small training administration

The first format is required for the following information need: (see figure 7.9): select the students that
finished their training within nominal time. In words: the students that are being graduated not later than
3 years after their enrollment. An example of the second format is the computation of the period that
persons have used for their training. We will discuss these formats separately. After that, we will discuss
comparison operators.

7.6.5.1 Front version of arithmetic operators

We further elaborate on the ORC formulation of the students that are being graduated not later than 3
years after their enrollment. We first consider the subexpression 3 years after enrollment. In terms of the
conceptual schema, this may be formulated as 3 years after Yearno of Year enrolling. The idea is that the
year numbers of enrollment are to be augmented with 3. If for example Erna has been enrolled in 2003, then
〈fr: 2008, to: Erna〉 will be a tuple in the result table of this information descriptor. This particular use of
the addition operator is described by the PLUS-operator, leading for this subexpression to the information
descriptor:

3 PLUS Yearno of Year enrolling

The rest of the information descriptor will be discussed in section 7.6.5.3.

Formally, let OP be one of the operators PLUS, MINUS, TIMES, DIVIDED BY, then the information descrip-
tor D1 OP D2 requires start(D1) and start(D2) to be compatible label types. The resulting expression has
the same reach as D2, and is determined by:

expression R(expression)

D1 PLUS D2

{
〈fr: c+ x, to: y〉k

∣∣ c ∈ π1R(D1)∧〈fr: x, to: y〉 ∈k R(D2)
}

D1 MINUS D2

{
〈fr: c− x, to: y〉k

∣∣ c ∈ π1R(D1)∧〈fr: x, to: y〉 ∈k R(D2)
}

D1 TIMES D2

{
〈fr: c∗ x, to: y〉k

∣∣ c ∈ π1R(D1)∧〈fr: x, to: y〉 ∈k R(D2)
}

D1 DIVIDED BY D2

{
〈fr: c/x, to: y〉k

∣∣ c ∈ π1R(D1)∧〈fr: x, to: y〉 ∈k R(D2)
}

152 CHAPTER 7. OBJECT-ROLE CALCULUS

7.6.5.2 Head-tail version of arithmetic operators

Another example is the computation of the period that persons have used for their training. This period is
obtained by subtracting the year of enrollment from the graduation year. The result table should relate this
outcome with the corresponding student. This is brought about by:

Yearno of Year graduating Person - Yearno enrolling Person

Formally, let OP be one of the operators +, -, *, /, then the information descriptor D1 OP D2 requires (1)
start(D1) and start(D2) to be compatible label types, and (2) end(D1) and end(D2) to be type-related. The
resulting expression has the same reach as D1 and D2, an is determined by:

expression R(expression)

D1 +D2
{
〈fr: c+d, to: y〉

∣∣ 〈fr: c, to: y〉 ∈R(D1)∧〈fr: d, to: y〉 ∈R(D2)
}

D1−D2
{
〈fr: c−d, to: y〉

∣∣ 〈fr: c, to: y〉 ∈R(D1)∧〈fr: d, to: y〉 ∈R(D2)
}

D1 ∗D2
{
〈fr: c∗d, to: y〉

∣∣ 〈fr: c, to: y〉 ∈R(D1)∧〈fr: d, to: y〉 ∈R(D2)
}

D1/D2
{
〈fr: c/d, to: y〉

∣∣ 〈fr: c, to: y〉 ∈R(D1)∧〈fr: d, to: y〉 ∈R(D2)
}

7.6.5.3 Comparison operators

We proceed with the example the students that are being graduated not later than 3 years after their
enrollment. This information need is formulated as the following information descriptor:

Person being graduated in Year having Yearno ≤ 3 PLUS Yearno of Year enrolling THAT Person

This evaluation order of this information descriptor is displayed in figure ??. This evaluation order may be

Figure 7.10: Evaluation order

obtained by applying the priority rule for ORC operators (see section 7.9).

Formally, let RELOP be one of the operators ≤, <, ≥, >, then the information descriptor D1 RELOP D2
requires (1) end(D1) and start(D2) to be compatible label types. The resulting expression has reach as
[start(D1),end(D2)] and is determined by:

expression R(expression)

D1 ≤ D2
{
〈fr: x, to: y〉

∣∣∃c,d
[
〈fr: x, to: c〉 ∈R(D1)∧〈fr: d, to: y〉 ∈R(D2)∧ c≤ d

]}
D1 < D2

{
〈fr: x, to: y〉

∣∣∃c,d
[
〈fr: x, to: c〉 ∈R(D1)∧〈fr: d, to: y〉 ∈R(D2)∧ c < d

]}
D1 ≥ D2

{
〈fr: x, to: y〉

∣∣∃c,d
[
〈fr: x, to: c〉 ∈R(D1)∧〈fr: d, to: y〉 ∈R(D2)∧ c≥ d

]}
D1 > D2

{
〈fr: x, to: y〉

∣∣∃c,d
[
〈fr: x, to: c〉 ∈R(D1)∧〈fr: d, to: y〉 ∈R(D2)∧ c > d

]}

7.7. STATISTICAL OPERATORS 153

7.7 Statistical Operators

Statistical operators can be used to perform statistical operations on the computational result of an informa-
tion descriptor. There are two variants. The head operators directly process on the resulting multiset, while
the head-tail versions first perform a grouping on this multiset, and then computing te statistical function
groupwise.

7.7.1 Head Operators

7.7.1.1 Counting

The number of elements from the multiset that results from the evaluation of an information descriptor
can be obtained using the COUNT operator. For example, COUNT Person provides the number of persons.
Note that this number (like the handling of constants in ORC) is given as a single-row table. The semantics
are formally expressed as:

R(COUNT D) = {
〈
fr: #R(D), to: #R(D)

〉
}

For example,

R(COUNT with) =
from upto
7 7

while

R(COUNT Department working for Person with Name ”Jan”) =
from upto
0 0

7.7.2 Head-Tail Operators

A more subtle method of counting first groups the multiset resulting from the evaluation of an information
descriptor according to the first column, and then

R(NUMBER D) =
{
〈fr: n, to: y〉n

∣∣n = ∑
{

k
∣∣ 〈fr: x, to: y〉 ∈k R(D)

}}

R(NUMBER Person being born in Country using Language):

from upto
Jan Flemish
Jan French
Marie Flemish
Marie French

7.7.3 Head-tail version of comparison operators

R(D1 RELOP2 D2) =
{
〈fr: x, to: n〉k

∣∣∣ 〈fr: x, to: n〉k ∈R(D1)∧∀〈fr: k,to: y〉∈R(D2)
[n RELOP k]

}

7.8 Specifying conditions

The language ORC provides the information descriptor as a mechanism to describe a set of information
derived from the current population. In this section we will use information descriptors to describe a con-
straint.

154 CHAPTER 7. OBJECT-ROLE CALCULUS

7.8.1 Boolean constants

The basis for predicates is formed by the boolean values, which are introduced as special zero-adic opera-
tors:

expression R(expression)

FALSE ∅

As a consequence, if an information descriptor is used in a boolean context, and the descriptor evaluates to
a non-empty result table, then this descriptor has a non-false value, and thus a true-value.

7.8.2 Quantification

A information descriptor is coerced into a condition by the NO-operator. For example, in figure 7.11 we
want to express the rule that a person may not work in a project and also be the manager of that project. The
information descriptor Cooperator is managing Project AND working for Project describes all cooperators
that break this rule. The following rule states that no cooperator is allowed to this infringement:

NO Cooperator is managing Project AND working for Project

Figure 7.11: Work management

Formally this is expressed as:

expression R(expression)

NO D
{

R(TRUE) if R(D) = ∅
R(FALSE) otherwise

7.8.3 Implication

As an example we consider the so-called conformity rule. This rule states for example (see figure 7.1) that
for each cooperator-department tuple in the population of fact type Contract the cooperator should be a
member of the population of object type Person. This rule can be expressed in ORC as follows:

Cooperator working for Department IS ALSO Cooperator

The ORC operator IS ALSO tests the subset relation on the first columns of both result tables. As entries
may occur more than once in these columns, the subset relation requires:

for each instance the number of occurrences in 1st column of the left table ≤ the number of
occurrences of that instance in 1st column of the right table

7.8. SPECIFYING CONDITIONS 155

For the rule above we get:

R(Cooperator working for Department) =

from upto
Jan Sales
Piet Sales
Kees PZ
Klaas Admin

The first column entries are obtained by:

π1

from upto
Jan Sales
Piet Sales
Kees PZ
Klaas Admin

=
{

Jan, Piet, Kees, Klaas
}

The evaluation of the righthand side leads to:

π1R(Cooperator) =
{

Jan, Piet, Kees, Klaas
}

The keyword IS ALSO compares the instances of the first entry of the resulting table. The operator IMPLIES
is a tuple-wise comparison. An example is the condition all persons speak all national languages from their
mother country. Using the IMPLIES construct, this sentence can be formulated, in terms of the conceptual
schema from figure 7.8, as follows:

Person being born in Country using Language IMPLIES Person speaking Language

The lefthand side evaluates to:

R(Person being born in Country using Language):

from upto
Jan Flemish
Jan French
Marie Flemish
Marie French

The righthand side yields:

R(Person speaking Language):

from upto
Jan Flemish
Els German
Marie French

The ORC condition requires:

from upto
Jan Flemish
Jan French
Marie Flemish
Marie French

⊆

from upto
Jan Flemish
Els German
Marie French

which obviously is not the case as Jan does not speak French and Marie fails on Flemish. Formally these
constructs are defined as:

expression R(expression)

D1 IS ALSO D2 R(THE D1 IMPLIES THE D2)

D1 IMPLIES D2

{
R(TRUE) if R(D1)⊆R(D2)
R(FALSE) otherwise

156 CHAPTER 7. OBJECT-ROLE CALCULUS

Lemma 7.8.1 Negative-positive formulation transformation
Let X be an object type with name N, and D an information descriptor from N to N (having reach
[N,N]), then the information descriptor

NO N D ANOTHER N

is equivalent with

N D IMPLIES N

Proof:

→ Suppose NO N D ANOTHER N, then R(N D ANOTHER N) is empty in each population of the underly-
ing conceptual schema. So any tuple from R(N D) should connect equal instances from X , and thus
this tuple is also element of R(N).

← Suppose N D IMPLIES N, then no tuple resulting from N D can connect different instances from N, and
thus NO N D ANOTHER N.

7.9 Priorities

Priorities have been introduced to disambiguate expressions. For example, the expression 2+3∗5 is to be
evaluated as 2 + (3 ∗ 5) as the operator ∗ has a higher priority as the operator +. Thanks to the priority
mechanism, parentheses can be omitted in many cases in expressions.

For example, the +-operator and the −-operator have the same priority. As the +-operator is associative,
the expression 2+3+4 may be evaluated as 2+(3+4) or as (2+3)+4. The−-operator is not associative,
for the evaluation of 2−3−4 the evaluation order has to be specified. IN order to avoid parenthese also in
this case, the convention is that the evaluation order is left associative, meaning that the expression 2−3−4
is to be evaluated from left to right: (2−3)−4.

In ORC the same techniques are used. Consider for example the information descriptor

NO Cooperator is managing Project AND working for THAT Project

The evaluation order of this expression is:

NO (((Cooperator is managing Project) AND ALSO (working for)) THAT Project)

This evaluation order is obtained from the following priority convention:

operator
high concatenation

*, /, TIMES, DIVIDED BY
+, -, PLUS, MINUS
<, <=, >, >=, =, <>
AND ALSO, OR OTHERWISE, BUT NOT, ∪, ∩, −
THAT, ANOTHER
IS ALSO, IMPLIES

low NO

7.10. BUSINESS RULES 157

7.10 Business rules

Business rules may be seen as the basic properties of some (business oriented) universe of discourse. In
this context we will refer to this discourse also as business area. These rules form the basic properties in the
mission of that business area. When reasoning about a business area, they are the axioms. Such reasoning
typically is done by the managers of that business area.

Business rules correspond to ORC conditions. The advantage of using ORC is that this language is easily
understood by a the managers. For simple cases, managers can transform a natural language expression
into the requirements of this controlled language.

When reasoning about the application domain, managers use a reasoning style that is like reasoning with
ORC. Business rules are the domain axioms. Using the reasoning rules, domain properties can be derived.
Reasoning with ORC is just as formal as formal reasoning in logics.

Logics provide a more compact representation, hiding irrelevant details. ORC is not compact, but this is
the very reason that is more easily read by domain experts.

In this course, we will make our point by giving an example.

The base rule for formal reasoning is called modus ponens. This rule states: if we know (have proven) (1)
x and (2) from x can be concluded y (or: x⇒y, then we also have proven y. When reasoning within ORC,
this rule of reasoning is not directly applicable. We will introduce two reasoning rules instead:

1. The first implication rule

2. The second implication rule

7.10.1 The first implication rule

The first implication rule states:

• If we have proven both:

– D1 IS ALSO D2 D3
– D3 IS ALSO D4

• Then we can conclude: D1 IS ALSO D2 D4

Figure 7.12: Cars and License

7.10.1.1 Examples

As an example, we consider the conceptual schema of figure 7.12. Suppose we are given the following
rules:

• Each person must own a car: Person IS ALSO owning Car

• Each car must be registered by a license plate: Car IS ALSO being registered by License plate

We want to prove from these rules that each person has a license plate:

Person IS ALSO owning Car being registered by License plate

158 CHAPTER 7. OBJECT-ROLE CALCULUS

using the formal reasoning system! We apply the first implication rule by setting:

D1: Person
D2: owning
D3: Car
D4: being registered by License plate

Then we have

D1 IS ALSO D2 D3: Person IS ALSO owning Car
D3 IS ALSO D4: Car IS ALSO being registered by License plate

and thus we conclude:

D1 IS ALSO D2 D4: Person IS ALSO owning Car being registered by License plate

We give another example. Suppose we are given (have proven) the following rules:
• Each car must be registered by a license plate:

being manufactured in Country from ”EU” IS ALSO satisfying seatbelt rules

• People may only own a car that has been produced in their home country:

Person IS ALSO owning Car being manufactured in Country from ”EU”

We want to prove from this knowledge that each person satisfies the seatbelt rules:

Person IS ALSO owning Car satisfying seatbelt rules

We apply the first implication rule by setting:

D1: Person
D2: owning Car
D3: being manufactured in Country from ”EU”
D4: satisfying seatbelt rules

Then we have

D1 IS ALSO D2 D3: Person IS ALSO owning Car being manufactured in Country from ”EU”
D3 IS ALSO D4: being manufactured in Country from ”EU” IS ALSO satisfying seatbelt rules

and thus we conclude:

D1 IS ALSO D2 D4: Person IS ALSO owning Car satisfying seatbelt rules

7.10.1.2 Proof of first implication rule

In this section we prove the validity of the first implication rule. Assume:
• D1 IS ALSO D2 D3

• D3 IS ALSO D4

Then we have to prove: D1 IS ALSO D2 D4

Proof:
Suppose 〈fr: x, to: y〉 ∈R(D1). From D1 IS ALSO D2 D3 we conclude that there are q and r such
that:
• 〈fr: x, to: q〉 ∈R(D2)
• 〈fr: q, to: r〉 ∈R(D3)

From D3 IS ALSO D4 we conclude that for some y we have:
• 〈fr: q, to: y〉 ∈R(D4)

We conclude: 〈fr: x, to: y〉 ∈R(D2D4). And thus we have proven: D1 IS ALSO D2 D4.

7.10. BUSINESS RULES 159

Figure 7.13: Displaying the situation

7.10.2 The second implication rule

The second implication rule is the interpretation of modus ponens employing both head and tail of the
result of an ORC expression.

• If we have proven both:

– D1 D2 D3 IMPLIES D4

– D5 IMPLIES D2

• Then we can conclude: D1 D5 D3 IMPLIES D4

7.10.2.1 Example

As an example, we focus on uniqueness within binary relationships. Uniqueness for ownership of a car is

Figure 7.14: Displaying the situation

expressed as:

Car being owned by Person owning Car IMPLIES Car

Uniqueness for license plate registration is expressed as:

License plate registering Car being registered by License plate IMPLIES License plate

Combining these rules, we can conclude that each license plate has a unique owner by applying the second
implication rule. We choose as follows:

D1: License plate registering

D2: Car

D3: being registered by License plate

D4: License plate

D5: Car being owned by Person owning Car

By applying the second implication rule we conclude:

160 CHAPTER 7. OBJECT-ROLE CALCULUS

License plate registering Car being owned by Person owning Car being registered by License
plate IMPLIES License plate

Using the Negative-positive formulation transformation (lemma 7.8.1), we can transform this into the fol-
lowing negatively formulated sentence:

NO License plate is registering Car being owned by Person owning Car being registered by
ANOTHER License plate

7.10.2.2 Proof of first implication rule

In this section we prove the validity of the first implication rule. Assume:

• D1 D2 D3 IMPLIES D4

• D5 IMPLIES D2

Then we have to prove: D1 D5 D3 IMPLIES D4

Figure 7.15: Second Implication Rule

Proof:
Assume D1 D2 D3 IMPLIES D4 and D5 IMPLIES D2, and let 〈fr: x, to: y〉 ∈R(D1D5D3) then for
some p and q we have (see figure 7.15):

• 〈fr: x, to: p〉 ∈R(D1)
• 〈fr: p, to: q〉 ∈R(D5)
• 〈fr: q, to: y〉 ∈R(D2)

From D5 IMPLIES D2 we conclude 〈fr: p, to: q〉 ∈R(D2). As a consequence: 〈fr: x, to: y〉 ∈R(D1D2D3).
From D1 D2 D3 IMPLIES D4 we conclude: 〈fr: x, to: y〉 ∈R(D4).

7.11 Combining

In this section we show how information descriptors can be extended to handle multiple aspects. For ex-
ample, we are interested in the names of all persons living in Brussels. If a person owns a car, then we like
to see the brands all cars owned by that person and also all insurance claims from that person for that car.
The main structure of the information descriptor is:

”required personal properties” FROM Person living in City with Name ’Brussels’

The required properties consist of the name of the person and the car brand and insurance properties:

Name of Person,
”car brand and insurance properties”
FROM Person living in City with Cityname ’Brussels’

7.12. DEFINITIONS OVERVIEW 161

If a person owns a car, then the brands of all cars are to be provided, and the insurance data list:

Name of Person,
POSSIBLY (Brand of Car,

ALL Claims from Insurance registered on Car
FROM being owned by)

FROM Person living in City with Cityname ’Brussels’

The main construct is a list of properties P1, . . ., Pk bound by a specifier D:

P1, . . ., Pk FROM D

Suppose Pi have reach [Xi,Y], and D has reach [Y,Z]. Then the grouping construct has reach [X1× . . .×Xk,Z].
The keywords POSSIBLY and ALL indicate an optional property and a set property respectively. In the ex-
ample above, the inner grouping construct

Brand of Car,
ALL Claims from Insurance registered on Car
FROM being owned by

has reach [Brand×Claim,Person]. As a consequence, the whole grouping construct has reach:

[Name×Brand×Claim,Cityname]

We will omit the formal definition of the grouping construct, as it falls outside the scope of this course.

7.12 Definitions overview
Schema sentence – Sentence that describes the schema elements that constitute the conceptual model.

From these sentences the information grammar is derived.

Stating sentence – Sentence to inform the information system about new facts in the universe of discourse
(see effect of addition), or about the withdrawal of the validity of facts specified (see effect of dele-
tion).

Asking sentence – Specification of an information need. The system will respond with a list of stating
sentences, corresponding to the facts that satisfy the specification.

Effect of addition – Adding facts leads to the minimal extension of the information base (population)
containing those facts. If no such extension exists, then the information system reports an extension
error, and does not alter the information base.

Effect of deletion – Deleting facts leads to the maximal subset the information base (population) not con-
taining those facts. If no such subset exists, then the information system reports an deletion error,
and does not alter the information base.

Unquote convention – Convention to denote an abstract object instance by its unquoted name. So for
example Jan refers to Person with Name ’Jan’.

Information descriptor – General format of information need description in Lisa-D.

Lexicon – The Lisa-D lexicon describes the elementary language constructions.

Result table – The evaluation result of a Lisa-D information descriptors. This result has the form of a
inhomogeneous binary relation that may contain tuples more than once.

Role name – The name of a role that corresponds to the path from the base of that role to the corresponding
fact type.

Inverse role name – The name of a role that corresponds to the path from the corresponding fact type to
the base of that role.

Connector name – The name of a role that describes a path through the corresponding fact type via this
role.

162 CHAPTER 7. OBJECT-ROLE CALCULUS

Questions
Version:
01-12-20071. Proof Lemma 7.5.1 (page 144).

2. For each of the following statements, either provide a proof a give a counter example:

(a) D1 AND D2 = D2 AND D1

(b) D1 BUT NOT D2 = D2 BUT NOT D1

(c) D1 BUT NOT (D2 AND D3) = (D1 BUT NOT D2) AND (D1 BUT NOT D3)

3. Proof the equivalence of the following information descriptors:

(a) Person working for Department

(b) Person in Contract for Department

(c) working for

Figure 7.16: Schema for exercise 1

4. Is the schema from figure 7.16 populatable?

5. Express the relationship between the following kinds of constraints:

(a) total role and frequency constraint

(b) unique role and frequency constraint

Figure 7.17: Missing dependencies

6. Consider the schema from figure 7.17. Which dependencies seem to be missing in the following
schema fragment? What is the effect on populatability after adding these dependencies?

QUESTIONS 163

Figure 7.18:

7. Is it possible that a schema is strongly identified but not populatable?

8. What is wrong in the following schema from figure 7.18?

9. Give an example of fact types for each of the following kinds of behavior:

(a) reflexive

(b) symmetric

(c) transitive

(d) irreflexive

(e) asymmetric

(f) antisymmetric

164 CHAPTER 7. OBJECT-ROLE CALCULUS

Chapter 8

Large Example

Version:
01-12-058.1 Video Rental Store

(Copied from http://salmarch.com/ICT/)

A video rental store maintains an inventory of DVDs. Each DVD is identified by an id number. Each
contains one movie. There may be many DVDs (copies) containing the same movie. The video rental store
has a set of authorized customers each identified by telephone number. Each customer must have credit
card data on file (i.e., credit card number and expiration date, name on the credit card, and credit card
billing address). DVDs are rented only to authorized customers. A customer may rent more than one DVD
at the same time.

Rental rates and rental length vary by the combination of movie type and media type. Currently there are
3 movie types (new release, recent movie, and movie classic) and two media types (standard and Blu-ray).
For example, new release standard DVDs are currently rented for e 3.00 for a period of three days. New
release Blu-ray DVDs are currently rented for e 4.00 for a period of two days. Additional movie types and
media types may need to be defined in the future. All rental periods are in days. Rental rates and rental
periods are relatively stable but can be changed at the discretion of the store manager. The movie type for
a movie is assigned by the manager and is changed as the movie becomes older, again at the manager’s
discretion. The history of rental rates and movie types does not need to be maintained.

All rental fees must be paid in advance. If a rented DVD is not returned by the specified date, the customer
is charged a per day late fee equal to the total rental price for that DVD (e.g., e 3.00 per day for a new
release standard DVD) up to a maximum of its purchase price. A late notice is immediately sent to the
customer. After three days the customer is contacted by telephone. Rental will be refused to any customer
who owes a late fee.

The store manager must decide how many copies of which DVDs to keep in stock and when to change
the type for each movie. The manager buys and sells DVDs as necessary. The manager wishes to track the
purchase and sale price of each DVD so that its total profit can be calculated by item purchased, by movie
(over all copies and media), and by movie-media combination.

8.2 Online Auction

(Copied from http://salmarch.com/ICT/) Develop a data model for the following Internet auction
business. Auction customers register at the Web site by entering their name, address, e-mail address, a credit
card (card type, number, and expiration date in the form mm/yyyy), and a password. The e-mail address
is used for identification and the password is used for logon authentication. After the credit card has been

165

http://salmarch.com/ICT/
http://salmarch.com/ICT/

166 CHAPTER 8. LARGE EXAMPLE

validated the customer is authorized to participate in auctions as a buyer or as a seller. To participate as a
seller the customer must log on and enter the name and description of the item for sale, a reserve price for
the item, the date and time they wish the auction to begin, and the length of time they wish the auction to
run. Auctions for a single item may run 2, 3, or 5 days. The customer must select a category for the item
from a list maintained by the site. They must also select a minimum bid increment from a specified list
(e.g., e 0.50, e 1.00, e 5.00, etc.). The minimum bid increment selected cannot exceed 5% of the reserve
price. The auction site generates an arbitrary identifier for the item’s auction and must insure that only legal
values are selected for the item category, the auction length (days), and the minimum bid increment.

To participate as a buyer the customer must log on, search for items they wish to bid on, and enter a bid.
Auction items can be searched by category or by words included in the item’s description. When a customer
selects an item on which they wish to bid the system displays the item’s name and description, the amount
of the highest current bid, and a text box into which the customer may enter their bid. The entered bid must
exceed the current highest bid plus the item’s minimum bid increment. The auction site must track all bids
for each item from all customers. It generates an arbitrary bid number for identification purposes when a
bid is entered.

When the allotted time for an auction has passed, an e-mail message must be sent to the high bidder and to
the seller containing the item name and description, the winning bid, and the name and e-mail address of
the buyer and seller. It is the responsibility of the buyer and seller to conduct the transaction. Once a month
the auction charges each seller’s credit card for all auction services conducted that month. The auction
charges 2% of the selling price for items selling for under e 100 with a minimum of e 2. It charges e 2.00
plus 1% of the amount over e 100 for items selling for over e 100 with a maximum of e 30. If an item
does not sell, the seller is not charged. The detail for each credit card charge (item and amount charged) for
each customer must be maintained within the system. The system must be able to reproduce this detail on
demand for a period of 2 years.

8.3 Web Content Management System

In this exercise we construct the conceptual model for a Context Management System (CMS). The content
is divided into departments. Each department has a unique department code. A sample sentence:

Department with RCode 230906 has Name ’Politics’

Each department consists of a number of discussions. A discussion consists of contributions. The first con-
tribution of a discussion describes the theme of that discussion. The other contributions are in response of
this first contribution, or some other contribution of that discussion. Within a department, a discussion is

identified by a special discussion code. For example:
RCode DCode Title
230906 240906 Educational policies
230906 240906a Teachers not happy with the new plans

Discussion with RCode 230906 AND ALSO has Name ’Politics’

Large departments are subdivided in so-called parts.

Bibliography

[AW03] A. Aurum and C. Wohlin. The fundamental nature of requirements engineering activities as a
decision-making process. Information and Software Technology, 2003.

[BB97] F.C. Berger and P. van Bommel. Augmenting a Characterization Network with Semantical
Information. Information Processing & Management, 33(4):453–479, 1997.

[BBMP95] G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens, and H.A. (Erik) Proper. A Unifying Object
Role Modelling Approach. Information Systems, 20(3):213–235, 1995.

[BFW96] P. van Bommel, P.J.M. Frederiks, and Th.P. van der Weide. Object–Oriented Modeling based
on Logbooks. The Computer Journal, 39(9):793–799, 1996.

[BHL01] T. Berners–Lee, James Hendler, and Ora Lassila. The Semantic Web, A new form of Web
content that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American, 284(5):34–43, May 2001.

[BHW91] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and verification of
object–role models. Information Systems, 16(5):471–495, October 1991.

[BJR00] G. Booch, I. Jacobson, and J. Rumbaugh. The rational Unified Process, an Introduction.
Addison-Wesley, 2000.

[Boe88] B.W. Boehm. A spiral model of software development and enhancement. IEEE Computer,
21:61–72, 1988.

[Boe99] B.W. Boehm. Cots integration: plug and pray? IEEE Software, 32(1):135–138, 1999.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

[BW90] P.D. Bruza and Th.P. van der Weide. Assessing the Quality of Hypertext Views. ACM SIGIR
FORUM (Refereed Section), 24(3):6–25, 1990.

[BW91] P.D. Bruza and Th.P. van der Weide. The Modelling and Retrieval of Documents using Index
Expressions. ACM SIGIR FORUM (Refereed Section), 25(2), 1991.

[BW92a] P. van Bommel and Th.P. van der Weide. Reducing the search space for conceptual schema
transformation. Data & Knowledge Engineering, 8:269–292, 1992.

[BW92b] P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Structures for Information Disclo-
sure. The Computer Journal, 35(3):208–220, 1992.

[BW03] S. Bosman and Th.P. van der Weide. A case for incorporating vague representations in formal
information modeling. In Conferentie Informatiewetenschap 2003, 2003.

[CHP96] L.J. Campbell, T.A. Halpin, and H.A. (Erik) Proper. Conceptual Schemas with Abstractions
– Making flat conceptual schemas more comprehensible. Data & Knowledge Engineering,
20(1):39–85, 1996.

167

168 BIBLIOGRAPHY

[CP96] P.N. Creasy and H.A. (Erik) Proper. A Generic Model for 3–Dimensional Conceptual Mod-
elling. Data & Knowledge Engineering, 20(2):119–162, 1996.

[Dal99] H. Dalianis. Aggregation in Natural Language Generation. Journal of Computational Intelli-
gence, 15(4):384–414, 1999.

[DFW96] C.F. Derksen, P.J.M. Frederiks, and Th.P. van der Weide. Paraphrasing as a Technique to
Support Object-Oriented Analysis. In R.P. van de Riet, J.F.M. Burg, and A.J. van der Vos, edi-
tors, Proceedings of the Second Workshop on Applications of Natural Language to Databases
(NLDB’96), pages 28–39, Amsterdam, The Netherlands, June 1996.

[FVV+98] E.D. Falkenberg, A.A. Verrijn–Stuart, K. Voss, W. Hesse, P. Lindgreen, B.E. Nilsson, J.L.H.
Oei, C. Rolland, and R.K. and Stamper, editors. A Framework of Information Systems
Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, EU, 1998. ISBN
3901882014

[FW02] P.J.M. Frederiks and Th.P. van der Weide. Deriving and paraphrasing information grammars
using object–oriented analysis models. Acta Informatica, 38(7):437–88, June 2002.

[FW04] P.J.M. Frederiks and Th.P. van der Weide. Information Modeling: the process and the required
competencies of its participants. Data & Knowledge Engineering, 2004. To appear in a special
issue on the NLDB 2004 conference.

[Hal89] T.A. Halpin. A logical analysis of information systems: static aspects of the data–oriented
perspective. PhD thesis, University of Queensland, Brisbane, Queensland, Australia, 1989.

[HPW93] A.H.M. ter Hofstede, H.A. (Erik) Proper, and Th.P. van der Weide. Formal definition of a
conceptual language for the description and manipulation of information models. Information
Systems, 18(7):489–523, October 1993.

[HPW97] A.H.M. ter Hofstede, H.A. (Erik) Proper, and Th.P. van der Weide. Exploiting Fact Verbalisa-
tion in Conceptual Information Modelling. Information Systems, 22(6/7):349–385, September
1997.

[HPW05] S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper, and Th.P. van der Weide. A Fundamental View
on the Process of Conceptual Modeling. In L. Delcambre, C. Kop, H.C. Mayr, J. M ylopoulos,
and O. Pastor, editors, Conceptual Modeling – ER 2005 – 24 International Conference on
Conceptual Modeling, Klagenfurt, Austria, EU, volume 3716 of Lecture Notes in Computer
Science, pages 128–143, Berlin, Germany, June 2005. Springer–Verlag. ISBN 3540293892
doi:10.1007/11568322_9

[HVH97] J.J.A.C. Hoppenbrouwers, B. van der Vos, and S.J.B.A. Hoppenbrouwers. NL Structures and
Conceptual Modelling: Grammalizing for KISS. Data & Knowledge Engineering, 23(1):79–
92, 1997.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling.
Data & Knowledge Engineering, 10(1):65–100, February 1993.

[JLB+04] H. Jonkers, M.M Lankhorst, R. van Buuren, S.J.B.A. Hoppenbrouwers, M. Bonsangue, and
L. van der Torre. Concepts for Modeling Enterprise Architectures. International Journal of
Cooperative Information Systems, 13(3):257–288, 2004.

[KS98] G. Kotonya and I. Sommerville. Requirements Engineering – Processes and Techniques. Wi-
ley, UK, 1998.

[Lin94] R.C. Linger. Cleanroom process model. IEEE Software, 11(2):50–58, 1994.

[MDL87] H.D. Mills, M. Dyer, and R.C. Linger. Cleanroom software engineering. IEEE Software,
4(5):19–25, 1987.

doi:10.1007/11568322_9

BIBLIOGRAPHY 169

[MO80] H.D. Mills and D. O’Neill. The management of software engineering. IBM Systems Journal,
24(2):414–477, 1980.

[NE00] B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. In 22nd International
Conference on Software Engineering, pages 35–46, Ireland, 2000. ACM.

[PB99] H.A. (Erik) Proper and P.D. Bruza. What is Information Discovery About? Journal of the
American Society for Information Science, 50(9):737–750, July 1999.

[Pop59] Karl Popper. The Logic of Scientific Discovery. Routledge, New York, New York, USA, 1959.
0415278449

[PPY01] M.P. Papazoglou, H.A. (Erik) Proper, and J. Yang. Landscaping the information space of large
multi–database networks. Data & Knowledge Engineering, 36(3):251–281, 2001.

[Pre00] R.S. Pressman. Software Engineering. McGraw-Hill, England, 5th edition, 2000.

[Pro94] H.A. (Erik) Proper. A Theory for Conceptual Modelling of Evolving Application Do-
mains. PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1994. ISBN
909006849X

[Pro97] H.A. (Erik) Proper. Data Schema Design as a Schema Evolution Process. Data & Knowledge
Engineering, 22(2):159–189, 1997.

[Pro98] H.A. (Erik) Proper. Da Vinci – Architecture–Driven Business Solutions. Technical report,
Origin, Utrecht, The Netherlands, EU, Summer 1998.

[Pro01] H.A. (Erik) Proper, editor. ISP for Large–scale Migrations. Information Services Procurement
Library. ten Hagen & Stam, Den Haag, The Netherlands, EU, 2001. ISBN 9076304882

[Pro04] H.A. (Erik) Proper. Architecture–driven Information Systems Engineering. DaVinci Series. Ni-
jmegen Institute for Information and Computing Sciences, University of Nijmegen, Nijmegen,
The Netherlands, EU, 2004.

[PW94] H.A. (Erik) Proper and Th.P. van der Weide. EVORM – A Conceptual Modelling Technique
for Evolving Application Domains. Data & Knowledge Engineering, 12:313–359, 1994.

[PW95] H.A. (Erik) Proper and Th.P. van der Weide. A General Theory for the Evolution of Application
Models. IEEE Transactions on Knowledge and Data Engineering, 7(6):984–996, December
1995.

[Qui60] W. Quine. Word and object – Studies in communication. The Technology Press of the Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 1960.

[Roy70] W.W. Royce. Managing the development of large software systems: Concepts and techniques.
In 9th International Conference on Software Engineering, pages 1–9, Los Angeles, California,
1970. IEEE WESTCON.

[SFG+00] J.J. Sarbo, J.I. Farkas, F.A. Grootjen, P. van Bommel, and Th.P. van der Weide. Meaning
Extraction from a Peircean Perspective. International Journal of Computing Anticipatory Sys-
tems, 6:209–227, 2000.

[Som01] I. Sommerville. Software Engineering. Addison-Wesley, Reading, Massachusetts, 6th edition,
2001.

[Sow04] J.F. Sowa. Guided Tour of Ontology, 2004. http://www.jfsowa.com/ontology/guided.htm, See
also: http://www.jfsowa.com/ontology/.

170 BIBLIOGRAPHY

[VHP04] G.E. Veldhuijzen van Zanten, S.J.B.A. Hoppenbrouwers, and H.A. (Erik) Proper. System
Development as a Rational Communicative Process. Journal of Systemics, Cybernetics and
Informatics, 2(4), 2004.
http://www.iiisci.org/Journal/sci/pdfs/P492036.pdf

[WBW00] B.C.M. Wondergem, P. van Bommel, and Th.P. van der Weide. Matching Index Expressions
for Information Retrieval. Information Retrieval Journal, 2(4), 2000. To appear.

[WBW01] B.C.M. Wondergem, P. van Bommel, and Th.P. van der Weide. Combining Boolean Logic and
Linguistic Structure. Information & Software Technology, (43):53–59, 2001.

http://www.iiisci.org/Journal/sci/pdfs/P492036.pdf

Subject Index

The following conventions are used in this index:

• A page where a concept is defined: 171.

• A page where a concept is discussed or men-
tioned: 171.

• The page in the dictionary where a concept is
defined: 171.

100 37

abstraction, 37

action oriented, 63, 63

actor, 11, 37

agens, 63

alignment, 12

application domains, 36, 36

approach, 63

architecting, 12

architecture, 12

asking sentence, 161

bijective function, 101

binary heterogeneous constraint, 102

closed world assumption, 37, 38, 101

communication, 11, 11, 12, 37, 63

complete knowledge, 37, 101

complex identification, 102

component, 38

concept, 37

concept lattice, 131

conception, 11, 37

conceptualization principle, 37

connector name, 161

constraint, 101

construction process, 12

controlled language, 37, 37, 63

CSDP, 131

CWA, 101

data, 11, 11, 63

deep sentence structure, 63

definition, 11, 12

definition description, 11

definition process, 11

deployment, 12

deployment process, 12

description, 11, 37, 38

design, 11, 12

design description, 12

design process, 12

domain, 11, 12, 36, 37, 63

domain expert, 37, 37

domain modeling, 12, 63

effect of addition, 161, 161

effect of deletion, 161, 161

elementary sentence, 63

elicitation, 37

environment, 36

exclusion principle, 101

extensional uniqueness constraint, 113

fact oriented, 63, 63

falsification, 37

FCA, 131

171

172 SUBJECT INDEX

formal communication, 63

formal concept, 131

formal context, 131

frequency constraint, 102

functional dependency, 63, 101

generalization, 113, 113

goal, 11, 12

human actor, 11

incomplete knowledge, 101

index expression, 63

informal communication, 63

informant, 37, 37

information, 11, 12, 37, 38, 63

information base, 38

information descriptors, 161, 161

information grammar, 37, 37

information processor, 38

information system, 12, 37, 37, 38, 101

information system engineering, 12

interest, 36, 37

inverse role name, 161

key length check, 102

knowledge, 11, 11

lexicon, 161

Lisa-D, 38, 38

message, 11, 37

method, 38

model, 12, 36, 36–38

model builder, 37, 37

modeling, 12, 38, 63

modeling mediator, 37, 37

NIAM, 38

Ockham’s Razor, 37

ontology, 37, 37

organization, 37

organizational system, 37

ORM, 63

ORNF, 63

partial mapping, 101

partitioning heterogeneous constraint, 102

pater familias, 113

patiens, 63

perspective, 37

population, 63, 101

PSM, 38

realization process, 12

representation, 11, 37, 63

requirement, 11, 12

result table, 161

RIDL, 38

role name, 161

role significant population, 131

schema equivalence, 102

schema sentence, 161

schema transformation, 102

shadow world, 37

simulation, 37

specialization, 113, 113

specifier, 113

SQL, 38

stakeholder, 12

standard name, 63, 63, 101, 101

stating sentence, 161

strong identification, 63, 101

sub-system, 37

subtype determining rule, 113

subtyping, 113

SUBJECT INDEX 173

system, 11, 12, 37

system analyst, 37, 37

system description, 11

telephone heuristic, 63

total function, 101

total role constraint, 101

Turing test, 37

UML, 38

unique role constraint, 101

universe, 36

universe of discourse, 36, 36–38, 63

unquote convention, 161

viewer, 36, 37

weak identification, 63, 101

work system, 11, 12

174 SUBJECT INDEX

The DAVINCI Lecture Notes Series:

The DAVINCI series of lecture notes is concerned with The Art & Craft of Information Systems
Engineering. On the one hand, this series of lecture notes takes a fundamental view (craft) on
the field information systems engineering. At the same time, it does so with an open eye to
practical experiences (the art) gained from information system engineering in industry.

Main contributors:

P. (Patrick) van Bommel S.J.B.A. (Stijn) Hoppenbrouwers

G.F.M. (Ger) Paulussen

H.A. (Erik) Proper Th.P. (Theo) van der Weide

	The DaVinci Series
	Course Description
	Conceptual Data Modeling
	What is a model?
	Model variety
	Model validity
	Using a model
	Observation and representation
	Model simplicity
	Types of models
	Model as ontology

	Conceptual modeling
	Communication via sentences
	Data, information and reality
	Removal of syntactic variation
	Splitting sentences
	Grouping by deep sentence structure
	Full qualification
	Standard names
	The initial capital convention
	Object Role Normalform

	Processing ORNF sentences
	Binary fact types
	Unary fact type
	Example

	Definitions overview
	Questions

	The basic modeling technique
	Complications
	Communication during modeling
	Schematically
	A conceptual detour
	Using natural language: proc and cons
	Controlled Language

	The process of modeling
	The participants
	The interaction

	Modeling the communication
	Architecture of an information system
	The user interface
	The information base
	The information grammar
	The information processor
	Turing's Test Of Intelligence

	Grammars
	Formal grammars
	Handling context
	ORM represented as AGFL

	The formal model
	Object types
	Construction rules
	Bridge types
	Summary sofar
	Example
	Populating a conceptual schema

	Quality aspects for conceptual schemata
	Definitions overview
	Questions

	Object-Role Calculus - A sample session
	An extended sample session: the presidential database
	Elementary sentences and juxta-position
	Statistical functions
	Multi-valued result
	Combining information descriptors
	Complex examples
	Arithmetic and relational operators
	Rest

	ORC overview
	Constructs
	Priorities

	Definitions overview
	Questions

	Advanced modeling constructs
	Higher-order fact types
	Objectification

	The meaning of a schema
	Constraints
	Unique role constraint
	Total role constraint

	Unique correspondence
	The shadow property
	Weak identification
	Strong identification

	Relations between schemata
	Schema transformation
	Frequently occurring constraints
	Frequency constraint
	Binary heterogeneous constraints
	Partitioning heterogeneous constraints

	Complex identification
	Schema Quality
	Schema validation
	Key length check
	Schema verification

	Definitions overview
	Questions

	Object Grouping Mechanisms
	Subtyping
	Specialization
	Multiple parents
	Specialization handling in ORC

	Generalization
	Generalization handling in ORC

	Dynamic Grouping
	Set type
	Extensional uniqueness constraint
	Set types in ORC
	Constraints on set types

	Definitions overview
	Questions

	The Modeling Algorithm
	Sharing properties
	A formal algorithm
	Simple homogeneous case
	The initial steps 1 to 4
	Step 5: Formal concepts
	The concept lattice
	Step 6: Constructing the subtype hierarchy
	Step 7: Composing the conceptual schema

	Transformation example
	The direct approach
	Qualifying attributes
	Object role transformation

	Heterogeneous example
	Some examples
	The computation of concepts
	Definitions overview
	Questions

	Object-Role Calculus
	Schema sentences
	Stating sentences
	Addition
	Deletion

	Asking sentences
	The underlying lexicon: Names and their meaning
	Object type names and their meaning
	Role names and their meaning
	The treatment of constants
	A sample lexicon
	Controlling ambiguity

	Concatenation of expressions
	The result table being a multiset
	Intermezzo: multisets

	Special constructs
	Correlation operator
	Set-like operators
	THE-operator
	DISTINCT operator
	Arithmetic operators

	Statistical Operators
	Head Operators
	Head-Tail Operators
	Head-tail version of comparison operators

	Specifying conditions
	Boolean constants
	Quantification
	Implication

	Priorities
	Business rules
	The first implication rule
	The second implication rule

	Combining
	Definitions overview
	Questions

	Large Example
	Video Rental Store
	Online Auction
	Web Content Management System

	Bibliography
	Subject Index

