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Abstract. In statistical classification work, one method of speeding up the 
process is to use only a small percentage of the total parameter set available. In 
this paper, we apply this technique both to the classification of malware and the 
identification of malware from a set combined with cleanware. In order to dem-
onstrate the usefulness of our method, we use the same sets of malware and 
cleanware as in an earlier paper. Using the statistical technique Information 
Gain (IG), we reduce the set of features used in the experiment from 7,605 to 
just over 1,000. The best accuracy obtained in the former paper using 7,605 fea-
tures is 97.3%  for  malware versus cleanware detection and 97.4% for malware 
family classification; on the reduced feature set, we obtain a (best) accuracy of 
94.6% on the malware versus cleanware test and 94.5% on the malware  
classification test. An interesting feature of the new tests presented here is the 
reduction in false negative rates by a factor of about 1/3 when compared with 
the results of the earlier paper. In addition, the speed with which our tests run is 
reduced by a factor of approximately 3/5 from the times posted for the original 
paper. The small loss in accuracy and improved false negative rate along with 
significant improvement in speed indicate that feature reduction should be fur-
ther pursued as a tool to prevent algorithms from becoming intractable due to 
too much data.  
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1 Introduction 

Malicious software classification supports the products of anti-virus vendors and so is 
important to the computer industry. In the last several decades, many papers have 
appeared demonstrating varying approaches to such classification. The papers [12, 17, 
5] and the references therein provide the reader with a sample of such work. In all 
cases, statistical analysis methods are applied and the accuracy of the resulting classi-
fication is measured. 

In choosing features to use as input to the analysis, the usual approach is to use as 
many as possible. However, some schools of thought argue that, in general, only a 
small percentage of available features are needed to provide good classification [1, 6]. 
The authors of [6] argue as follows: ‘In a great variety of fields … the input data are 
represented by a very large number of features, but only few of them are relevant for 
predicting the label. In addition, many algorithms become computationally intractable 
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when the dimension is high. On the other hand, once a good small set of features has 
been chosen, even the most basic classifiers … can achieve desirable performance. 
Therefore, feature selection, i.e. the task of choosing a small subset of features which 
is sufficient to predict the target labels well, is critical to minimize the classification 
error. At the same time, feature selection also reduces training and inference time and 
leads to better data visualization, reduction of measurement and storage require-
ments.’ 

The aim of our work is to show empirically that a significant reduction in the num-
ber of features is possible while at the same time maintaining a good level of accura-
cy. We use as a benchmark, the work in [12] which classified a set of 1368 executable 
samples with an accuracy of 97.4%  and correctly distinguished clean from malicious 
files with an accuracy of 97.3%. 

Based on the same set of executables, as a means of significantly reducing the 
speed at which the test executes, in this paper, we identify a significantly smaller 
feature set which produces close to the same levels of accuracy as those in [12]. In 
order to choose an appropriate set likely to retain accuracy, we use Information Gain 
[16] which is a statistical method discriminating between important and less important 
features across homogeneous data sets. We are able to reduce running time of the tests 
by a factor of approximately 3/5. 

In Section 2, we review the literature in this area. In Section 3, we describe our ex-
perimental set-up. In Section 4, we describe the classification model and in Section 5, 
we analyse the results. In the final section, we draw our conclusions. 

2 Literature Review 

Although a new malware variant is disguised, its underlying structure still remains the 
same and retains the target of propagating the infection. Therefore, the features that 
appear frequently within a known malware can be used to identify and distinguish 
between cleanware and malware. Below, we present a few examples of the recent 
work conducted in the area of feature selection and reduction for malware. 

Komashinskiy and Kotenko [4] test their feature selection and reduction technique 
on 5854 malicious files and 1656 cleanware files. They collect 65,536 features 
through static analysis and apply Information Gain (IG) to differentiate between most 
and least important features. The authors then form five different size feature sets 
which contain 50, 100,150, 200, 250 features respectively and use them to train the 
classifiers in WEKA [15]. The set of 250 features gives the best classification accura-
cy of 98%. Using a similar feature reduction method, Wang et al. [13] used IG and 
gain ratio to decrease the number of features from 1656 to 645, a 60% reduction. The 
authors used a dataset comprising of 1908 clean files and 7863 malicious files, and 
obtained an average classification accuracy of 95%.   

Mehdi et al. [9] develop a framework that can analyze and detect in-execution mal-
ware.  They experiment on a set of 100 Linux malware files, collected from a publicly 
available online database, and 180 cleanware files. Their methodology uses dynamic 
analysis together with the n-grams method. The authors claim that they present a novel 
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idea by introducing a component known as a ‘Goodness Evaluator’ into their framework 
to reduce the feature set. After classification, the authors conclude that the dataset from 
6-grams outperforms that from 4-grams. They also test their classification method 
against four other algorithms, and obtain a best accuracy of 77%. 

The authors of [3, 7, 8, 14] also apply various feature reduction approaches in their 
respective work to contribute towards malware detection and classification.  

3 Experimental Setup 

3.1 Data Preparation 

In order to benchmark our work against that of [12], we perform the same  
experiments on the same dataset with the exception that we apply Information Gain to 
reduce the feature set. We reduce the feature sets separately for each of the tests, 
malware versus cleanware and malware family classification. IG analyzes the API 
calls and their parameters separately and examines their effect on the classification 
results.  

For the purpose of their work, Tian et al. [12] executed the data set, comprising 
1368 malware files and 456 clean files, for 30 seconds and obtained 1824 log files. To 
ensure that we were not missing any important features, using the same data set, we 
let each executable run for 60 seconds and obtained 12 additional log files. Upon 
investigating the contents of the additional files, we found no relevant additional in-
formation. Hence, it can be deduced that a further 30 seconds does not impact on the 
experiments in any way and so we used the same 1824 log files as in [12] and stored 
these in our database.   

3.2 Data Pre-processing  

We first introduce some terminology that we will refer to as we progress through the 
explanation of our experiments. 

An ‘APIString’ is made up of an API call together with its corresponding parame-
ters. Below are two examples of APIStrings from our database. 

•  RegSetValueExW, 0x18c, IntranetName, 0100000  
•               CreateFileW, \\.\MountPointManager 

The components RegSetValueExW and CreateFileW are API calls while the remain-
ing segments are parameters. 

We use the term ‘String’ to refer either to an API call or to a parameter. Thus, us-
ing the above excerpt of the log file presented in bullet points, we consider the follow-
ing items: ‘RegSetValueExW’, ‘0x18c’, ‘IntranetName’, ‘0100000’, ‘CreateFileW’ 
and ‘\\.\MountPointManager’ to be Strings.  

To have a consistent comparison, we conduct the same two experiments as in [12], 
malware versus cleanware detection and malware versus malware family  
classification.  
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3.3 Feature Extraction and Selection 

We make use of a database management system program because of its usability and 
integrated management interface. We store the features to be used in the test as shown 
in Table 1 along with a description of the purpose of each field. 

Table 1. Strings Database Scheme 

Column Name Description 
FileID Unique file identification number which is generated during 

execution. 
Family File’s family name. 
String Stores the content of String extracted from the file. 
Type Identifies whether the String is an API call or parameter 
FreqofStringInFile Total number of times a String appears within a file. 

 
The number of times a String occurs in the feature set is indicative of its impor-

tance in the classification process because the more often it appears in a given mal-
ware or cleanware family, the higher the probability that it differentiates itself from 
the features belonging to other families. 

Thus, our next step is to derive a feature selection method and apply it to the String 
data to select the most significant features. There are two standard approaches to this 
task, one known as the filter method and the other as the wrapper method ([2], p. 
141). The filter method is more appropriate to our data set because it uses an evalua-
tion function which relies on the distance metric. In other words, the most desirable 
attributes have a greater difference among the entire feature set. While there are sev-
eral sophisticated feature selection methods available, such as Information Gain, Chi-
Square, Fisher’s Score, n-grams [8], we choose IG as it has a high adoption rate and is 
well understood. Some preliminary tests using three feature selection algorithms indi-
cated that IG selected a more comprehensive set of highly weighted features. Moreo-
ver, the IG selection method is available to us in the WEKA set of algorithms from 
which we draw the classifiers for later use in the test.  

IG was chosen as it is regarded as a powerful technique for discriminating between 
important and less important features across homogeneous data such as ours.   

Information Gain evaluates the importance of an attribute by measuring the IG val-
ue with respect to the class. An example of calculating IG values is provided by [1]: 
“For a given attribute X and a class attribute Y ∈ {Cleanware, Malware}, the uncer-
tainty is given by their respective entropies H(X) and H(Y)”. Then the IG of X with 
respect to Y is given by IG(Y;X): 

IG(Y; X) = H(Y) – H(Y|X).  

We begin by selecting the distinct Strings in each family, as shown in Table 2 and use 
the numbers in the third column of the table to apply feature selection  
for two tests.  
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Table 2. Number of Distinct Strings per Family 

Type Family Number of Files 
per Family 

Number of distinct 
Strings  

 
 
 
 
 

Malware 

Agobot 340 1280 
Alureon 58 1375 
Bambo 70 884 

Beovens 144 1022 
Boxed 366 1268 

Clagger 47 1095 
Emerleox 78 1051 
Looked 67 774 
Robknot 119 1145 
Robzips 82 905 

 SUB TOTAL 1371  
Cleanware Clean 465 998 

 TOTAL 1,836 11797 Strings (with 
repeats) 

3.3.1   Malware Versus Cleanware (M/C) 
In this test, we ignore the malware families and treat the set of malware files as a 
single set. It can be noted from Table 2 that the numbers of malware and cleanware 
executable files are not proportionate. To deal with this imbalance, we follow the 
recommendations of [10] and split the total malware executable files into groups of 
same size as that of the cleanware.  

After merging all the malware executables, we obtain a total of 1371 files. We then 
proceed to build groups of 465 malware files, which is the number of files present in 
the cleanware group. After generating the first 2 groups, mGroup1 and mGroup2, we 
are left with 441 malware executable files. To build the third group, mGroup3, we 
then randomly select an additional 24 (465-441) files from the first two groups, as 
shown in Figure 1. 
 
 
 

 

 

 

 

 

 

 

Fig. 1. Generate Malware Groups 

Group the malware executable files 
together. Total = 1371 

mGroup1

mGroup2 

mGroup3 

Randomly select 24 
additional files 

1371 – 465 = 906 files 

906 – 465 = 441 files 

441 files 

24 files 



  Feature Reduction to Speed Up Malware Classification 181 

We then take each mGroupi and select the distinct Strings in that particular group. 
Next, we use the list of distinct Strings to generate a vector for each file within the 
current mGroupi, where an element within a vector represents the presence or absence 
of a particular String from the distinct String list.  Below is an example on how to 
generate the vectors. 

Suppose distinct String list includes 10 Strings, as shown below:   

distinctStringList = 
{GetProcAddress, 
0x77e60000, 
LoadLibraryA, 
ExitProcess, 
LoadLibraryExW, 
ADVAPI32.dll, 
0x77dd0000, 
RegCloseKey, 
WININET.dll, 
InitializeCriticalSectionAndSpinCount} 

Assuming that file F is made up of 3 Strings (shown as italicized) from the above list, 
therefore: 

File F =  
{LoadLibraryA,  
ExitProcess,  
LoadLibraryExW} 

Since the feature vector for F is made up of the frequency of each String within the 
file, then the vector for file F might look as follows: 

Vector_F = (0,0,6,3,16,0,0,0,0,0), 
where 0 represents the absence of a String and any other number denotes the frequen-
cy of that particular String in the file.  

We repeat this process for mGroup1, mGroup2 and mGroup3 to generate the ARFF 
files and input them into WEKA for feature selection by IG.  

3.3.2   Family by Family (F/F) 
In the second test, we apply a feature reduction family by family in order to differen-
tiate between the Strings which are representative of a malware family.  

We start by selecting the distinct Strings from each family in our dataset to build 
the vectors. For example, in Table 2, the malware family Agobot includes 340 files 
and has 1280 distinct Strings. For each file, we then generate a vector to indicate the 
presence of any of the 1280 distinct Strings. 

We repeat the above for all the 11 families and use the vectors to generate the 
ARFF files to input in WEKA. 
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3.4 Feature Reduction 

In this subsection, we proceed with the feature reduction phase of our experiment. We 
select the most important Strings which are rated based on their corresponding Infor-
mation Gain values and retain a portion of the highest ranked Strings for the classifi-
cation stage, as discussed in Section 4. 

In WEKA, IG is a single attribute evaluator ([16], p.489) where IG evaluates an 
attribute based on its information gain. We use the ranker search method [11] for 
attribute selection, as it allows WEKA to rank attributes based on their individual IG 
evaluation. 

At the end of the attribute selection process, we obtain a file for each family (and 
mGroupi) with IG values for each of the Strings. The files are then ranked in terms of 
highest to lowest values. The next step is to determine the ‘n’ most important IG val-
ues with which to build the reduced feature set.  

Since the families in our dataset have varying sizes, we had to ensure that we do 
not discriminate between families with large number of files against those with lesser 
files. Hence, we did some preliminary tests to determine the cut-off values. We start 
by finding the average number of Strings per family and use that number as a thre-
shold. Finally, depending on the threshold value, we selected the Strings from the IG 
results. The final number of Strings selected from each family is shown in Table 3. 

Table 3. Number of Strings Selected  

Family Number of Files 
in Family 

Number Strings 
selected from IG 

results 
Agobot 340 1067 
Alureon 58 34 
Bambo 70 45 

Beovens 144 303 
Boxed 366 534 

Clagger 47 14 
Emerleox 78 79 
Looked 67 11 
Robknot 119 140 
Robzips 82 101 
Clean 465 107 

 
In order to obtain a reduced set of Strings for the M/C test, we compute the sum of 

the numbers for all the malware families (column three in Table 3) and divide the 
total by 3 (i.e. by the number of mGroups).  We then use the resulting number to se-
lect the Strings ranked by IG. We refer to the reduced feature set for M/C as ‘Informa-
tion Gain Feature Reduction (IGFR – M/C)’ and it consists of 1078 Strings. 

The reduced set for the F/F test includes all the distinct Strings after the threshold 
value is applied. The final reduced list, referred to as IGFR-F/F includes 1266 Strings. 
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4 Experimental Work 

4.1 The Classification Model 

We summarize the steps in the classification model: the experimental data (both mal-
ware and cleanware files) are executed in a virtual machine; the execution behaviors 
are recorded in log files, which are collected at the end of the executable file run-time; 
the features are extracted from the log files and stored in the database table; 2 separate 
reduced feature sets are generated (IGFR-M/C and IGFR-F/F), which are then con-
verted into vector form, representing the features' frequencies, to generate the input 
files to WEKA.  

For the classification process, for the purpose of comparison, we use the same four 
WEKA classifiers as in [12] and apply 10-fold cross validation [8]. The classification 
model selects the malware executables for a particular family, M, and chooses the 
same number of files in the selected one at random from other families- referred to as 
Other, using a random function. The classifier then divides M into 10 groups of equal 
size as follows: 

- If 10 | |M|, then each group has size 
|ெ|ଵ଴ . 

- If 10 ץ |M|, write  |ܯ| ൌ  9 כ ܤ ൅ where 0 ,ݎ ൑  r ൏ 9, 

and generate 9 groups of size B and place the remaining r executables in a 10th group 
along with (B-r) randomly chosen executables from M. Once the 10 groups are 
formed, the classifier then generates their corresponding arff files to be used as input 
to WEKA. The same steps are repeated to divide the set, Other, into 10 groups and 
generate the arff files. 

The classifier then takes 9 groups from M and Other to set up the training set and 
the remaining one group from M and Other is used as the testing set. The process is 
repeated for each of the 11 families. Moreover, the authors of [12] noted that when 
applying the meta-classifier AdaboostM1 on top of the base-classifiers, better accura-
cy results were obtained (pg. 5). Therefore, we only present classification results 
where Adaboost is applied. 

4.2 Classification Results 

In this section, we proceed with the data preparation for the classification stage. We 
commence by generating the input files in the format that is required by WEKA and 
then applying the algorithms to obtain the classification accuracies.   

We use the IGFR-M/C and IGFR-F/F lists obtained from Table 3 to generate the 
feature vectors for the two tests: M/C and F/F, where each vector is made up of String 
frequencies within a file. The vectors are then used to construct the WEKA (.arff) 
files using our Java procedure ‘WriteToArff’.  

Table 4 compares the classification results obtained using the reduced feature sets 
for the IGFR tests with those from [12]. In this table, the weighted accuracies for the 
four meta-classifiers are indicated. Table 5 lists the false positives and false negatives 
for these same tests. 
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Table 4. Classification Accuracy with Adaboost (Weighted Average) 

 Malware 2010 [12] Our method (IGFR) 
M/C  F/F M/C F/F 

SMO 96.1 95.2 93.7 94.3 
IB1 92.7 93.5 89 90 
DT 97.1 93.9 94.5 94.5 
RF 97.3 97.4 94.6 94.5 

Number of 
features 

7605 strings 7605 strings 1078 strings 1266 strings 

Table 5. False Positives and False Negatives 

 Malware 2010 [12] Our method (IGFR) 
M/C  F/F M/C F/F 

FP FN FP FN FP FN FP FN 
SMO 0 0.03 0.017 0.084 0.0878 0.038 0.075 0.039 
IB1 0.02 0.06 0.06 0.08 0.197 0.022 0.199 0.022 
DT 0.01 0.04 0.02 0.11 0.075 0.035 0.074 0.036 
RF 0.01 0.04 0.021 0.04 0.074 0.035 0.071 0.039 

5 Analysis of Results 

In this section, we analyze our results and compare them with the results from [12]. 
We also compare the tests on the basis of speed.  

Figure 2 summarizes the weighted average accuracies by classifier for the four 
tests. Random Forest provides the best accuracy overall, while IB1 displays the larg-
est spread (4.5%) across the four tests. For the M/C test, the smallest difference is 
2.6% with DT; for the F/F test, the smallest difference is 0.6, also with DT. Note that 
in all cases but one, the test of [12] has better accuracy than IGFR; however, with DT, 
the IGFR test shows better results than those of [12] for family by family malware 
classification. 

Turning to the false positives and false negatives identified in the tests, Figures 3 
and 4 summarize the results of Table 5. In the false positive case, there are large dis-
crepancies between the IGFR approach and that in [12] with the latter faring much 
better than the former; Figure 3 presents these discrepancies clearly. On the other 
hand, in the case of false negatives, Figure 4 indicates that the IGFR approach is supe-
rior to that in [12] in both tests. At this time, we are not able to explain why this 
would be the case. 

Overall, then, the ability of the new tests to identify malware is close to that of the 
tests in [12] based on the identical data set, and in some cases surpasses that of [12]. 
Thus, a reduction in number of features used, if this is done well, can indeed produce 
good quality results. Recall that the IGFR-M/C test used 1078 strings and the IGFR-
F/F test used 1266 strings.  This contrasts with the tests of [12] which used 7605 
strings for each test. 
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6 Conclusions 

We have taken advantage of a rare opportunity to re-use a data set from previous 
work ([12]) to compare running time and accuracy of that work against a new method 
proposed in this paper. Our aim was to significantly reduce the time needed to classify 
malware and to distinguish malware from cleanware.  Table 6 and Figure 5 indicate 
that we were successful in achieving this as the time needed to perform each test was 
reduced by a factor of approximately 3/5. In addition, we were able to retain levels of 
accuracy of the results within 3% of the results of [12] on both tests.  

The approach to saving time in our new method was to reduce the feature set by 
means of the statistical method Information Gain which is used to identify the most 
relevant features. 

A feature of our work is the astonishing improvement we achieved in the false 
negative detection rate in classifying malware by family as presented in Figure 4. 
However, our approach did not improve on the false positive rate (Figure 3), and in 
future work, we shall investigate the possible reasons for this. 

The small loss in accuracy and improved false negative rate along with significant 
improvement in speed of our tests indicate that feature reduction should be further 
pursued as a tool to prevent algorithms from becoming intractable due to the presence 
of too much data. 
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