
P. Laud (Ed.): NordSec 2011, LNCS 7161, pp. 176–188, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Feature Reduction to Speed Up Malware Classification

Veelasha Moonsamy, Ronghua Tian, and Lynn Batten

Deakin University, School of Information Technology,
Melbourne, Australia

{v.moonsamy,rtia,lmbatten}@deakin.edu.au

Abstract. In statistical classification work, one method of speeding up the
process is to use only a small percentage of the total parameter set available. In
this paper, we apply this technique both to the classification of malware and the
identification of malware from a set combined with cleanware. In order to dem-
onstrate the usefulness of our method, we use the same sets of malware and
cleanware as in an earlier paper. Using the statistical technique Information
Gain (IG), we reduce the set of features used in the experiment from 7,605 to
just over 1,000. The best accuracy obtained in the former paper using 7,605 fea-
tures is 97.3% for malware versus cleanware detection and 97.4% for malware
family classification; on the reduced feature set, we obtain a (best) accuracy of
94.6% on the malware versus cleanware test and 94.5% on the malware
classification test. An interesting feature of the new tests presented here is the
reduction in false negative rates by a factor of about 1/3 when compared with
the results of the earlier paper. In addition, the speed with which our tests run is
reduced by a factor of approximately 3/5 from the times posted for the original
paper. The small loss in accuracy and improved false negative rate along with
significant improvement in speed indicate that feature reduction should be fur-
ther pursued as a tool to prevent algorithms from becoming intractable due to
too much data.

Keywords: dynamic analysis, feature reduction, malware classification.

1 Introduction

Malicious software classification supports the products of anti-virus vendors and so is
important to the computer industry. In the last several decades, many papers have
appeared demonstrating varying approaches to such classification. The papers [12, 17,
5] and the references therein provide the reader with a sample of such work. In all
cases, statistical analysis methods are applied and the accuracy of the resulting classi-
fication is measured.

In choosing features to use as input to the analysis, the usual approach is to use as
many as possible. However, some schools of thought argue that, in general, only a
small percentage of available features are needed to provide good classification [1, 6].
The authors of [6] argue as follows: ‘In a great variety of fields … the input data are
represented by a very large number of features, but only few of them are relevant for
predicting the label. In addition, many algorithms become computationally intractable

 Feature Reduction to Speed Up Malware Classification 177

when the dimension is high. On the other hand, once a good small set of features has
been chosen, even the most basic classifiers … can achieve desirable performance.
Therefore, feature selection, i.e. the task of choosing a small subset of features which
is sufficient to predict the target labels well, is critical to minimize the classification
error. At the same time, feature selection also reduces training and inference time and
leads to better data visualization, reduction of measurement and storage require-
ments.’

The aim of our work is to show empirically that a significant reduction in the num-
ber of features is possible while at the same time maintaining a good level of accura-
cy. We use as a benchmark, the work in [12] which classified a set of 1368 executable
samples with an accuracy of 97.4% and correctly distinguished clean from malicious
files with an accuracy of 97.3%.

Based on the same set of executables, as a means of significantly reducing the
speed at which the test executes, in this paper, we identify a significantly smaller
feature set which produces close to the same levels of accuracy as those in [12]. In
order to choose an appropriate set likely to retain accuracy, we use Information Gain
[16] which is a statistical method discriminating between important and less important
features across homogeneous data sets. We are able to reduce running time of the tests
by a factor of approximately 3/5.

In Section 2, we review the literature in this area. In Section 3, we describe our ex-
perimental set-up. In Section 4, we describe the classification model and in Section 5,
we analyse the results. In the final section, we draw our conclusions.

2 Literature Review

Although a new malware variant is disguised, its underlying structure still remains the
same and retains the target of propagating the infection. Therefore, the features that
appear frequently within a known malware can be used to identify and distinguish
between cleanware and malware. Below, we present a few examples of the recent
work conducted in the area of feature selection and reduction for malware.

Komashinskiy and Kotenko [4] test their feature selection and reduction technique
on 5854 malicious files and 1656 cleanware files. They collect 65,536 features
through static analysis and apply Information Gain (IG) to differentiate between most
and least important features. The authors then form five different size feature sets
which contain 50, 100,150, 200, 250 features respectively and use them to train the
classifiers in WEKA [15]. The set of 250 features gives the best classification accura-
cy of 98%. Using a similar feature reduction method, Wang et al. [13] used IG and
gain ratio to decrease the number of features from 1656 to 645, a 60% reduction. The
authors used a dataset comprising of 1908 clean files and 7863 malicious files, and
obtained an average classification accuracy of 95%.

Mehdi et al. [9] develop a framework that can analyze and detect in-execution mal-
ware. They experiment on a set of 100 Linux malware files, collected from a publicly
available online database, and 180 cleanware files. Their methodology uses dynamic
analysis together with the n-grams method. The authors claim that they present a novel

178 V. Moonsamy, R. Tian, and L. Batten

idea by introducing a component known as a ‘Goodness Evaluator’ into their framework
to reduce the feature set. After classification, the authors conclude that the dataset from
6-grams outperforms that from 4-grams. They also test their classification method
against four other algorithms, and obtain a best accuracy of 77%.

The authors of [3, 7, 8, 14] also apply various feature reduction approaches in their
respective work to contribute towards malware detection and classification.

3 Experimental Setup

3.1 Data Preparation

In order to benchmark our work against that of [12], we perform the same
experiments on the same dataset with the exception that we apply Information Gain to
reduce the feature set. We reduce the feature sets separately for each of the tests,
malware versus cleanware and malware family classification. IG analyzes the API
calls and their parameters separately and examines their effect on the classification
results.

For the purpose of their work, Tian et al. [12] executed the data set, comprising
1368 malware files and 456 clean files, for 30 seconds and obtained 1824 log files. To
ensure that we were not missing any important features, using the same data set, we
let each executable run for 60 seconds and obtained 12 additional log files. Upon
investigating the contents of the additional files, we found no relevant additional in-
formation. Hence, it can be deduced that a further 30 seconds does not impact on the
experiments in any way and so we used the same 1824 log files as in [12] and stored
these in our database.

3.2 Data Pre-processing

We first introduce some terminology that we will refer to as we progress through the
explanation of our experiments.

An ‘APIString’ is made up of an API call together with its corresponding parame-
ters. Below are two examples of APIStrings from our database.

• RegSetValueExW, 0x18c, IntranetName, 0100000
• CreateFileW, \\.\MountPointManager

The components RegSetValueExW and CreateFileW are API calls while the remain-
ing segments are parameters.

We use the term ‘String’ to refer either to an API call or to a parameter. Thus, us-
ing the above excerpt of the log file presented in bullet points, we consider the follow-
ing items: ‘RegSetValueExW’, ‘0x18c’, ‘IntranetName’, ‘0100000’, ‘CreateFileW’
and ‘\\.\MountPointManager’ to be Strings.

To have a consistent comparison, we conduct the same two experiments as in [12],
malware versus cleanware detection and malware versus malware family
classification.

 Feature Reduction to Speed Up Malware Classification 179

3.3 Feature Extraction and Selection

We make use of a database management system program because of its usability and
integrated management interface. We store the features to be used in the test as shown
in Table 1 along with a description of the purpose of each field.

Table 1. Strings Database Scheme

Column Name Description
FileID Unique file identification number which is generated during

execution.
Family File’s family name.
String Stores the content of String extracted from the file.
Type Identifies whether the String is an API call or parameter
FreqofStringInFile Total number of times a String appears within a file.

The number of times a String occurs in the feature set is indicative of its impor-

tance in the classification process because the more often it appears in a given mal-
ware or cleanware family, the higher the probability that it differentiates itself from
the features belonging to other families.

Thus, our next step is to derive a feature selection method and apply it to the String
data to select the most significant features. There are two standard approaches to this
task, one known as the filter method and the other as the wrapper method ([2], p.
141). The filter method is more appropriate to our data set because it uses an evalua-
tion function which relies on the distance metric. In other words, the most desirable
attributes have a greater difference among the entire feature set. While there are sev-
eral sophisticated feature selection methods available, such as Information Gain, Chi-
Square, Fisher’s Score, n-grams [8], we choose IG as it has a high adoption rate and is
well understood. Some preliminary tests using three feature selection algorithms indi-
cated that IG selected a more comprehensive set of highly weighted features. Moreo-
ver, the IG selection method is available to us in the WEKA set of algorithms from
which we draw the classifiers for later use in the test.

IG was chosen as it is regarded as a powerful technique for discriminating between
important and less important features across homogeneous data such as ours.

Information Gain evaluates the importance of an attribute by measuring the IG val-
ue with respect to the class. An example of calculating IG values is provided by [1]:
“For a given attribute X and a class attribute Y ∈ {Cleanware, Malware}, the uncer-
tainty is given by their respective entropies H(X) and H(Y)”. Then the IG of X with
respect to Y is given by IG(Y;X):

IG(Y; X) = H(Y) – H(Y|X).

We begin by selecting the distinct Strings in each family, as shown in Table 2 and use
the numbers in the third column of the table to apply feature selection
for two tests.

180 V. Moonsamy, R. Tian, and L. Batten

Table 2. Number of Distinct Strings per Family

Type Family Number of Files
per Family

Number of distinct
Strings

Malware

Agobot 340 1280
Alureon 58 1375
Bambo 70 884

Beovens 144 1022
Boxed 366 1268

Clagger 47 1095
Emerleox 78 1051
Looked 67 774
Robknot 119 1145
Robzips 82 905

 SUB TOTAL 1371
Cleanware Clean 465 998

 TOTAL 1,836 11797 Strings (with
repeats)

3.3.1 Malware Versus Cleanware (M/C)
In this test, we ignore the malware families and treat the set of malware files as a
single set. It can be noted from Table 2 that the numbers of malware and cleanware
executable files are not proportionate. To deal with this imbalance, we follow the
recommendations of [10] and split the total malware executable files into groups of
same size as that of the cleanware.

After merging all the malware executables, we obtain a total of 1371 files. We then
proceed to build groups of 465 malware files, which is the number of files present in
the cleanware group. After generating the first 2 groups, mGroup1 and mGroup2, we
are left with 441 malware executable files. To build the third group, mGroup3, we
then randomly select an additional 24 (465-441) files from the first two groups, as
shown in Figure 1.

Fig. 1. Generate Malware Groups

Group the malware executable files
together. Total = 1371

mGroup1

mGroup2

mGroup3

Randomly select 24
additional files

1371 – 465 = 906 files

906 – 465 = 441 files

441 files

24 files

 Feature Reduction to Speed Up Malware Classification 181

We then take each mGroupi and select the distinct Strings in that particular group.
Next, we use the list of distinct Strings to generate a vector for each file within the
current mGroupi, where an element within a vector represents the presence or absence
of a particular String from the distinct String list. Below is an example on how to
generate the vectors.

Suppose distinct String list includes 10 Strings, as shown below:

distinctStringList =
{GetProcAddress,
0x77e60000,
LoadLibraryA,
ExitProcess,
LoadLibraryExW,
ADVAPI32.dll,
0x77dd0000,
RegCloseKey,
WININET.dll,
InitializeCriticalSectionAndSpinCount}

Assuming that file F is made up of 3 Strings (shown as italicized) from the above list,
therefore:

File F =
{LoadLibraryA,
ExitProcess,
LoadLibraryExW}

Since the feature vector for F is made up of the frequency of each String within the
file, then the vector for file F might look as follows:

Vector_F = (0,0,6,3,16,0,0,0,0,0),
where 0 represents the absence of a String and any other number denotes the frequen-
cy of that particular String in the file.

We repeat this process for mGroup1, mGroup2 and mGroup3 to generate the ARFF
files and input them into WEKA for feature selection by IG.

3.3.2 Family by Family (F/F)
In the second test, we apply a feature reduction family by family in order to differen-
tiate between the Strings which are representative of a malware family.

We start by selecting the distinct Strings from each family in our dataset to build
the vectors. For example, in Table 2, the malware family Agobot includes 340 files
and has 1280 distinct Strings. For each file, we then generate a vector to indicate the
presence of any of the 1280 distinct Strings.

We repeat the above for all the 11 families and use the vectors to generate the
ARFF files to input in WEKA.

182 V. Moonsamy, R. Tian, and L. Batten

3.4 Feature Reduction

In this subsection, we proceed with the feature reduction phase of our experiment. We
select the most important Strings which are rated based on their corresponding Infor-
mation Gain values and retain a portion of the highest ranked Strings for the classifi-
cation stage, as discussed in Section 4.

In WEKA, IG is a single attribute evaluator ([16], p.489) where IG evaluates an
attribute based on its information gain. We use the ranker search method [11] for
attribute selection, as it allows WEKA to rank attributes based on their individual IG
evaluation.

At the end of the attribute selection process, we obtain a file for each family (and
mGroupi) with IG values for each of the Strings. The files are then ranked in terms of
highest to lowest values. The next step is to determine the ‘n’ most important IG val-
ues with which to build the reduced feature set.

Since the families in our dataset have varying sizes, we had to ensure that we do
not discriminate between families with large number of files against those with lesser
files. Hence, we did some preliminary tests to determine the cut-off values. We start
by finding the average number of Strings per family and use that number as a thre-
shold. Finally, depending on the threshold value, we selected the Strings from the IG
results. The final number of Strings selected from each family is shown in Table 3.

Table 3. Number of Strings Selected

Family Number of Files
in Family

Number Strings
selected from IG

results
Agobot 340 1067
Alureon 58 34
Bambo 70 45

Beovens 144 303
Boxed 366 534

Clagger 47 14
Emerleox 78 79
Looked 67 11
Robknot 119 140
Robzips 82 101
Clean 465 107

In order to obtain a reduced set of Strings for the M/C test, we compute the sum of

the numbers for all the malware families (column three in Table 3) and divide the
total by 3 (i.e. by the number of mGroups). We then use the resulting number to se-
lect the Strings ranked by IG. We refer to the reduced feature set for M/C as ‘Informa-
tion Gain Feature Reduction (IGFR – M/C)’ and it consists of 1078 Strings.

The reduced set for the F/F test includes all the distinct Strings after the threshold
value is applied. The final reduced list, referred to as IGFR-F/F includes 1266 Strings.

 Feature Reduction to Speed Up Malware Classification 183

4 Experimental Work

4.1 The Classification Model

We summarize the steps in the classification model: the experimental data (both mal-
ware and cleanware files) are executed in a virtual machine; the execution behaviors
are recorded in log files, which are collected at the end of the executable file run-time;
the features are extracted from the log files and stored in the database table; 2 separate
reduced feature sets are generated (IGFR-M/C and IGFR-F/F), which are then con-
verted into vector form, representing the features' frequencies, to generate the input
files to WEKA.

For the classification process, for the purpose of comparison, we use the same four
WEKA classifiers as in [12] and apply 10-fold cross validation [8]. The classification
model selects the malware executables for a particular family, M, and chooses the
same number of files in the selected one at random from other families- referred to as
Other, using a random function. The classifier then divides M into 10 groups of equal
size as follows:

- If 10 | |M|, then each group has size
|ெ|ଵ଴ .

- If 10 ץ |M|, write |ܯ| ൌ 9 כ ܤ ൅ where 0 ,ݎ ൑ r ൏ 9,

and generate 9 groups of size B and place the remaining r executables in a 10th group
along with (B-r) randomly chosen executables from M. Once the 10 groups are
formed, the classifier then generates their corresponding arff files to be used as input
to WEKA. The same steps are repeated to divide the set, Other, into 10 groups and
generate the arff files.

The classifier then takes 9 groups from M and Other to set up the training set and
the remaining one group from M and Other is used as the testing set. The process is
repeated for each of the 11 families. Moreover, the authors of [12] noted that when
applying the meta-classifier AdaboostM1 on top of the base-classifiers, better accura-
cy results were obtained (pg. 5). Therefore, we only present classification results
where Adaboost is applied.

4.2 Classification Results

In this section, we proceed with the data preparation for the classification stage. We
commence by generating the input files in the format that is required by WEKA and
then applying the algorithms to obtain the classification accuracies.

We use the IGFR-M/C and IGFR-F/F lists obtained from Table 3 to generate the
feature vectors for the two tests: M/C and F/F, where each vector is made up of String
frequencies within a file. The vectors are then used to construct the WEKA (.arff)
files using our Java procedure ‘WriteToArff’.

Table 4 compares the classification results obtained using the reduced feature sets
for the IGFR tests with those from [12]. In this table, the weighted accuracies for the
four meta-classifiers are indicated. Table 5 lists the false positives and false negatives
for these same tests.

184 V. Moonsamy, R. Tian, and L. Batten

Table 4. Classification Accuracy with Adaboost (Weighted Average)

 Malware 2010 [12] Our method (IGFR)
M/C F/F M/C F/F

SMO 96.1 95.2 93.7 94.3
IB1 92.7 93.5 89 90
DT 97.1 93.9 94.5 94.5
RF 97.3 97.4 94.6 94.5

Number of
features

7605 strings 7605 strings 1078 strings 1266 strings

Table 5. False Positives and False Negatives

 Malware 2010 [12] Our method (IGFR)
M/C F/F M/C F/F

FP FN FP FN FP FN FP FN
SMO 0 0.03 0.017 0.084 0.0878 0.038 0.075 0.039
IB1 0.02 0.06 0.06 0.08 0.197 0.022 0.199 0.022
DT 0.01 0.04 0.02 0.11 0.075 0.035 0.074 0.036
RF 0.01 0.04 0.021 0.04 0.074 0.035 0.071 0.039

5 Analysis of Results

In this section, we analyze our results and compare them with the results from [12].
We also compare the tests on the basis of speed.

Figure 2 summarizes the weighted average accuracies by classifier for the four
tests. Random Forest provides the best accuracy overall, while IB1 displays the larg-
est spread (4.5%) across the four tests. For the M/C test, the smallest difference is
2.6% with DT; for the F/F test, the smallest difference is 0.6, also with DT. Note that
in all cases but one, the test of [12] has better accuracy than IGFR; however, with DT,
the IGFR test shows better results than those of [12] for family by family malware
classification.

Turning to the false positives and false negatives identified in the tests, Figures 3
and 4 summarize the results of Table 5. In the false positive case, there are large dis-
crepancies between the IGFR approach and that in [12] with the latter faring much
better than the former; Figure 3 presents these discrepancies clearly. On the other
hand, in the case of false negatives, Figure 4 indicates that the IGFR approach is supe-
rior to that in [12] in both tests. At this time, we are not able to explain why this
would be the case.

Overall, then, the ability of the new tests to identify malware is close to that of the
tests in [12] based on the identical data set, and in some cases surpasses that of [12].
Thus, a reduction in number of features used, if this is done well, can indeed produce
good quality results. Recall that the IGFR-M/C test used 1078 strings and the IGFR-
F/F test used 1266 strings. This contrasts with the tests of [12] which used 7605
strings for each test.

F

We now turn to the ques
tal time in minutes for each
chart comparison of this da
time of the M/C test using
time of the F/F test using th
reduction in time needed to

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

SMO IB

A
cc

ur
ac

y
(%

)

Feature Reduction to Speed Up Malware Classification

Fig. 2. Classification Accuracy

Fig. 3. Comparison of False Positive

tion of speed with which the tests ran. Table 6 gives the
h of the four tests in question and Figure 5 presents a

ata. The M/C test with the IGFR method ran in 65% of
the method of [12]. The IGFR-F/F test ran in 52% of

he method of [12]. Thus, both IGFR tests show a dram
 perform the tests while retaining good accuracy.

B1 DT RF

Weighted Average Accuracy

[12]-M/C

[12] - F/F

IGFR - M/C

IGFR - F/F

False Positive

185

e to-
bar

f the
the

matic

C

F

186 V. Moonsamy, R. Tia

F

Tab

Experi

[12] – M/C
[12] – F/F
IGFR – M/C
IGFR – F/F

0

100

200

300

400

500

600

[12] – M/C

C
la

ss
if

ic
at

io
n

T
im

e
(m

in
s)

an, and L. Batten

Fig. 4. Comparison of False Negative

ble 6. Total Classification Time (mins)

iment Total Classification Time
(mins)

402
560
260
293

Fig. 5. Classification Time

IGFR – M/C [12] – F/F IGFR – F/F

Total Classification Time

False Negative

 Feature Reduction to Speed Up Malware Classification 187

6 Conclusions

We have taken advantage of a rare opportunity to re-use a data set from previous
work ([12]) to compare running time and accuracy of that work against a new method
proposed in this paper. Our aim was to significantly reduce the time needed to classify
malware and to distinguish malware from cleanware. Table 6 and Figure 5 indicate
that we were successful in achieving this as the time needed to perform each test was
reduced by a factor of approximately 3/5. In addition, we were able to retain levels of
accuracy of the results within 3% of the results of [12] on both tests.

The approach to saving time in our new method was to reduce the feature set by
means of the statistical method Information Gain which is used to identify the most
relevant features.

A feature of our work is the astonishing improvement we achieved in the false
negative detection rate in classifying malware by family as presented in Figure 4.
However, our approach did not improve on the false positive rate (Figure 3), and in
future work, we shall investigate the possible reasons for this.

The small loss in accuracy and improved false negative rate along with significant
improvement in speed of our tests indicate that feature reduction should be further
pursued as a tool to prevent algorithms from becoming intractable due to the presence
of too much data.

References

[1] Ahmed, F., Hameed, H., Shafiq, M.Z., Farooq, M.: Using spatio-temporal information in
API calls with machine learning algorithms for malware detection. In: AISec 2009:
Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence, pp. 55–62
(2009)

[2] Drozdz, K., Kwasnicka, H.: Feature Set Reduction by Evolutionary Selection and Con-
struction. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.)
KES-AMSTA 2010. LNCS, vol. 6071, pp. 140–149. Springer, Heidelberg (2010)

[3] Henchiri, O., Japkowicz, N.: A feature selection and evaluation scheme for computer virus
detection. In: Proceedings of the Sixth International Conference on Data Mining, ICDM
2006, pp. 891–895 (2006)

[4] Komashinskiy, D., Kotenko, I.: Malware detection by data mining techniques based on
positionally dependent features. In: 2010 18th Euromicro International Conference on Pa-
rallel, Distributed and Network-Based Processing (PDP), pp. 617–623 (2010)

[5] Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the
wild. Journal of Machine Learning Research 7, 2721–2744 (2006)

[6] Li, Y., Lu, B.: Feature selection based on loss-margin of nearest neighbor classification.
Pattern Recognition 42(9), 1914–1921 (2009)

[7] Lu, Y., Din, S., Zheng, C., Gao, B.: Using multi-feature and classifier ensembles to im-
prove malware detection. Journal of CCIT 39(2), 57–72 (2010)

[8] Masud, M.M., Khan, L., Thuraisingham, B.: Feature Based Techniques for Auto-
Detection of Novel Email Worms. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007.
LNCS (LNAI), vol. 4426, pp. 205–216. Springer, Heidelberg (2007)

188 V. Moonsamy, R. Tian, and L. Batten

[9] Mehdi, S.B., Tanwani, A.K., Farooq, M.: IMAD: in-execution malware analysis and de-
tection. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2009, pp. 1553–1560. ACM (2009)

[10] Moskovitch, R., Stopel, D., Feher, C., Nissim, N., Elovici, Y.: Unknown malcode detec-
tion via text categorization and the imbalance problem. In: 2008 IEEE International Con-
ference on Intelligence and Security Informatics, pp. 156–161 (2008)

[11] Ranker Search Method, http://weka.sourceforge.net/doc.stable/weka/
attributeSelection/Ranker.html

[12] Tian, R., Islam, R., Batten, L., Versteeg, S.: Differentiating malware from cleanware using
behavioural analysis. In: Proceedings of the 5rd International Conference on Malicious
and Unwanted Software: MALWARE 2010 (2010)

[13] Wang, T.-Y., Wu, C.-H., Hsieh, C.-C.: A virus prevention model based on static analysis
and data mining methods. In: IEEE 8th International Conference on Computer and Infor-
mation Technology Workshops, CIT Workshops 2008, pp. 288–293 (2008)

[14] Wang, T., Wu, C., Hsieh, C.: Detecting unknown malicious executables using portable
executable headers. In: Fifth International Joint Conference on INC, IMS and IDC, NCM
2009, pp. 278–284. IEEE (2009)

[15] Waikato Environment for Knowledge Acquisition (WEKA): Data Mining Software in Ja-
va. University of Waikato, http://www.cs.waikato.ac.nz/ml/weka

[16] Witten, I., Frank, E., Hall, M.A.: Data mining: Practical machine learning tools and tech-
niques, 3rd edn. Morgan Kaufmann, Burlington (2011)

[17] Ye, Y., Li, T., Jiang, Q., Wang, Y.: CIMDS: Adapting Postprocessing Techniques of As-
sociative Classification for Malware Detection. IEEE Transactions on Systems, Man, and
Cybernetics 40(3), 298–307 (2010)

	Feature Reduction to Speed Up Malware Classification
	Introduction
	Literature Review
	Experimental Setup
	Data Preparation
	Data Pre-processing
	Feature Extraction and Selection
	Feature Reduction

	Experimental Work
	The Classification Model
	Classification Results

	Analysis of Results
	Conclusions
	References

