

Zero Permission Android Applications - Attacks and Defenses

Veelasha Moonsamy, Lynn Batten

School of Information Technology

Deakin University

Melbourne, Australia

v.moonsamy@research.deakin.edu.au, lynn.batten@deakin.edu.au

Abstract

Google advertises the Android permission framework

as one of the core security features present on its

innovative and flexible mobile platform. The permissions

are a means to control access to restricted APIs and

system resources. However, there are Android

applications which do not request permissions at all.

In this paper, we analyze the repercussions of

installing an Android application that does not include

any permission and the types of sensitive information that

can be accessed by such an application. We found that

even applications with no permissions are able to access

sensitive information (such the device ID) and transmit it

to third-parties.
Keywords: android, application, permission.

1. Introduction

Permission systems were introduced in the early days

of computing when desktop computers were regarded as

an emerging technology [18]. Traditionally, permissions

were used to assign file access rights (for example: read,

write) to users and also to regulate access to lower-levels

of the operating system (for example as superuser). The

operating system keeps a list – Access Control List

(ACL) – in order to document the permission rights for

each user who has access to the machine.

Google implemented a similar idea in its Android

mobile operating system. Android includes a Linux

kernel (and its libraries) which serves as its base

operating system, a Dalvik virtual machine, an

application middleware layer and lastly, a set of system

applications. Each application is assigned its own user ID

(UID) and is executed in individual sandboxes. Even

though the applications’ executions are separated,

Android allows inter-application communication,

provided that the correct levels of permissions have been

assigned. Permissions are also required to access

restricted system resources, such as the contact list.

Whilst most applications do contain permissions, some

might not necessarily make use of them; it depends on

their functionalities.

This work investigates the consequences of installing

an application that does not request any permission and

determines the sensitive information such an application

can have access to. The rest of the paper is organized as

follows: In Section 2, we describe Android permissions

in further detail and also present some relevant work in

the Android permission area; we describe the potential

attacks by a zero permission application on a device and

possible defenses against such attacks in Section 3. In

Section 4, we provide a discussion around zero

permission applications and lastly, we give our

conclusions and ideas for future work in Section 5.

2. Android Permissions

Android applications are available for

download/purchase from Google’s official market,

Google Play [12], as well as from multiple third-party

markets. The applications are available in .APK

(application package file) format, which is essentially an

optimized version of Java code. Each APK file includes

the application’s code (.dex files), multimedia resources,

certificates, and the AndroidManifest.xml where the

permissions are defined. The .xml file includes <uses-

permission> and <permission> tags to allow developers

to request permissions. The <uses-permission> tag is

used if the developer needs to request any permission that

has been predefined by Google. Currently, there are 130

official Android permissions running on Android 4.0.

The other <permission> tag allows developers to define

customized permissions in their applications.

Permissions can be classified into four types [11]:

Normal, Dangerous, Signature and SignatureorSystem.

Normal permissions do not require the user’s approval

but they can be viewed after the application has been

installed. Dangerous permissions are displayed to the

user and require confirmation in order to proceed with

the installation process; these permissions have access to

restricted resources and can have a negative impact if

used incorrectly. Permissions classified under the

mailto:v.moonsamy@research.deakin.edu.au

2

Signature category are granted automatically, provided

that the requesting application is signed with the same

certificate as the application that declared the permission.

Finally, SignatureorSystem permissions are granted to

those applications that have the same certificates as the

Android system image.

Android adopts an ‘install-time’ permission granting

policy [2]. In this case, once the application is

downloaded the user will have to acknowledge the

permission request in order to be able to use the

application. Once the permissions are granted, they

cannot be revoked unless the application is completely

uninstalled. The authors in [1, 6, 15, 20] have developed

methodologies that can provide users with more

flexibility over the permissions once they are granted.

In [7], Enck et al. provided some insight into the

Android security model by demonstrating the use of

permissions during install-time and through inter-

component communication. In their work, the authors

explained that whilst application developers are allowed

to control access to restricted resources by defining

permissions in the AndroidManifest.xml file, they can

also regulate inter-component communications. In regard

to the latter, Enck et al. mentioned that developers can

prevent other applications from accessing an

application’s components by either explicitly assigning

permissions to those components or declaring the

components to be private instead of public.

The work of Chaudhuri et al. [4] focused on designing

semantics that can be used to formulate abstract

representation of a particular application. The authors

argued that their work can reveal the integrity of an

application before the user installs it. This is useful in

cases where third-party applications are required to

interact with the components of those applications that

come pre-installed on an Android phone.

The Android Permission framework allows developers

to use Google’s predefined set of permissions or generate

their own, depending on the requirements of the

applications being developed. Shin et al. [21] found a

flaw in the customized permission scheme: since

developers are not required to follow any naming

conventions while defining their own permissions, the

authors pointed out that this can introduce conflicted

permissions. They implemented a legitimate banking

application and a malicious application, both sharing a

customized permission of the same name, to demonstrate

how the privileges for the rogue application escalated by

exploiting the vulnerability.

Felt et al. [8] and Bartel et al. [3] developed tools that

can assist both users and developers to assess the

integrity and reliability of applications before they are

installed or uploaded on the market.

Nevertheless, it should be noted that if an application

does not require access to any of the restricted system

resources, the developer can choose not to include any

permission in the AndroidManifest.xml file. In the next

section, we will elaborate further on this particular case.

3. Potential Attacks and Defenses

In this section, we investigate the possible negative

ramifications of installing an application with no

permission by conducting a manual investigation of the

application and also the defense mechanisms that are

present in the literature to counter this issue.

3.1 Attacks

In one of his online posts, Brodeur [16] pointed out

that an application that does not request any permission

can scan the external storage directory and return a list of

applications and files that are stored on the SDcard. This

information can be accessed at /sdcard/. This

vulnerability is rather predictable as Google grants read-

only access to the SDcard on any device irrespective of

the OS version that it is running on.

Additionally, a similar exploit can be carried out on

the internal memory by scanning the

/data/system/packages.list folder to retrieve the list of

package names of those applications that are installed on

the device. Furthermore, in the same folder, the file

packages.xml stores the shared permissions of all

applications on the device along with their corresponding

UIDs.

The aforementioned vulnerabilities can be exploited

by enticing the user to download a decoy application

which can give the attacker access to a backdoor on the

victim’s device, as explained by Cannon in [22]. Cannon

used an active remote shell to interact with the device

and therefore had access to the data on the device.

Furthermore, Brodeur demonstrated that the absence of

INTERNET permission does not stop an attacker from

exporting the captured data onto an external server. In

fact, the URI_ACTION_VIEW Intent can initiate a Web

browser call and thus allow the attacker to transfer data

via the Internet. This is a common technique used by

advertising libraries designed to leak device ID or

subscriber ID in order to carry out targeted advertising,

as observed in [14].

3.2 Analysis of the Brodeur Application

We downloaded and installed Brodeur’s zero

permission application on two versions of Android – 2.3

and 4.0. We set up an Android emulator, which is

provided by the Android SDK and executed the

application in question. At first glance, the installed

3

application behaves as any other clean applications. We

then start a logcat filter, running in parallel with the

emulator, to monitor the execution behaviors of the zero

permission application.

The application itself includes three buttons – which

can be customized depending on the nature of the attack.

Each button carries out an attack and sends the

information to an external party via the

URI_ACTION_VIEW Intent, as explained in sub-section

3.1. When a user clicks on the first button, the application

will read any information stored on the SD card and

transfer it to the attacker. The second button allows the

attacker to retrieve the application package names that

are installed on the user’s device. Finally, the third button

returns two important unique identifiers, which are the

device’s SIM and GSM operator identifier.

Once the aforementioned information is gathered, an

attacker can then carry out a targeted attack to exploit a

particular user’s device. Moreover, a zero permission

application can be used to identify vulnerable Android

users which will ensure the longevity of the attack, and

afford a lower risk of being discovered or reported to the

authorities.

3.3 Defenses

It is well-known [9] that the best defense against any

security attack is achieved by raising user awareness. In

the case of Android permissions, users need to be

educated on how to interpret them. A study conducted by

Felt et al. [9] showed Android users do not fully

comprehend the permissions requests presented to them

during install-time. Even more alarming is the fact that

some users do not even take the trouble to read the

permission descriptions and simply proceed to install the

application. (This type of user behavior is very common

when dealing with End-User License Agreements).

Therefore, since smartphone users do not value the

importance of permission requests, their absence is

hardly noticed.

In addition to training, users may rely on metrics

before proceeding to download and install applications.

User ratings, reviews, number of downloads are some of

the available resources that can help users to assess

whether or not the application is popular or has caused

other users any problems.

The solution proposed by Chin et al. [5] is also an

effective way to quickly assess the integrity of an

application before it is installed on the device. The

authors developed a tool, ComDroid, that can detect

potential vulnerabilities in Android applications. In order

to do so, ComDroid first disassembles the APK file and

then parses through the code to track the communication

flow between components. However, it should be noted

that this method is valid only for applications that are

downloaded from third-party markets and not the ones

from Google Play.

4. Discussion

In this section, we give our viewpoints on zero

permission Android applications.

In its official documentation [13], Google states that

“a basic Android application has no permissions

associated with it, meaning it cannot do anything that

would adversely impact the user experience or any data

on the device”. For instance, an example of such an

application could be a customized calculator application

to calculate tips to be given for good service at an eatery.

Based on the description provided by Google, the

aforementioned application should not be able to access

sensitive/restricted information on a device. However, as

demonstrated in Section 3, the current security

vulnerabilities within the Android platform can allow a

zero permission application to access restricted

information.

Furthermore, we believe that imposing rules

stipulating that all applications must request at least one

permission will not necessarily solve the problem. The

literature shows that application that request unnecessary

permissions cause far more damage than a zero

permission application [17, 19]. Moreover, an over-

privileged application can also compromise the

functionalities of other applications stored on the device;

the impact of this attack is far beyond the scope than the

ones mentioned in Section 3.

Additionally, even though Google considers the

Android permission system as one of the key security

features of the platform, it should be noted that users’

responses to understanding and approving permission

requests have compromised the security standards of

Android. The work by Felt et al. [10] demonstrates the

lack of comprehension from Android users when it

comes to understanding and interpreting permission

requests upon installing an application. In fact, a majority

of users do not even read the list of permissions and

simply proceed to download and install the application.

This shows that users regard the permission system as a

hassle and therefore will not be concerned even if an

application does not request any permission.

5. Future Work

In this paper, we have given an overview on Android

permissions and analyzed and elaborated on the

implications of zero permission applications. We also

presented some measures that users can apply to identify

vulnerable applications. In summary, user understanding

4

and user behavior are the key aspects that can mitigate

the propagation of rogue applications.

As future work, we will provide a third-party service

where Android users can perform a quick scan of

applications that have been downloaded from Google

Play and return the user a report, assessing the integrity

of the applications before installation.

6. References

[1] H. Banuri, M. Alam, S. Khan, J. Manzoor,

B. Ali, Y. Khan, M. Yaseen, M. Tahir, T. Ali, Q. Alam,

and X. Zhang, “An android runtime security policy

enforcement framework,” Personal and Ubiquitous

Computing, pp. 1–11, 2010, 10.1007/s00779-011-0437-6.

[Online]. Available: http://dx.doi.org/10.1007/s00779-

011-0437-6

[2] D. Barrera, J. Clark, D. McCarney, and P. van

Oorschot, “Understanding and improving app installation

security mechanisms through empirical analysis of

android,” in Workshop on Security and Privacy in

Smartphones and Mobile Devices (SPSM). ACM, 2012.

[3] A. Bartel, J. Klein, M. Monperrus, and

Y. Traon, “Automatically securing permission-based

software by reducing the attack surface - an application

to android,” Arxiv preprint arXiv:1206.5829, 2012.

[4] A. Chaudhuri, “Language-based security on

android,” in Proceedings of the ACM SIGPLAN Fourth

Workshop on Programming Languages and Analysis for

Security, ser. PLAS ’09. New York, NY, USA: ACM,

2009, pp. 1–7. [Online]. Available: http://doi.acm.org/-

10.1145/1554339.1554341

[5] E. Chin, A. Felt, K. Greenwood, and

D. Wagner, “Analyzing inter-application communication

in android,” in Procs. of the 9th Annual International

Conference on Mobile Systems, Applications, and

Services, 2011.

[6] M. Conti, V. Nguyen, and B. Crispo, “Crepe:

Context-related policy enforcement for android,” in

Information Security, ser. Lecture Notes in Computer

Science, M. Burmester, G. Tsudik, S. Magliveras, and

I. Ilic, Eds. Springer Berlin / Heidelberg, 2011, vol. 6531,

pp. 331–345, 10.1007/978-3-642-18178-8_29. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-18178-

8_29

[7] W. Enck, M. Ongtang, and P. McDaniel,

“Understanding android security,” Security Privacy,

IEEE, vol. 7, no. 1, pp. 50 –57, jan.-feb. 2009.

[8] A. P. Felt, E. Chin, S. Hanna, D. Song, and

D. Wagner, “Android permissions demystified,” in

Proceedings of the 18th ACM conference on Computer

and communications security, ser. CCS ’11. New York,

NY, USA: ACM, 2011, pp. 627–638. [Online].

Available: http://doi.acm.org/10.1145/2046707.2046779

[9] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin,

and D. Wagner, “Android permissions: User attention,

comprehension, and behavior,” UC Berkeley, Tech. Rep.

UCB/EECS-2012-26, 2012.

[10] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin,

and D. Wagner, “Android permissions: User attention,

comprehension, and behavior,” 2012.

[11] Google. Android Permissions, available at

http://developer.android.com/guide/topics/manifest/permi

ssion-element.html.

[12] Google. Google play, available at

https://play.google.com/.

[13] Google. (2012, Oct) Android Security - Using

Permissions,

http://developer.android.com/guide/topics/security/permi

ssions.html.

[14] V. Moonsamy, M. Alazab, and L. Batten,

“Towards an understanding of the impact of advertising

on data leaks,” to appear in ’International Journal of

Security and Networks (IJSN)’, 2012.

[15] M. Nauman and S. Khan, “Design and

implementation of a fine-grained resource usage model

for the android platform,” 2010.

[16] Paul Brodeur (Leviathan Security Group),

“Zero-permission android applications, available at

http://leviathansecurity.com/blog/archives/17-zero-

permission-android-applications.html,” April 2012.

[17] P. Pearce, A. Felt, G. Nunez, and D. Wagner,

“Addroid: Privilege separation for applications and

advertisers in android,” in Proceedings of AsiaCCS,

2012.

[18] R. Sandhu, E. Coyne, H. Feinstein, and

C. Youman, “Role-based access control models,”

Computer, vol. 29, no. 2, pp. 38 –47, Feb 1996.

[19] S. Shekhar, M. Dietz, and D. Wallach, “Adsplit:

Separating smartphone advertising from applications,”

Arxiv preprint arXiv:1202.4030, 2012.

5

[20] W. Shin, S. Kiyomoto, K. Fukushima, and

T. Tanaka, “A formal model to analyze the permission

authorization and enforcement in the android

framework,” in Social Computing (SocialCom), 2010

IEEE Second International Conference on, aug. 2010, pp.

944 –951.

[21] W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima,

and T. Tanaka, “A small but non-negligible flaw in the

android permission scheme,” in Policies for Distributed

Systems and Networks (POLICY), 2010 IEEE

International Symposium on, july 2010, pp. 107 –110.

[22] T. Cannon (from Via Forensics), “No

permission android app gives remote shell, available at

https://viaforensics.com/security/nopermission-android-

app-remote-shell.html,” December 2011.

