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Abstract. The Android platform uses a permission system model to
allow users and developers to regulate access to private information and
system resources required by applications. Permissions have been proved
to be useful for inferring behaviors and characteristics of an applica-
tion. In this paper, a novel method to extract contrasting permission
patterns for clean and malicious applications is proposed. Contrary to
existing work, both required and used permissions were considered when
discovering the patterns. We evaluated our methodology on a clean and
a malware dataset, each comprising of 1227 applications. Our empirical
results suggest that our permission patterns can capture key differences
between clean and malicious applications, which can assist in character-
izing these two types of applications.

Keywords: Android Permission, Malware Detection, Contrast Mining,
Permission Pattern.

1 Introduction

The increase in Android smartphone sales has led to a surge in the number
of applications available on application markets. Additionally, the freedom of
installing applications from third-party markets, rather than being constrained
to only the official market, has boosted the number of Android applications.
This, in turn, has incentivized application developers to churn out applications
and upload them on different third-party markets [1]. As no application review
process is in place for third-party markets, the cleanliness of these applications
cannot be guaranteed [2]. Users can only rely on the description and permissions
listed on the application market to decide whether or not they should install an
application.

Android platform employs a permission system to restrict application privi-
leges in order to secure a user’s private information [3]. However, its effective-
ness highly depends on the user’s comprehension of permission approval [4]. The
permissions requested during application installation are referred to as required
permissions. Unfortunately, as noted by Felt et al. [4], not all the users read or
understand the warnings of required permissions shown during installation. In
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order to have a better understanding of permission requests, Frank et al. [3] pro-
posed a probability model to identify the common required permission patterns
for all Android applications. Zhou and Jiang [5] listed the top required permis-
sions for both clean and malicious applications, but only individual permissions
were considered by frequency counting.

We observed that the following issues have been overlooked in the area of
Android permissions analysis:

e Contrasting Permissions Patterns. Despite the numerous research endeav-
ors [4,6,7] aimed at interpreting Android permissions and their combinations,
there is no existing work that aims at identifying the permission differences
between clean and malicious Android applications.

e Used Permission. No work has considered incorporating used permissions,
which can be extracted from static analysis by the Andrubis system [8], into
the permission patterns. Compared to required permissions, used permissions
provide a better understanding of the permissions that are needed by an
application in order to function properly. Whenever an API call is invoked
during the execution of an application, the Android platform will verify if
the API call is permission-protected before proceeding to execute the call;
such permissions are referred to as used permissions.

With the availability of the Andrubis framework and the advances in data min-
ing, it is now possible to consider both required and used permissions, together
with the use of our new pattern mining algorithm to generate contrasting per-
mission patterns for clean and malicious applications. While most of the existing
work is based on required permissions, used permissions are equally important
and should be considered to better differentiate between permission patterns for
clean and malicious applications. Therefore, our aim is to identify a set of unique
and common permission patterns that can contrast clean applications from ma-
licious ones.

In order to apply our pattern mining technique to identify the desired con-
trast permission patterns, a clean and a malware dataset are considered. In 2012,
Zhou and Jiang [5] published the first benchmark dataset of malicious applica-
tions, which comprises of 49 malware families. The applications were collected
from third-party markets between August 2010 and October 2011. As there
was no clean dataset publicly available, we proceeded to collect our own clean
applications that were released during the same time period as the malware
dataset. The clean applications were downloaded from two popular third-party
application — markets:  SlideME  (http://slideme.org) and  Pandaapp
(http://android.pandaapp.com). The applications were sorted based on the num-
ber of downloads and the ratings given by the users, and only the top ones were
selected.

To our knowledge, this work reports one of the first pattern mining methods
that can generate unique and common permission patterns, which include both
required and used permissions, for clean and malicious applications. The novelty
and contributions of this work can be summarized as follows:



Identifying Contrast Permission Patterns for Android Applications 71

e To find the permission combinations, a new contrast permission pattern
mining algorithm (CPPM) is proposed to identify the permission patterns
that can significantly differentiate between clean and malicious applications.

e To our knowledge, this is the first work to incorporate both required and used
permissions to generate permission patterns. Based on our empirical results,
it can be deduced that such patterns can help to contrast clean applications
from malicious ones.

The rest of the paper is organized as follows: Section 2 briefly reviews the An-
droid platform, the permission system and the current research work in malware
detection. In Section 3, we present our initial analysis on the collected datasets
using statistical methods followed by the proposed contrast pattern mining algo-
rithm. The experiments and the obtained results are then reported in Section 4
together with a discussion of our findings. Finally, Section 5 concludes the paper
together with our future work.

2 Background and Related Work

2.1 Android and Its Permission System

Android is a Linux-based Operating System (OS) which was designed and devel-
oped by the Open Handset Alliance in 2007 [9]. The Android platform is made
up of multiple layers consisting of the Linux-kernel, libraries and an application
framework with built-in applications [10]. Additional applications can be down-
loaded and installed from either official market, Google Play [11], or third-party
markets.

Google applies the permission system as a measure to restrict access to priv-
ileged system resources. Developers have to explicitly mention the permissions,
that require user’s approval, in the AndroidManifest.xml file. Android adopts
an ‘all-or-nothing’ permission granting policy. Hence, the application is installed
successfully only when the user chooses to grant access to all of the required
permissions.

There are currently 130 official Android permissions and they are classified
into four categories: Normal, Dangerous, Signature and Signature OrSystem [12].

e Normal permissions do not require the user’s approval but they can be
viewed after the application has been installed.

e Dangerous permissions require the user’s confirmation before the installation
process starts; these permissions have access to restricted resources and can
have a negative impact if used incorrectly.

e A permission in Signature category is granted without the user’s knowledge
only if the application is signed with the device manufacturer’s certificate.

e The SignatureOrSystem permissions are granted only to the applications
that are in the Android system image or are signed with the device manu-
facturer’s certificate. Such permissions are used for special situations where
the applications, built by multiple vendors, are stored in one system image
and share specific features.
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After an application is installed, a set of Application Programming Interfaces
(APIs) are called during the runtime. Each API call is associated with a particu-
lar permission. When an API call is made, the Android OS checks whether or not
its associated permission has been approved by the user. Only a matching result
will lead to the execution of the API call. In this way, the required permissions
are able to protect the user’s privacy-relevant resources from any unauthorized
operations. However, it cannot deter malware developers from declaring addi-
tional required permissions for their applications. From the above observation,
several studies [3,6,7] have tried to identify the common required permissions
that are frequently declared by Android application developers.

2.2 Android Permissions and Related Work

Understanding Android Permissions. Frank et al. [3] selected 188, 389 ap-
plications from the official market and analyzed the combinations of permission
requests by these applications using a probabilistic model. Bartel et al. [13]
proposed an automated tool that can statistically analyze the methods defined
in an application and subsequently, generate the permissions required by the
application. This, in turn, ensured that the user did not grant access to unnec-
essary permissions when installing the application. A model designed by Sanz
et al. [14] was based on features that comprised solely of Android permissions,
which helped to understand the Android permission system and the patterns for
normal permission requests.

Permission-Based Malware Detection. Malware detection is an emerging
topic in the study of the Android platform with many successful achievements;
however, not much attention has been paid on detection using permission pat-
terns. Chia et al. [7] argued that the current user-rating system is not a reliable
source of measurement to predict whether or not an application is malicious.
Their dataset consisted of 650 applications from the official market and 1,210
applications from a third-party market. The required permissions were extracted
from the dataset, together with other application-related information to develop
a risk signal mechanism for detecting malware.

Sahs and Khan [15] focused on feature representation as one of the challenges
to malware detection. The features included: (i) permissions extracted from man-
ifest files and (ii) control flow graphs for each method in an application. Each
feature was processed independently using multiple kernels and the authors ap-
plied a one-class Support Vector Machine to train the classifiers. However, the
evaluation results showed that the common features existing in both the clean
and malware datasets affected the detection error rate.

Wu et al. [16] put forward a static feature-based technique that can aid to-
wards malware detection. First, they applied K-means algorithm to generate
the clusters and used Singular Value Decomposition to determine the number
of clusters. In the second step, they classified clean and malicious applications
using the k-Nearest Neighbor (kKNN) algorithm.
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Zhou et al. [17] proposed a two-layered system, known as DroidRanger and
used “permission-based behavioral foot-printing and heuristics-based filtering”.
The authors observed that the permissions extracted from the malicious appli-
cations gave an insight into uncommon permission requests by some malware
families.

In [14], Sanz et al. proposed to extract the permissions and the hardware
features to build the feature set. As a result, they observed that clean applications
required two to three permissions on average, but some of malicious applications
only had one permission and were still able to carry out the attack.

2.3 Summary and Problem Identification

Malware proliferation is rising exponentially and the attack vectors used by
malware authors are getting more sophisticated. Current solutions proposed to
thwart attacks by malicious applications will struggle to keep up with the in-
crease of malware. The Android platform relies heavily on its permission system
to control access to restricted system resources and private information stored on
the smartphone. However, there is no evidence providing a clear understanding
on the key differences for permissions in clean and malicious applications.
Thus, we identify the following research questions:

e How can we measure the similarities and differences between permission
requests for clean and malicious applications?

e What method can be used to incorporate used permissions in the permission
patterns?

To answer these questions, we have extended the current statistical method
used for identifying both required and used permission patterns in Android ap-
plications. A contrast pattern mining technique has been proposed to identify
the most useful permission combinations that can distinguish between clean and
malicious applications.

3 Mining Contrast Permission Patterns

3.1 Experimental Dataset

For our malware dataset, we used Zhou and Jiang’s [5] collection of 1227 mali-
cious applications, which comprises of 49 malware families. These were collected
from third-party markets between August 2010 and October 2011. In order to
maintain the same timeline as the malware dataset, we proceeded to collect
our set of 1227 clean applications that were released during the same period
as the malicious ones. The clean applications were downloaded from two pop-
ular third-party application markets: SlideME (http://slideme.org) and Pan-
daapp (http://android.pandaapp.com). The applications were sorted based on
the number of downloads and the ratings given by the users, and only the top
ones were selected.
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3.2 Statistical Analysis on Android Permissions

Statistical analysis has been widely used to analyze Android permissions. Ac-
cordingly, we started our work with an initial analysis on the clean and malware
datasets using frequency counting and extended Zhou and Jiang’s work [5] to
explore used permissions. A novel contrast pattern mining algorithm is then
presented to identify specific permission patterns that differentiate clean appli-
cations from malicious ones.

We employed statistical analysis to study both required and used permissions
for clean applications as well as malicious ones. Based on the aforementioned two
types of permissions for clean and malicious applications, we further generated
the following four sub-datasets: (1) Required permissions for clean applications;
(2) Required permissions for malicious applications; (3) Used permissions for
clean applications; and (4) Used permissions for malicious applications. Direct
frequency counting was employed on all four sub-datasets to find out the most
popular permissions required or used.

By comparing the top 20 required permissions for clean and malicious appli-
cations listed in Table 1, we found that malicious applications requested a total
of 14,758 permissions, in contrast to the 4,470 permissions requested by clean
applications. Among these permissions, we found some of them only appeared
in one dataset, in other words, those permissions were only required or used
by clean applications but not malicious ones, and vice versa. We refer to these
permissions as the ‘unique permissions’. Similarly, we name those permissions
that appear in both clean and malware datasets the ‘common permissions’. In
total, there are 33 unique required permissions for clean applications and 20 for
malicious ones; and also 70 common required permissions. Another 5 permis-
sions were never requested by any application. For used permissions, there are
9 unique ones for clean applications and only 4 for malicious ones. The number
of common used permissions dropped to 28, and a large number of 87 permis-
sions was never used by any application. The four most frequently requested
common permissions by both clean and malicious applications are: INTERNET,
ACCESS_COARSE_LOCATION, WRITE_EXTERNAL_STORAGE and VIBRATE.

In contrast, among the top 20 required permissions, 9 of them appeared fre-
quently in the malware dataset. Moreover, when comparing the top 20 used
permissions in clean and malicious applications in Table 2, we observed that 16
out of 20 popular used permissions were common in both datasets.

Statistical analysis such as direct frequency counting is suitable for identifying
single permissions that are popular in each sub-dataset. However, it still requires
further manual checking to confirm the obtained permission lists for clean and
malicious applications. This, in turn, further complicates the counting process
if permission combinations are to be considered instead of individual permis-
sions. Therefore, we extended the analysis of Android permissions by proposing
a contrast pattern mining algorithm.
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Table 1. Top 20 Required Permissions by Clean and Malicious Applications

Clean Applications Malicious Applications
Required Permission Frequency Required Permission Frequency
INTERNET 1121 INTERNET 1199
ACCESS NETWORK STATE 663 ACCESS COARSE LOCATION 1146
READ PHONE STATE 391 VIBRATE 994
WRITE EXTERNAL STORAGE 362 WRITE EXTERNAL STORAGE 823
ACCESS COARSE LOCATION 236 READ SMS 779
VIBRATE 210 WRITE SMS 762
WAKE LOCK 188 READ CONTACTS 680
ACCESS FINE LOCATION 162 BLUETOOTH 633
GET TASKS 125 WRITE CONTACTS 542
SET WALLPAPER 102 DISABLE KEYGUARD 491
ACCESS WIFI STATE 64 WAKE LOCK 471
RECEIVE BOOT COMPLETED 60 RECORD AUDIO 461
READ CONTACTS 58 ACCESS FINE LOCATION 446
WRITE SETTINGS 45 ACCESS NETWORK STATE 416
CAMERA 43 READ PHONE STATE 414
CALL PHONE 42 SET ORIENTATION 413
SEND SMS 34 CHANGE WIFI STATE 384
RESTART PACKAGES 32 READ LOGS 361
RECEIVE SMS 31 BLUETOOTH ADMIN 342
RECORD AUDIO 27 RECEIVE BOOT COMPLETED 325

3.3 Contrast Permission Pattern Mining

In order to discover a set of permission patterns that can visibly show contrast
between clean and malicious applications, we propose the Contrast Permission
Pattern Mining (CPPM) method. The output permission patterns were expected
to have the ability to indicate the difference between the clean and malicious ap-
plications. CPPM was designed to process more than one dataset and take both
individual and combined permissions and their combinations into consideration.
Two major processes were involved in CPPM: (1) candidate permission itemset
generation, and (2) contrast permission pattern selection, as illustrated in Fig. 1.

1. Candidate Permission Itemset Generation

The purpose of this process is to obtain a number of candidate permission
combinations that are likely to be the expected contrast patterns. CPPM
takes at least two datasets as input. In our case two datasets were loaded,
each of which contained either clean or malicious applications. We gener-
ated the candidate permission itemsets from every dataset using the same
procedure, which included the following two steps:

Apriori-Based Itemset Enumeration. Given Dz is one of the input
datasets with either required or used permissions, which contains n applica-
tions. Let I = {A,B,C...} be the set of possible items in Dz. Each item
can be considered as a permission required or used by an application and
an itemset is formed by a set of items (permissions required or used). The
Apriori-based approach [18] enumerates candidate itemset from the simplest
structure with only a single item. Based on this single item, a more complex
itemset is then obtained by adding new items. This joining operation is re-
peated continuously to increase the number of the items in the itemsets. In
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Table 2. Top 20 Used Permissions by Clean and Malicious Applications

Clean Applications

Malicious Applications

Used Permission Frequency Used Permission Frequency
INTERNET 1029 INTERNET 1161
WAKE LOCK 816 ACCESS COARSE LOCATION 1125
ACCESS NETWORK STATE 738 VIBRATE 954
VIBRATE 608 WAKE LOCK 826
READ PHONE STATE 457 ACCESS WIFI STATE 584
ACCESS COARSE LOCATION 372 ACCESS NETWORK STATE 519
SET WALLPAPER 126 READ SMS 473
ACCESS FINE LOCATION 116 WRITE CONTACTS 426
GET ACCOUNTS 98 READ PHONE STATE 354
ACCESS WIFI STATE 85 RECORD AUDIO 319
READ SMS 82 SET WALLPAPER 297
RESTART PACKAGES 65 ACCESS FINE LOCATION 199
GET TASKS 61 GET ACCOUNTS 178
CHANGE CONFIGURATION 55 GET TASKS 124
RECEIVE SMS 37 RECEIVE BOOT COMPLETED 111
FLASHLIGHT 37 ACCESS CACHE FILESYSTEM 101
WRITE CONTACTS 34 WRTIE OWNER DATA 59
RECEIVE BOOT COMPLETED 23 CHANGE CONFIGURATION 52
WRTIE OWNER DATA 12 READ HISTORY BOOKMARKS 49
WRITE SETTINGS 10 EXPAND STATUS BAR 41

each iteration, one new item is tentatively added into the existing candidate
itemset. However, the Apriori-based approach can generate a large number
of candidate itemsets with high computational cost. To alleviate this prob-
lem, a support-based pruning technique is employed to reduce the number
of candidate itemsets and consequently, the experimental time.
Support-Based Candidate Pruning. Support is usually used to measure
the occurrence frequency of a certain item or itemset in a dataset. Let A, B C
I be two items, and {4, B} forms a candidate itemset. The support of the
candidate itemset {A, B} can be calculated by:

number of applications that contain A and B in Dx

supp(A, B) = (1)

total number of applications in Dx

The candidate itemset { A, B} is considered as frequent only if supp(A, B) >
Osupp, Where dgypp is user-specified minimum support threshold. In classic
pattern mining methods, only the frequent itemset is considered. Any item-
set with a lower support than the pre-determined threshold is treated as
infrequent and discarded. However, in our case, the statistical analysis re-
sults showed most of the unique permissions were requested or used by few
applications. This indicated that they have low support value. In order to
inadvertently miss any valuable patterns, we decided to take both frequent
and infrequent candidate itemsets, but only used frequent ones to generate
new candidate itemsets to cut down the computational cost.

. Contrast Permission Pattern Selection

The permission itemsets obtained from the previous steps need to be reduced
according to the pre-defined selection criteria. This process guarantees that
the output itemsets are highly contrasted between clean and malicious ap-
plications. The contrasts are shown by the different occurrence behaviors
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Fig. 1. CPPM-based Framework

in two datasets. If one permission itemset is frequent in one dataset, it is
often considered to carry more common features than the infrequent ones.
Therefore, the selection of specific contrast permission pattern is based on
comparison of its supports between two datasets. The bigger the difference
is in support values, the greater the contrast a permission pattern has.

Given one candidate permission itemset {A, B} and its supports in clean
and malware datasets, supp(A, B)ciean and supp(A, B)maticious, calculate
the difference by dif f (A, B) = supp(A, B)cican — supp(A, B)malicious- Then,
{4, B} is identified as a contrasted permission pattern only if dif f(A, B) >
Odiff, where dqiry is a user-specified minimum support difference. All the
candidate permission itemsets need to be tested using this approach, and
the ones with big support difference will be selected as the final output
contrast permission patterns.

4 Experiments and Results

4.1 Experiment Settings

According to the statistical analysis not all the permissions were required or used.
Hence, to evaluate the proposed CPPM algorithm, we ignored the permissions
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Table 3. Four Sub-datasets Used in CPPM Experiments

Dataset Permission involved Permission Discarded
(i) Clean Required 103 27
(#¢) Malicious Required 90 40
(4i7) Clean Used 37 93
(iv) Malicious Used 31 99

that were not required or used in each sub-datasets respectively. Table 3 gives
more details of the four new sub-datasets. The statistical analysis results also
showed that only a small set of permissions had support that were greater than
0.1 (10%), so we followed the previous studies [19-21] to set 0.05 as an acceptable
value for minimum support threshold for all four sub-datasets in CPPM. The
minimum support difference threshold was set to be 0.15 (15%) and applied
to filter out itemsets that were highly contrasted between clean and malicious
applications.

4.2 Contrast Permission Patterns

Among the generated permission patterns, we found that 23 distinct permissions
were present in the highly contrasted permission combinations as listed in Ta-
ble 4. We classified the permissions based on the following categories: normal,
Dangerous, Signature and SignatureOrSystem. We recorded 6 permissions be-
longing to the Normal category, 15 permissions for the Dangerous category and
1 permission each for the Signature and SignatureOrSystem category.

We found that the generated permission combinations were correlated and
differed between clean and malicious applications. Based on the experimental
results, we recorded 56 required permission patterns that were unique to the
malware dataset, 31 used permission patterns that only appeared amongst mal-
ware, 17 required permission patterns and 9 used permission patterns that were
present in both clean and malware dataset. These findings are presented as per-
mission patterns (described in Table 5) which are listed in Tables 6-10, and
summarized below.

Unique Required Permission (URP) Patterns. In Table 6 and 7, we pre-
sented the permission patterns that were frequently required by the applications
in our dataset. It should be noted that these required permission patterns were
unique to the malware dataset only; hence the support value for the clean ap-
plications was 0.

In Table 6, the top 15 permission combinations, where the first permission in
the listed patterns belonged to the normal permissions category, are presented.
The permission combinations from URPSet; and U RPSet, were both required
by more than 60% of the malware. In fact, we found that the INTERNET permis-
sion (pms0001) is frequently requested along with other permissions and their
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Table 4. Permission Index

Permission Category Permission ID Permission Name

Normal pms0001 INTERNET
Normal pms0006 ACCESS NETWORK STATE
Normal pms0007  VIBRATE
Normal pms0012 RESTART PACKAGES
Normal pms0013 RECEIVE BOOT COMPLETED
Normal pms0023 ACCESS WIFI STATE
Dangerous pms0002  ACCESS FINE LOCATION
Dangerous pms0003 WAKE LOCK
Dangerous pms0004 WRITE EXTERNAL STORAGE
Dangerous pms0005 READ PHONE STATE
Dangerous pms0008 READ CONTACTS
Dangerous pms0011 READ LOGS
Dangerous pms0020 ACCESS COARSE LOCATION
Dangerous pms0021 SEND SMS
Dangerous pms0022 GET TASKS
Dangerous pms0024  CHANGE WIFI STATE
Dangerous pms0028  WRITE CONTACTS
Dangerous pms0029 RECEIVE SMS
Dangerous pms0030 READ SMS
Dangerous pms0031 WRITE SMS
Dangerous pms0036 CALL PHONE
Signature pms0010 FACTORY TEST

SignatureOrSystem pms0052 INSTALL PACKAGES

Table 5. Types of Permission Patterns

Permission Patterns Description

Unique Required Permission (URP) Required permission patterns
present only in malware dataset
Unique Used Permission (UUP) Used permission patterns
present only in malware dataset
Common Required Permission (CRP) Required permission patterns
present in both clean and malware datasets
Common Used Permission (CUP) Used permission patterns
present in both clean and malware datasets

support values are relatively high. The permission combination, INTERNET and
RECEIVE BOOT COMPLETED were present in 55% of the malware dataset. Other
such patterns involving the INTERNET permission are listed in Table 6.

In Table 7, we listed the patterns that can have an impact on the following
actions: access location information, read/write/send and receive SMS, access to
contact list, write to external storage and access to phone state.

Unique Used Permission (UUP) Patterns. In Table 8, the combinations
of the used permissions that are unique to the malware dataset only are reported.
It can be noted that the INTERNET permission is included in the top 3 permission
combinations, UU PSet; to UUPSets and appears in over 40% of the malware
samples.
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Table 6. Unique Required Permission Sets in Malware Dataset (Normal Permissions)

Permission Set Support Permission Set ID
Clean Malware

pms0001, pms0005, pms0023 0 0.6309 URPSety
pms0001, pms0006, pms0023 0 0.6031 URPSets
pms0001, pms0013 0 0.5542 URPSets
pms0006, pms0013 0 0.5168 URPSety
pms0006, pms0031 0 0.4964 URPSets
pms0001, pms0021 0 0.4312 URPSetg
pms0013, pms0023 0 0.4263 URPSetr
pms0021, pms0029 0 0.3701 URPSetsg
pms0004, pms0013 0 0.3660 URPSetg
pms0001, pms0005, pms0020 0 0.3562 URPSetio
pms0001, pms0005, pms0006, pms0007 O 0.3497 URPSeti1
pms0001, pms0004, pms0020 0 0.3122 URPSetio
pms0023, pms0024 0 0.3097 URPSeti3
pms0006, pms0008 0 0.2975 URPSet14
pms0013, pms0031 0 0.2943 URPSetis

Table 7. Unique Required Permission Sets in Malware Dataset (Danger-
ous/Signature/SignatureOrSystem Permissions)

Permission Set Support Permission Set ID
Clean Malware

pms0002, pms0005, pms0020 0 0.2690 URPSetis
pms0002, pms0004, pms0020 0 0.2576 URPSeti7
pms0002, pms0005, pms0023 0 0.2307 URPSetisg
pms0002, pms0004, pms0023 0 0.2234 URPSetig
pms0030, pms0036 0 0.3228 URPSetog
pms0021, pms0036 0 0.3163 URPSetar
pms0031, pms0036 0 0.2690 URPSetaz
pms0029, pms0036 0 0.2674 URPSetas
pms0021, pms0028 0 0.2519 URPSetoy
pms0008, pms0030 0 0.3269 URPSetos
pms0008, pms0021 0 0.2894 URPSetog
pms0008, pms0031 0 0.2649 URPSetar
pms0008, pms0029 0 0.2429 URPSetag
pms0028, pms0036 0 0.2413 URPSetag
pms0004, pms0006, pms0023 0 0.4475 URPSetsg
pms0004, pms0030 0 0.3896 URPSets
pms0004, pms0005, pms0020 0 0.3106 URPSets2
pms0004, pms0021 0 0.2462 URPSetss
pms0005, pms0013 0 0.5453 URPSetsy
pms0005, pms0031 0 0.5094 URPSetss
pms0005, pms0021 0 0.4190 URPSetsg

Another interesting observation is the presence of the READ LOGS (pms0011)
permission in over half of the permission patterns presented in Table 8. It is often
combined with the INTERNET (pms0001) and ACCESS FINE LOCATION (pms0002)
permissions. The remaining patterns include combinations of network-related
and SMS-related permissions.

Common Required Permission (CRP) Patterns. Previously, we presented
the permission patterns that were unique to malicious applications only. In Ta-
ble 9, we listed the permission combinations that appeared in both clean and
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Table 8. Unique Used Permission Sets in Malware Dataset

Permission Set Support Permission Set ID
Clean Malware

pms0001, pms0005, pms0006, pms0007 O 0.5542 UUPSet
pms0001, pms0005, pms0011 0 0.4687 UUPSets
pms0001, pms0006, pms0011 0 0.4320 UUPSets
pms0005, pms0006, pms0011 0 0.4312 UUPSety
pms0001, pms0007, pms0011 0 0.4149 UUPSets
pms0005, pms0007, pms0011 0 0.4133 UUPSetg
pms0006, pms0007, pms0011 0 0.3855 UUPSetr
pms0001, pms0002, pms0005, pms0007 0O 0.3423 UUPSetg
pms0001, pms0021 0 0.3358 UUPSetg
pms0001, pms0002, pms0011 0 0.2845 UUPSetio
pms0002, pms0005, pms0011 0 0.2845 UUPSet11
pms0001, pms0002, pms0006, pms0007 O 0.2829 UUPSetio
pms0002, pms0005, pms0006, pms0007 0O 0.2829 UUPSeti3
pms0002, pms0006, pms0011 0 0.2755 UUPSetia
pms0001, pms0020 0 0.2600 UUPSeti5

Table 9. Common Required Permission Sets in Both Clean and Malware Datasets

Permission Set Support Difference Permission Set ID
Clean Malware

pms0001, pms0005 0.3121 0.9307 —0.6186 CRPSety
pms0005 0.3187 0.9340 —0.6153 CRPSety
pms0005, pms0023 0.0236 0.6308 —0.6072 CRPSets
pms0001, pms0023 0.0505 0.6349 —0.5844 CRPSety
pms0023 0.0522 0.6349 —0.5827 CRPSets
pms0006, pms0023 0.0399 0.6031 —0.5632 CRPSetg
pms0005, pms0006 0.2421 0.7905 —0.5485 CRPSetr
pms0001, pms0005, pms0006 0.2421 0.7897 —0.5477 CRPSetg
pms0001, pms0004, pms0005 0.1328 0.6544 —0.5216 CRPSetg
pms0004, pms0005 0.1337 0.6553 —0.5216 CRPSetqo
pms0004, pms0005, pms0006 0.1149 0.5623 —0.4474 CRPSetq11
pms0004, pms0023 0.0293 0.4637 —0.4344 CRPSetia

malware datasets. However, it can be observed based on the support value differ-
ence that the permission patterns are more prevalent in the malware dataset, as
shown by the negative support difference values. We identified four permissions:
INTERNET (pms0001), READ PHONE STATE (pms0005), ACCESS NETWORK STATE
(pms0006) and ACCESS WIFI STATE (pms0023) that were present in different
permission combinations and appeared in more than 40% of the malware dataset.

Common Used Permission (CUP) Patterns. In Table 10, we presented
the used permission combinations that appeared in both the clean and mal-
ware datasets. Although both datasets had the same permission patterns, the
ones in the malware dataset have higher support values. The patterns include
the following permissions: INTERNET (pms0001), READ PHONE STATE (pms0005),
ACCESS NETWORK STATE (pms0006), VIBRATE (pms0007) and lastly, READ LOGS
(pms0011). The same support difference for CUPSet; and CUPSets indicated
that the occurrence of these permission combinations are highly relevant. More-
over, we observed that even though READ LOGS (pms0011) permission did not
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Table 10. Common Used Permission Sets in Both Clean and Malware Datasets

Permission Set Support Difference Permission Set
Clean Malware 1D
pms0001, pms0005 0.2991 0.9152 —0.6161 CUPSety
pms0005 0.3032 0.9169 —0.6137 CUPSety
pms0001, pms0005, pms0006 0.2363 0.7718 —0.5355 CUPSets
pms0005, pms0006 0.2363 0.7718 —0.5355 CUPSety
pms0001, pms0005, pms0007 0.2168 0.6512 —0.4344 CUPSets
pms0005, pms0007 0.2192 0.6528 —0.4336 CUPSetg
pms0005, pms0011 0.0538 0.4686 —0.4148 CUPSetr
pms0011 0.0693 0.4760 —0.4067 CUPSets
pms0001, pms0011 0.0685 0.4711 —0.4026 CUPSetg

appear in the common required permission patterns, but it appeared in three
common used permission patterns READ LOGS, CU PSet7; - CUPSety.

4.3 Discussion

Observations from Statistical Analysis. From our statistical analysis in
Section 3.2, we observed that the INTERNET permission remained the most re-
quired (97.72%) and used (94.62%) permission in our experimental dataset. We
also found, from Tables 1 and 2, that there was a significant difference in
the frequencies of required and used permissions for the clean and the malware
datasets. This further confirmed the observation made by Felt et al. in [22] that
both clean and malicious applications can be over-privileged. Till date, most of
the proposed solutions have only considered required permissions extracted from
the AndroidManifest.xml files. From our statistical results, we argue that used
permissions should also be considered as part of the feature set and as such, can
aid towards malware detection.

Observations from Contrast Permission Patterns. In Section 4.2, we
present the most significant permission sets generated by contrast mining. We
found that a large number of required and used permission sets were unique in
malicious applications only. The same permission sets were non-existent in clean
applications, as shown by the 0 support value. This is a good indication that the
contrast permission sets can be further applied during the malware detection
phase to identify malicious applications. For normal required permissions, we
observed from Table 6 that the permission set IDs, URPSet; and URPSets
were required by 63% and 60% of the malicious applications in our dataset, re-
spectively. We deduced that this might be the case due to the fact that 25% of
our experimental malware samples (malicious applications) belong to the Droid-
KungFu3 malware family. As demonstrated in [23], malware samples classified
under DroidKungFu3 attempt to extract device ID, network-related information
and send all information back to the attacker’s server.

As for the Dangerous required permissions sets included in Tables 7, we
noticed several interesting permission sets on which we provide further expla-
nation. For permission set IDs URPSet1s and URPSet;7, we found that 25%
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of malicious applications required both ACCESS_FINE_LOCATION (pms0002) and
ACCESS_COARSE_LOCATION (pms0020) permissions. While pms0002 is used to
access to GPS location sources, pms0020 is used for location information re-
lated to network sources. However, the documentation [24] provided by Google
specifies that if a developer requires network and GPS location information,
they do not need to include both permissions in the application; only requesting
ACCESS_FINE_LOCATION should suffice. The presence of unused permission can
be exploited via permission inheritance during inter-component communications,
as explained in [25].

For the used permission sets that were unique in our malware dataset (Table
8), we observed that the permission set: INTERNET (pms0001), READ_PHONE_STATE
(pms0005), ACCESS_NETWORK_STATE (pms0006), VIBRATE (pms0007) with permis-
sion set ID UU PSet; was used by 55% of the malware samples. Interestingly, the
same permission set can be found in Table 6 under the permissionset ID U RPSetq1,
with the exception that it was required by only 35% of the malware samples.

Moreover, it can be noted from Table 8 that the READ_LOGS (pms0011) per-
mission was frequently associated with the permission sets and appeared in 25%
to 50% of the malware dataset. There was previously no indication that the
READ_LOGS (pms0011) permission was a highly used permission among mali-
cious applications as the permission did not appear in the Top 20 most Used
permission, in Table 2. This further consolidates our argument that permission
patterns cannot be generated by only considering the number of frequencies for
that particular permission.

Furthermore, we also noted that there are several permission sets which ap-
peared in both clean and malware datasets, shown in Tables 9 and 10. The
negative support difference given in the table shows that the permission sets were
more prevalent in malicious applications than in clean ones. We observed that
the top two permission sets, CRPSet; and CRPSet, in Table 9 and CU PSet;
and CUPSet;; in Table 10 are the same.

5 Conclusion

Android uses a permission system to control access to restricted resources on
smartphones. The permissions are indicative of the characteristics of an applica-
tions and as such, can be used to differentiate clean applications from malicious
ones. However, most of the existing work only focused on required permissions
and there is no extensive work on understanding key similarities and differences
in permission patterns between clean and malicious applications.

To address these aforementioned issues, in this paper we combined both re-
quired and used permissions to identify a set of unique and common contrast
permission patterns. Additionally, an efficient pattern mining method that can
identify contrasting permission patterns for our clean and malware datasets was
proposed. We observed that some permission sets were common in both datasets,
while others were unique to only the clean or the malicious dataset.

By applying support value to the set of permission patterns, we filtered out
the permission combinations that are less significant. Compared to Frank et
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al.’s work [3] where the authors had to simulate permission request data to test
their generated patterns, we applied our proposed methodology to combine the
required and used permissions and retained those which can be used to contrast
clean and malicious applications. Last but not least, since obfuscation methods
cannot be applied to Android permissions, the generated permission sets can be
used to contrast clean and malicious applications. In the future, we would like to
work on finding contrasting patterns that can differentiate between an original
application and a repackaged one.
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