
Int. J. Security and Networks, Vol. 7, No. 3, 2012 181

Copyright © 2012 Inderscience Enterprises Ltd.

Towards an understanding of the impact of
advertising on data leaks

Veelasha Moonsamy*, Moutaz Alazab and Lynn Batten
School of Information Technology,
Deakin University,
Australia
Email: v.moonsamy@research.deakin.edu.au
Email: m.alazab@deakin.edu.au
Email: lmbatten@deakin.edu.au
*Corresponding author

Abstract: Recent investigations have determined that many Android applications in both official
and non-official online markets expose details of the user’s mobile phone without user consent.
In this paper, for the first time in the research literature, we provide a full investigation of why
such applications leak, how they leak and where the data is leaked to. In order to achieve this, we
employ a combination of static and dynamic analysis based on examination of Java classes and
application behaviour for a data set of 123 samples, all pre-determined as being free from
malicious software. Despite the fact that anti-virus vendor software did not flag any of these
samples as malware, approximately 10% of them are shown to leak data about the mobile phone
to a third-party; applications from the official market appear to be just as susceptible to such
leaks as applications from the non-official markets.

Keywords: android; dynamic; static; data leak; DroidBox; advertising.

Reference to this paper should be made as follows: Moonsamy, V., Alazab, M. and Batten, L.
(2012) ‘Towards an understanding of the impact of advertising on data leaks’, Int. J. Security and
Networks, Vol. 7, No. 3, pp.181–193.

Biographical notes: Veelasha Moonsamy is currently doing her PhD at Deakin University,
Australia. Her research thesis focuses on the security architecture of the Android permission
system. She received her Bachelor (Hons) in Information Technology, majoring in IT Security
and Mathematical Modelling from Deakin University in 2011. Her research interests include
mobile technology, malicious software, machine learning algorithms and security protocols. She
is also an associate member of the Australian Computer Society.

Moutaz Alazab is a PhD research student at the Deakin University in the School of Information
Technology, Australia, with thesis title ‘Prevention and Detection of Mobile Malware’. He
received his Bachelor degree (Hons) in Computer Engineering from Al-Balqa Applied University
in 2009. He worked as a Systems and Network administrator in Jordan and at the University of
Ballarat, Australia. His research interests include mobile malware, computer malware, host and
network intrusion detection system, mobile digital forensic, reverse engineer and mobile ad-hoc
network. He has published research papers in different well-known international conferences and
journals.

Lynn Batten holds the Research Chair in Mathematics and is Director of Information Security
Research at Deakin University. She is a Fellow of the Australian Computer Society, a Graduate
of the Australian Institute of Company Directors and a Senior Member of the IEEE. Her research
interests cover a broad set of area in information security from cryptography to malicious
software and digital forensics.

1 Introduction

Android applications can now be downloaded from official
and non-official online markets. The sole official market is
administrated by Google (Google, 2012a) which regularly
tests the applications to make sure they do not contain
malicious binaries. In contrast, the applications available on
the non-official markets are managed by individuals and

businesses and are not checked to determine if they are
clean. While downloading applications from the non-official
markets therefore represents a known threat to users, the
attraction is that they offer unique applications not available
elsewhere (Mies, 2010). The numbers of applications
available and the numbers downloaded from both markets
are increasing at exponential rates (AppBrain, 2010;
Panzarino, 2011).

182 V. Moonsamy, M. Alazab and L. Batten

A major challenge in the development and provision of
applications for mobile phones has been the business model
(Dhar and Varshney, 2011); however, this now seems to be
solved by means of advertising revenue. Google offers
an advertisement software development kit (SDK) that
allows Android developers to add advertisements into
their applications to generate revenue (Apvrille, 2011).
Application developers earn revenue from in-application
advertisements and are thus encouraged to market their
application free of charge; in fact, the more advertising
libraries they embed in their applications, the higher the
revenue. However, embedded advertisements connect to the
operating system level and are difficult to remove once the
application is installed. Once an Android user clicks on an
advertisement, the system exposes a web browser, and a
website might then invoke collection of the international
mobile equipment identity (IMEI) code identifying the
mobile device; such a website may also invoke the
international mobile subscriber identity (IMSI) number
found in the SIM card. Researchers (Enck et al., 2010) and
(Pearce et al., 2012) have found applications in the
applications markets which send the phone identifier and
SIM card serial number to developers without the
knowledge of the mobile user; the current authors in
(Alazab et al., 2012) also discovered applications from the
Google market which leak these values.

While we may expect malicious applications to steal or
leak identifying device information to third-parties without
user permission, it is disturbing that applications classified
as non-malicious do so. Thus, the aim of the current paper is
to examine a set of applications, all identified as being non-
malicious, taken from both the official and non-official
markets, and examine them to see if they leak any data
identifying the android phone. Financial and games
applications are of particular interest to us since they are
often used in conjunction with sensitive data and may be a
target of attackers trying to steal money or gold. We expect
to see attack-resistant development and cautious use of such
applications by developers and users respectively; however,
we found that approximately 10% of our data set of clean
financial and games applications leaked private data about
the phone to a third-party without the knowledge of the
user.

Throughout the paper, we regularly make use of the
phrases ‘malicious application’, ‘clean application’ and
‘leaky application’ and so define them formally here:

 A Malicious application is an application specifically
designed to harm a computer or the software it is
running (Google, 2012b). Such behaviour is usually
identified by anti-virus software products.

 A Clean application is an application which has not
been identified as malicious.

 A Leaky application is an application which, unknown
to the user, sends data about the mobile hardware to a
third-party. A leaky application can be either clean or
malicious.

In this paper, we make the following contributions:

 We demonstrate that, without the knowledge of the
user, even applications considered to be clean can leak
data about the device to a third-party

 For applications in our data set that leak, we determine
what data is leaked, how, why, and where it is leaked
to.

The paper is organised as follows: in Section 2 we discuss
the research literature on Android permissions and the
connection between these and advertising libraries and
consider the work to date on examination of leaky
applications. Section 3 describes DroidBox, an open source
dynamic analysis tool designed to analyse Android
applications (see Lantz, 2011a)) which we use for dynamic
analysis of our data set. Section 4 describes the set of data
collected in our experiment. In Section 5, we present the
environmental set-up and, in Section 6, we provide a
comprehensive analysis of leaky applications. Finally in
Section 7, we draw conclusions.

2 Related work

In this section, we present some of the recent work related
to Android permissions, to in-application advertising
libraries and to data leaks. The reader is referred to Figure 1
in (Android Developers, 2012a) for an excellent illustration
of the components of an Android application.

2.1 Android permissions

The Android framework makes use of install-time
permissions in order to control access to restricted resources
on the smart device. These permissions are generally
defined in the AndroidManifest.xml file and require the user
to accept them upon application installation.

Felt et al. (2011b) investigate the effectiveness of
install-time permission systems in Android applications.
They demonstrate that such permissions can be
advantageous compared to the traditional user-based
permissions system; for example, the install-time
permission system ensures that a vulnerable application,
present in the host system, will not affect the functionalities
of other applications, whilst in the case of a traditional user-
based permissions system, all applications are treated
equally. However, the authors also found that users are so
frequently presented with warning messages about
permission requests that they tend to be careless about the
use of those permissions once granted. We demonstrate, in
our work, that application developers are similarly careless
about permissions since they are driven by the revenue
earned from in-application advertising.

In other work, Felt et al. (2011a) developed a tool,
Stowaway to detect over-privileged applications; these are
applications which have more permissions than actually
required to execute. They manually generate a permission
map for the entire Android system which defines the

 Towards an understanding of the impact of advertising on data leaks 183

relationship between an API call and the permission it
requires for execution. Stowaway includes a static analysis
component which takes as input an application,
disassembles it and parses through the Java classes to
collect the API calls defined in each method. In the next
step, the tool then compares the API call with the
permission map to check if the correct permission has been
assigned. It should be noted that Stowaway is an efficient
tool to ensure that application developers do not request
unnecessary permissions for their applications. However,
the tool cannot differentiate between the permissions that
can cause data leaks and those required for the execution of
the application.

2.2 Advertising libraries

In-application advertising is a major source of revenue for
application developers. The service is provided by
advertising companies such as Google Ads (Google Ads,
2012) and Admob (Admob, 2012) which distribute pre-
packaged advertising libraries to be embedded in existing
applications in order to allow the developers to earn
revenues. Fundamentally, advertising libraries inherit the
same permissions granted to their host applications.
Nevertheless, application developers also have the
possibility of including additional permissions which can be
used to enhance targeted-advertising, thereby generating
more revenue. Unfortunately, unnecessary permissions can
inadvertently introduce vulnerabilities within the
functionalities of the application as for example, causing
data to leak through advertisements.

Shekhar et al. (2012) investigate the idea of splitting the
host application and advertising into separate processes.
This means that the advertising libraries will no longer be
able to inherit the same permissions as the host application.
It also prevents malicious applications from being able to
generate fraudulent clicks in order to steal revenues from
application developers. In their framework, the authors
also examine the extent to which applications use their
permissions only for advertising purposes. The results
show that permissions such as internet and
READ_PHONE_STATE are widely used only for
advertisement; this observation agrees with the results from
our experiment.

The work of Pearce et al. (2012) looks into separating
the privilege of the host application from the embedded
advertising library. In order to effect this, they introduce a
new set of API calls and permissions to be used only within
advertising libraries. The authors claim that this change in
the Android framework will not require application
developers to embed advertising libraries anymore; instead,
the new set of API calls and permissions will be used to
instruct the applications to fetch the advertisements from
certain sites. This new framework would eliminate the need
for an application to request unnecessary permissions during
install-time in order to ensure that advertising libraries are
executing properly.

Grace et al. (2012) focus on the potential privacy and
security risks posed by advertising libraries. They collected
a dataset of 100,000 applications from the official market
and manually extracted the AndroidManifest.xml files in
order to separate the applications that used the internet
permission. Then they manually investigated the set of
approximately 52,000 applications with internet permission
to determine if the advertising libraries requested dangerous
permissions and to establish their impact on the related API
calls. In contrast, in our work, we first execute the
applications in our dataset and then by examining the log
files and AndroidManifest.xml files, we are able to deduce
if an application leaked device-related information via
advertising libraries.

2.3 Data leaks in android applications

As mentioned in Section 1, we consider a data leak to be an
event where an application reads private information and
sends it to a third-party without the primary user’s consent.

The work by Gibler et al. (2012), Chan et al. (2012),
Mann and Starostin (2011), Kim et al. (2012) applied static
analysis to identify data leaks in Android applications.
Gibler et al. (2012) proposed a framework to detect leaks of
personal information. They started by generating a
permission map, which included information about API
calls and the related permissions they require to execute; the
map also contained information about potential sources of
leaks. Next, they used the decompiled version of an
application to generate a call graph. They iterated repeatedly
to cover all possible execution paths of the application and
recorded the instances where external methods invoke
restricted information; hence identifying potential leaks and
their types. After evaluating their work on a set of 23,000
applications which were collected from two different non-
official markets, they found 9631 possible privacy leaks in
3258 applications. As for the work of Chan et al. (2012), the
authors parsed the AndroidManifest.xml files to collect the
requested permissions and then identified components, such
as activity and broadcast receiver, that are potential sources
of data leaks. They then applied inter-procedural control
flow searching for each component and followed the
information flow to confirm if the leaks actually occurred.

The work by Mann and Starostin (2011) and Kim et al.
(2012) investigated the occurrence of data leaks within the
Dalvik bytecode implementation. They began by generating
a reduced set of execution instructions in order to capture
the relevant information flow paths. Based on the
aforementioned set, the authors then manually traversed
each application, written in bytecode, to identify potential
sources of leaks.

While Chan et al. (2012), Mann and Starostin (2011),
Kim et al. (2012) and Desnos (2011) identify leaks, and
what is leaked, in this paper, we go further and determine
how the leaks occur and the destinations of the leaked data.
In our work, we reverse engineer the application package
files and statically analyse the Java version of the

184 V. Moonsamy, M. Alazab and L. Batten

applications in order to determine the occurrence of a leak
and its possible cause(s). Moreover, we further support
our experiment by dynamically executing the applications
from our dataset in a sandbox to monitor and record the
behaviours between an application and the operating system
during run-time, thus identifying the leaked information as
well as its destination.

In the next section, we expand further on the tool that
was used to perform the dynamic analysis.

3 DroidBox

In our previous paper (Alazab et al., 2012), we determined
that some clean applications in fact leaked private data
about the Android phone to a third-party without the
knowledge of the user. We suspected that this happened
because of a vulnerability in the permissions set-up and so
in using DroidBox in the current experiment, we focus on
analysis of permissions. In this section we describe the
features of DroidBox that were used to assist us with our
experiment.

DroidBox is an open source dynamic analysis tool and is
the extended version of TaintDroid, which was developed
by Enck et al. (2010). A thorough description of DroidBox
is available in the thesis of Lantz (2011) and also in Alazab
et al. (2012) and so we limit ourselves here to only those
details which are important for the current paper.

Figure 1 demonstrates the architecture of DroidBox
showing the several phases during the analysis of an
Android application. First, the sample is located in the
windows host as an .apk or .jar extension. Then DroidBox
performs static analysis to unzip each sample by using
Androguard (Desnos, 2011); DroidBox relies on
Monkeyrunner (Android Developers, 2012c) to install and
run the application, without any human interaction, by
sending random commands and events from an API to the
sample. After the sample is installed, the modified system
records the requested APIs and then compares each
operation with the corresponding manifest file to check
whether the application bypasses permissions. DroidBox

continues to run and track the sample until the analyser
triggers an outcome.

Subsequently, logcat (a logging mechanism provided by
Google) is applied for the duration of running the
application in the sandbox; the log displays the following:
each operation, level, process identification, time, and date
in the Android SDK. The DroidBox system then pipelines
the log output from an emulator to Python script in order to
allow an analyser to read the log file from the host operating
system; a script will parse the logcat output to find relevant
operations. In the final stage of using DroidBox, and once a
log file is created in the host operating system, two graphs
are produced – the behaviour graph and the treemap graph;
these graphs, together with the DroidBox log assist in
interpreting the behaviour of the application.

3.1 The DroidBox log file

As explained by Lantz (2011a), the log file is generated
from the sandbox logs collected by logcat at the end of the
application execution period. Each log file begins with the
following information: the name of the Android package
and three types of hash values – MD5, SHA1 and SHA256.
The hashes are computed at the end of the execution and
they help to ensure that the application code has not been
modified during run-time.

The main body of the log file includes details of the
following format:

 [Section]

 [Operation]

 [Timestamp] log data

where the Section tag captures information related to
file operations, cryptographic functions, network-related
activities, broadcast receivers, enforced and bypassed
permissions, information leaks, sent SMS and phone calls.
As for the Operation tag, it relates to the types of operations
being performed, such as read from or write to file, encrypt
or decrypt data and lastly, open, read or write network
activities. The timestamp denotes the time the data was
logged and is relative to the starting time of the analysis.

Figure 1 DroidBox architecture

 Towards an understanding of the impact of advertising on data leaks 185

In our current work, we place special focus on the portion of
the log file where the information leakage is recorded, as
our aim is to better understand how data leaks work. First,
we need to introduce the terms taint tag, taint source and
taint sink in order to explain how DroidBox can intercept a
leak. DroidBox is equipped with a list of pre-determined
sources of information (also known as taint sources) such as
network and databases that will be monitored during
execution in order to intercept information outflow; taint
sinks are used to filter and monitor this information.
Whenever a piece of information is parsed through the taint
source, it is assigned a tag – taint tag – in order to
differentiate it from clean data. Any tainted data (that is,
those marked with a tag) which pass through a taint sink and
are about to leave the device, will trigger an alert, thus
informing the emulator about the occurrence of a leak. For a
full comprehension of how the taint process operates, and to
view the full list of taint tags, we refer the reader to
Chapter 3 and Appendix C in Lantz (2011a).

In fact, in our analysis, we do not make use of the
graphs provided by DroidBox; however, see Lantz (2011a,
Chapter 4) or Alazab et al. (2012) for examples of DroidBox
graphs which indicate data leaks.

In the next section, Section 4, we describe the data
collection process for our experiment.

4 Data collection

In this section we describe the data collection process,
including our rationale for selecting the applications present
in our dataset.

In our previous work (Alazab et al., 2012), we found
that three popular Games applications, which were pre-
classified as clean applications, leaked sensitive device-
related information, IMEI and IMSI, to external parties.
This led us to raise the question whether there are other
clean applications present on the application markets which
can expose the data stored on smart devices to outsiders.
The Finance and Games categories contain applications
which are likely to keep track of personally identifiable
information and so, for our experiment, we select applications
from these two categories. One might hypothesise that
applications from the non-official market would be more
likely to leak private data than those from the official
market, and in order to test such a hypothesis, we take
applications from both markets.

In the subsection below, we elaborate on the dataset
collection process.

4.1 The dataset

We collect only the most popular (as defined in (a) below)
clean applications which are classified under the Finance
and Games category. It should be noted that we do not
include (pre-classified) malicious applications in our dataset
as one can expect these applications to leak, depending on
the extent of the harmful actions they have been instructed
to carry out. Hence, they are of no interest to this

experiment. Additionally, we only collect those applications
which include the internet permission; this decision is made
based on the related works (Stevens et al., 2012; Grace
et al., 2012; Leontiadis et al., 2012) which demonstrate that
the internet permission is highly used in free applications
and is also one of the main facilitators of information leaks.

(a) Official market (known as Google Play):

In order to identify the most popular applications available
under the Finance and Games categories available in the
Google Play market (Google, 2012a), we use a ranking
website called Android RunDown (Android RunDown,
2012) which lists by category those applications
downloaded more than 250,000 times. Based on those
listings, we then search for the top (largest number of
downloads) 50 financial and 25 Games applications in the
Google Play market.

However, due to the fact that on several occasions
malicious applications have been found on the official
market (Burguera et al., 2011; Deng, 2011; Kim et al.,
2012), we run an additional scan to ensure that the 75
applications are truly clean. This is accomplished by
uploading each individual application to an online malware
scanner, VirusTotal (VirusTotal, 2011) where 42 anti-virus
engines examine it. We found that the following two
applications, World Stock Alert Widget (World Stock Alert,
2012) and Super Fishing (Super Fishing, 2012) were
classified as malicious. It should be noted that at the time of
writing, both applications were still available on the official
market for download. The Finance application, World Stock
Alert Widget, and Games application, Super Fishing, were
detected as malicious by 6 and 7 anti-virus engines
respectively. However, the remaining 123 applications were
determined to be clean.

The applications chosen under the Finance category are:
ApiDemos, aCurrency lite, NYSE STOCKS LIVE
WATCH, Stock Quote, Ministocks – Stocks Widget,
Google Finance and Bloomberg, MoneySmart Financial
Calc, Bloomberg for Smartphone, Money Lover, Daily
Money, Droid Wallet, Mortgage Calculator, Loan Calc,
Fifth Third Bank, EasyMoney – Expense Manager,
Creditscore, Fidelity Investments, Financial Calculators,
Cash Droid, Google Finance, ADP HR & Salaris Info,
Gesture Tool, Tip N Split Tip Calculator, Higher One
Mobile Banking app, TurboTax SnapTax, MyTaxRefund by
TurboTax – Free, Tip Calculator by TradeFields, Balance
and Budget, ABECU/AECU CU MobileAccess, City
National Mobile, 3Rivers Mobile, Pinnacle Financial
Partners, Mint.com Personal Finance, My Money Manager,
Naver, Portfolio Manager, PNC Mobile, Quote Rocket
Insurance, Regions Mobile, Rush Card, Check Book,
Mortgage Calculator and Rates, Exchange Rates, Fuel
Calculator Mileage Free, GestureBuilder, ING DIRECT,
metatrader5 and Office Calculator Free.

The 24 applications chosen under the Games category
are: Hidden Ballons, Tiny Station, Whack Your boss,
Sudoku, Solitaire, Word search, mobilityware Solitaire,
noshufou, Crazy bike Racing Motor, Drage Racing,

186 V. Moonsamy, M. Alazab and L. Batten

Zombies Wave, Amazing Broken Display, copter, GameFly,
blackjack, Chess, kayak, Sketchndraw, nyan, coloringbook,
fialfree, tourality, plumber and moveitfree.

(b) Non-official market (SlideMe):

As for the non-official market, we use SlideMe (SlideMe,
2008) to download the Finance applications because it
allows us to download the Android application package
(APK) files without the need of having an Android phone
account. We proceed by searching for the applications under
the Finance category and then start to collect the ones which
include (at least) the internet permission. We apply the same
rationale as mentioned at the beginning of subsection 4(i)
for consistency. Finally, we upload each application to
VirusTotal to confirm if it is clean.

Table 1 Total numbers and types of applications we collected
in the data set

 Number of applications

Google Play 49 Finance and 24 Games

SlideME 50 Finance

Total 123 applications

The applications installed from SlideMe under the finance
category are: Finance Central, Corporate, Finance News,
Footprint, Swift Tip Calculator, Symbol Lookup, Budget
Manager, StockLite (V.1.4.9), Technical Stock Charting,
mDroid, Stock Analyst Free, InOut, Connector, I Spent Too
Much Money, Anvestor, Tip Split, Personal Financial
Organiser, Tip Calculator, Pocket Books, Xpense Lite,
Stock Observer, Stock Watcher, Budget Helper, Media
Budget, Stock Buzz, Mobile Forex, Funky Expense,
Moneybag, Cash Droid, American Stock Exchange, Simple

Budget, Toshl, Till Budget Free, WorkIt Expenses, Debt
Droid, CashLog, Dividend Predictor, My Stock Ticker
Lite, Best Deal, Wallet Manager Lite, Housing Loan
Calculator, Expense Notes, Tipped Off, Budget Droid,
honeyCombWalletManager, Pocket Budget, Go Dutch,
Track Moneyand and Pulse.

5 Experimental work

In this section, we describe how we apply the different
phases of our methodology on the entire set of 123
applications collected. We begin by performing a dynamic
analysis to identify any leaky applications in our dataset.

We then proceed to the static analysis stage where we
extract the AndroidManifest.xml files to look at the
permissions requested by the applications; the collected
permissions are used later to determine their impact on
leaky applications. Additionally, we also convert the
applications Java (.jar) so that we can examine the
advertising libraries embedded in the application code and
thus have a better understanding of the effect of those
libraries on the general execution of the application. Once
the above steps are completed, we conduct a further analysis
on the leaky applications to determine the cause of the leak
and the destination of the leaked information. The steps are
described in Figure 2.

5.1 Set up sandbox environment for dynamic analysis

In this subsection we expand on the set-up of the virtual
environment where the dynamic execution of the
applications takes place. We also explain the different types
of behaviours we record during application run-time.

Figure 2 Overall experimental framework (see online version for colours)

 Towards an understanding of the impact of advertising on data leaks 187

We maintain the same experimental set-up of Alazab et al.
(2012) in conducting the dynamic analysis. Only two of
the applications chosen for this paper were also examined
in Alazab et al. (2012); however, we rerun our entire
experiment described in this paper on each application in
our current data set. We used a research laptop which is
equipped with Intel (i7) CPU 2.7 GHZ, 8 GB of DDR3
RAM and 720 GB hard disk on windows 7. We then install
the virtual machine, VMware Workstation build-591240,
which runs an Ubuntu 11.10 32bit operating system. Next,
we set up the Android Emulator (Andoid Developers, 2012),
along with DroidBox (Lantz, 2011b) and disable all
interaction between the virtual and local host in order to
build a safe environment to run the applications and record
the execution process.

Figure 3 illustrates the architecture used to execute the
applications. First, we generate the MD5, SHA1 and
SHA256 hashes for all applications, using the tool –
HashMyFiles (NirSoft, 2007). We choose HashMyFiles
since it is able to take more than one application at a time
and give the output in a few seconds and thus saves us time.
In fact, it also generates the hashes for all of the 123
applications at one time. Matching the hash values with the
ones computed by DroidBox after the execution phase is
completed is a key step as it ensures that the code has not
been modified during execution. The hash values pre- and
post-execution were identical; hence no modifications were
made to the code during run-time.

Next, we move to the dynamic analysis and execute our
set of 123 applications in the sandbox environment. We had
to decide on a cut-off time at which to end the execution
process. Other research work showed that 5 minutes (Shih-
Yao and Sy-Yen, 2007) or even 1 minute (Bayer et al.,

2010) are enough to execute each application and be able to
collect sufficient behaviours to conduct further analysis. We
therefore opt to run each application for 3 minutes as we
believe that, based on the above work, this cut-off time
would generate an adequate amount of behaviours for
analysis. Nevertheless, restricting the execution time to a
fixed period is always problematic in this type of
experiment as some applications may need hours or even
days to expose all features of the execution; malicious
applications are particularly good at avoiding detection by
waiting for long periods of time before exhibiting their
behaviour. However, all of our applications are clean and so
unlikely to be deliberately avoiding detection by suppressing
behaviour.

During the execution, DroidBox records several types of
system operations in the log files. We are interested in the
following as these have been shown to be related to leaks
(Isohara et al., 2011): read and write operations, open
network connections, enforced and bypassed permissions,
information leaks, sending sms and making phone call. We
refer the reader to Chapter 4 in Lantz (2011a) for an
extensive description of the generic log file generated.
Finally, after executing the entire dataset, we import the log
files to our local machine and start the static analysis, as
explained in the next subsection.

5.2 Perform static analysis on the dataset

In this subsection, we describe our static analysis of the set
of 123 applications in order to view the list of permissions
requested by extracting the Manifest files. We also
decompile the applications to identify whether advertising
libraries were embedded in them.

Figure 3 Architecture for detecting leaky applications (see online version for colours)

188 V. Moonsamy, M. Alazab and L. Batten

We begin by extracting the AndroidManifest.xml files using
the publicly available tool – Apktool – to identify the
permissions requested by each application. We then parse
the files, look for the <uses-permission> tag and record the
declared permissions. This process helps us to: firstly,
ensure that the application includes the internet permission –
as this was a pre-requisite defined in the data collection
phase (Section 4); and secondly, find out if the application
requested additional permissions by analysing the individual
AndroidManifest.xml file. It should be noted that Android
developers can define their own permissions to protect their
applications from being exploited; however, we focus only
on the set of permissions defined in the official
documentation (Android Developers, 2012d).Moreover, in
order to have a better understanding of the in-application
advertising libraries, we use the tool – dex2jar – to
decompile the application package files into JAR format,
which is easily readable by a Java decompiler. We then
search for the advertising libraries by browsing for the
namespaces. For example: com.google.ads defines the
classes required to implement advertisements from Google
Ads. Similarly, we identify the various advertising libraries
used by the other applications in our dataset, as illustrated in
Figure 3. We elaborate on our experimental results below.

Permissions:

While the internet permission was legitimately requested for
most applications in our dataset, we observed that 6
applications which were collected from the official market
bypassed it. Moreover, although these 6 applications did not
explicitly request the internet permission during install-time,
all of them had the READ_PHONE_STATE permission
defined in their AndroidManifest.xml file. This leads us to
suspect that the aforementioned permission together with
the TelephoneManager class (provided in the Android

official documentation (Android Developers, 2012b)) could
eventually result in leaking device-related information such
as the IMEI and IMSI.

Advertising Libraries:

During the static analysis phase, we examined the
decompiled version of the APKs. We found that, as
illustrated in Figure 4, Google Ads was the most popular
advertising library implemented by most Android developers.
Eighty percent of the applications in our data set included
one or more advertising libraries and all the advertising
libraries in our dataset used the internet permission to
communicate with the advertisers.

5.3 Identify leaky applications

In order to determine if an application leaked during the
dynamic analysis, we parse the log files and search for the
section where the leak is recorded, as shown in Figure 5.
DroidBox keeps track of five types of information when
documenting a leak in the log file. These include the source
of the leak (also referred to as ‘sink’), the destination of the
leak, the port number through which the information is sent
to an external party, the name of the taint tag and the html-
encoded data which is leaked through the GET command.

Therefore, it can be seen from Figure 5 that the
application leaked the IMSI to an external server with
address ‘intuitandroidtaxstatprod.122.2o7.net’ via the
network sink. Similarly, we browsed through the 123 log
files which were collected from the dynamic analysis
(Section 5.1) and searched for the information leakage
section to identify the presence of leaky applications. In the
end, we found a total of 13 applications which leaked
device-related information, such as IMEI and IMSI, to
external networks.

Figure 4 The distribution of advertising libraries for 123 applications (see online version for colours)

Figure 5 Extract of a log file, showing the section about information leakage

 Towards an understanding of the impact of advertising on data leaks 189

5.4 Determine the cause(s) of leaks in applications

After confirming that 13 out of the 123 applications from
our dataset leak information to external parties, we proceed
to conduct further analysis of the AndroidManifest.xml files
and decompile APKs to have a better understanding of the
events that triggered the leaks.

We begin by examining the individual Android
Manifest.xml files for each leaky application to find out the
list of permissions that were requested. Table 2 shows the
distribution of permissions across the set of 13 applications
under consideration; ‘X’ denotes a request that was made
for a particular permission. It should be noted, at firsthand,
that all 13 leaky applications include both the internet and
READ_PHONE_STATE permissions. A combination of
these two permissions is sufficient to render an application
vulnerable, as noted in (Stevens et al., 2012).

Table 2 Permissions requested by the 13 leaky applications

 Permission

Application
Name

A
C

C
E

S
S

_C
O

A
R

S
E

_L
O

C
A

T
IO

N

A
C

C
E

S
S

_F
IN

E
_S

T
A

T
E

A
C

C
E

S
S

_N
E

T
W

O
R

K
_S

T
A

T
E

A
C

C
E

S
S

_W
IF

I_
S

T
A

T
E

IN
T

E
R

N
E

T

G
L

O
B

A
L

_S
E

A
R

C
H

R
E

A
D

_P
H

O
N

E
_S

T
A

T
E

S
Y

S
T

E
M

_A
L

E
R

T
_W

IN
D

O
W

V
IB

R
A

T
E

W
A

K
E

_L
O

C
K

W
R

IT
E

_E
X

T
E

R
N

A
L

_S
T

O
R

A
G

E

y Tax
Refund

 X X X

iStock
Manager

 X X X

Sudoku X X X X

Solitaire X X X X X

Crazy Bike
Racing
Motor

 X X X X X

Drage
Racing

 X X X X

Sketch n
Draw

 X X X

Connector X X X X

Finance
Central

 X X X X X

Mint.com
Personal
Finance

 X X X X

Stock
Analyst
Free

X X X X X X

Symbol
Lookup

X X X X X X

Xpense
Lite

 X X X X

Additionally, it should be noted that out of the 123 applications,
only 36 applications (with advertising libraries) included

both the internet and READ_PHONE_STATE permissions.
However, only 13 applications leaked either the IMSI or IMEI
information to advertising networks. We believe that this is the
case because the 3 minute cut- off that we used as execution
time did not permit the remaining 23 applications to execute
the code that could potentially lead to leaks; thus DroidBox
was unable to record any information leaks (see Figure 6 for a
break-down of the numbers).

Figure 6 Applications with INTERNET and READ_PHONE_
STATE permissions

Next, we analyse the classes defined within the decompiled
version of each application, generated in the static analysis
stage (Section 5.2). We use the destination addresses, recorded
under the information leakage section within the log files, to
search through the Java classes and compare the namespace to
confirm if the application developer has made use of any
external in-application libraries. This led to us to observe that
all the 13 applications had third-party advertising libraries
embedded in their respective Java packages.

Furthermore, the design of the Android security framework
does not permit the operating system to differentiate between
the permissions required by an application and those needed by
an advertising library (Shekhar et al., 2012; Pearce et al.,
2012). Consequently, any in-application advertising library
will, by default, inherit the same permissions requested for
an application and eventually accelerate the occurrence of
information leaks.

6 Analysis of leaky applications

In this section, we present an in-depth analysis of the 13
leaky applications.

6.1 Description of leaky applications

We give in Tables 3 and 4 the full description of the leak,
including the name and size of the application, the leaked
information and its destination. We found 7 and 6 leaky
applications from Google Play and SlideME respectively.
We observed in Section 5.4 that the cause of information
leakage can be attributed to the use of in-application
advertising libraries and the inheritance of permissions
requested by host applications.

190 V. Moonsamy, M. Alazab and L. Batten

Table 3 Leaky applications found in the official market (7)

 Application
name

Detected
leak

Leak
destination

My Tax
Refund

IMSI
(3 times)

 intuitandroidtaxstatprod.
122.2o7.net (hosted by
Omniture)

F
in

an
ce

iStock
Manager

IMEI
(4 times)

 my.mobfox.com (hosted
by MobFox)

Sudoku IMEI
(5 times)

 ads2.greystripe.com
(hosted by GreyStripe)

 ads.mp.mydas.mobi
(hosted by Millennial
Media)

 androidsdk.ads.mp.mydas.
mobi (leaks 3 times)
(hosted by Millennial
Media)

Solitaire IMEI
(3 times)

 ads2.greystripe.com
(hosted by GreyStripe)

 service.sponsorpay.com
(leaks twice) (hosted by
SponsorPay)

Crazy Bike
Racing
Motor

IMEI
(2 times)

 www.umeng.com (hosted
by Umeng)

Drage
Racing

IMEI
(once)

 data.flurry.com (hosted by
Flurry)

G
am

e

Sketch n
Draw

IMEI
(3 times)

 ads.mp.mydas.mobi
(hosted by Millennial
Media)

 androidsdk.ads.mp.mydas.
mobi (leaks twice) (hosted
by Millennial Media)

6.2 Investigation of leaky applications

Upon further analysis, we noticed that 9 out of those 13
applications included on average two additional third-party
advertising libraries, excluding the one through which they
leaked. Moreover, we also found a total of 9 advertising
libraries embedded in one leaky application which is
classified under the Games category and at most 3
advertising libraries included, at one time, in a leaky
application from the Finance category.

Generally, it is well-known that application developers
earn revenues from in-application advertisements and
hence, providing them with the incentive to market their
application free of charge. In fact, the more advertising
libraries they embed in their applications, the higher the
revenue. It is also worth mentioning that each advertiser has
their own set of advertising libraries which can be obtained
after signing up with the advertising company. Application
developers do not have to fully comprehend the advertising
code as they only need to follow the instructions given
by the advertising companies to successfully include
advertisements in their applications; therefore unknowingly
leaking sensitive information through the advertising
libraries.

Table 4 Leaky applications found in the non-official market (6)

 Application
name

Detected
leak

Leak
destination

Connector IMEI
(5 times)

 wv.inner-active.mobi
(hosted by Inneractive)

Finance
Central

IMEI
(7 times)

 ads.mp.mydas.mobi (hosted
by Millennial Media)

 androidsdk.ads.mp.mydas.m
obi (leaks 6 times) (hosted
by Millennial Media)

Mint.com
Personal
Finance

IMSI
(once)

 ci.intuit.com (hosted by
Omniture)

Stock
Analyst

Free

IMEI
(twice)

 my.mobfox.com (hosted by
MobFox)

Symbol
Lookup

IMEI
(twice)

 my.mobfox.com (hosted by
MobFox)

F
in

an
ce

XpenseLite IMEI
(6 times)

 ads.mp.mydas.mobi (hosted
by Millennial Media)

 androidsdk.ads.mp.mydas.m
obi (leaks 5 times) (hosted
by Millennial Media)

The following steps demonstrate, through an examination
of the application Mint.com Personal Finance how an
embedded advertising library extracts the IMSI information
and sends it to the advertising server:

Step 1:

We look for the main entry point of the application in its
AndroidManifest.xml file. This information is stored within
the Activity component, with the description <android.
intent.action.MAIN>. In this case, the .activity.MintLogin
Activity is the main activity that starts the application (see
Appendix A).

Step 2:

Next, we search for the Java class named ‘MintLogin
Activity’ in the decompiled version of the application
package file. We notice that after the user has successfully
logged in, the application invokes the class ‘MintOmniture
TrackingUtility’ (see Appendix A).

Step 3:

The ‘MintOmnitureTrackingUtility’ class subsequently invokes
the ‘AppMeasurement’ class which contains a method,
‘getDefaultVisitorID()’ whose purpose is to extract the IMSI
using the ‘getSubscriberId()’ method (see Appendix A).

Step 4:

The advertising code also included the method ‘send’ which
allowed the application to leak the IMSI via the network
(see Appendix A).

Step 5:

Below is an excerpt from the DroidBox log file generated
during the dynamic execution of the application. It can be seen
that the application did indeed leak the IMSI via Port 80 –
which is used for HTTP communications (see Appendix A).

 Towards an understanding of the impact of advertising on data leaks 191

Advertising libraries, by default, require the application
developer to include the internet permission in the
AndroidManifest.xml file so that the advertising company
can track the number of clicks which will then be used to
determine the revenue to be paid to the application
developer. This leads us to conclude that the application
developers follow do not follow the least-privilege method
when requesting permissions for their applications.

Furthermore, we also noted that 10 leaky applications
made use of the WebView class and APIs to embed the in-
application advertisements. WebView can be regarded as an
in-application browser and enhances the advertising display
to allow the application to present web content in the
advertisements. The downfall of this type of advertisement
implementation is that it offers a gateway to external parties
through the WebView browser to initiate an attack and
eventually take control of the device, as explained in
(Luo et al., 2011). Additionally, in order for the WebView
components to function correctly, the application must
request the internet permission during the installation thus,
opening a pathway for possible web attacks that can be
routed through WebView browser to the application.

In Section 7, we conclude our work and present some
ideas for future research.

7 Conclusion and future work

We have demonstrated that, without the knowledge of
the user, applications considered to be clean can leak data
about the device to a third-party. Our analysis of those
applications which leak, described how, why and where
information is leaked to.

Clean applications, irrespective of whether they are
collected from official or non-official markets, are capable
of leaking phone-related information without the users’
knowledge. We also observed that third-party advertising
libraries were the principal cause of all the leaks that were
recorded for our dataset. In order to obtain revenue,
embedded advertising libraries often require certain
permissions not always available in the application, and so
such applications must be made over-privileged in order for
the advertiser to obtain revenue; this usage of unnecessary
permissions facilitates the occurrence of leaks. Advertisers
use the device information to track sites viewed by the user
in order to get a picture of what goods and services may be
of interest to the user.

7.1 Recommendations

Some device users may indeed be happy to have advertisers
track their location in order to be provided with a
customised advertising profile and targeted advertising. On
the other hand, many users feel that leakage of device ID
data is an invasion of privacy (and in some cases may even
be illegal) and do not want their location tracked. We
believe that the user should have the option. We recommend
that every application be equipped with the functionality of

permitting the device user to use a downloaded application
for a fixed trial period (as determined from the date of the
download) and at the completion of this period, be asked to
opt in to location tracking, with the option of not doing so.
We also recommend that anti-virus software developers
include in their products identification of applications
containing advertising libraries, or, since this is likely to be
by far the majority of applications, those which do not; this
flags the presence of advertising libraries to the user who
may later make a decision to opt out of location tracking. In
making these recommendations, we note that the authors of
(Pearce et al., 2012) have also made recommendations for
changes in the Android framework to address the issue of
private data leaks. We believe that our solution would be
easier and cheaper to implement than theirs.

7.2 Limitations of our work

Our restricted data set was of course a limitation, both in the
number of applications it contained and in the fact that only
Financial and Games applications were chosen. However, as
argued in Section 4, these applications were chosen for
specific reasons. In further work, we plan to investigate
larger and more varied data sets.

In dynamic analysis, restricting the execution time to a
fixed three minute period is problematic as some
applications may need much more time to expose all
features of the execution. We noted in Section 5 that
malicious applications are particularly good at avoiding
detection by waiting for long periods of time before
exhibiting their behaviour. In our case, all applications
executed were clean and it is in the interest of advertisers to
make an internet connection quickly. We circumvented this
limitation by conducting a thorough static analysis on each
potentially leaky application, as identified in Figure 6.

References

Admob (2012) Monetize and promote your apps with ads.
Available online at: http://www.google.com/ads/admob/
(accessed on May 2012).

Alazab, M., Lantz, P., Moonsamy, V., Batten, L. and Tian, R.
(2012) ‘Analysis of malicious and benign Android
applications’, Proceedings of the International Conference
Distributed Computing Systems (ICDCS 2012), Macau,
China.

Android Developers (2012a) ‘Building and Running. Available
online at: http://developer.android.com/guide/developing/
building/index.html (accessed on May 2012).

Android Developers (2012b) Download Android Software
Development Kit. Available online at: http://developer.
android.com/sdk/index.html (accessed on May 2012).

Android Developers (2012c) MonkeyRunner. Available online at:
http://developer.android.com/guide/developing/tools/monkeyr
unner_concepts.html (accessed on May 2012).

Android Developers (2012d) Reference – Manifest.permission.
Available online at: http://developer.android.com/reference/
android/Manifest.permission.html (accessed on May 2012).

192 V. Moonsamy, M. Alazab and L. Batten

Android Rundown (2012) Android Application and hardware news
and reviews. Available online at: http://www.androidrundown.
com/top-apps/all-android-finance/ (accessed on May 2012).

AppBrain (2010) Number of available Android applications.
Available online at: http://www.appbrain.com/stats/number-
of-android-apps (accessed on May 2012).

Apvrille, A. (2011) ‘Airpush...pushes the envelope’, FortiBlog:
Reports from the Threat Landscape, retrieved May 2012.

Bayer, H., Kirda, E. and Kruegel, C. (2010) ‘Improving the
efficiency of dynamic malware analysis’, Proceedings of the
2010 ACM Symposium on Applied Computing, Sierre,
Switzerland, pp.1871–1878.

Burguera, I., Zurutuza, U. and Nadjm-Tehrani, S. (2011)
‘Crowdroid: Behavior-Based Malware Detection System for
Android’, Proceedings of the ACM Workshop on Security and
Privacy in Mobile Devices (SPSM).

Chan, P., Hui, L. and Yiu, S. (2012) ‘DroidChecker: analyzing
android applications for capability leak’, Proceedings of the
fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks, Tucson, Arizona, USA, pp.125–136.

Deng, Z. (2011) Design and implementation of an advanced events
logging framework for Android, Masters Thesis, Australia
National University.

Desnos, A. (2011) Androguard -Reverse Engineering Tool.
Available online at: http://code.google.com/p/androguard/
(accessed on May 2012).

Dhar, S. and Varshney, U. (2011) ‘Challenges and business models
for mobile location-based services and advertising’,
Communications of the ACM, Vol. 54, No. 5, pp.121–128.

Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel,
P. and Sheth, A.N. (2010) ‘TaintDroid: an information-flow
tracking system for real-time privacy monitoring on
smartphones’, Proceedings of the 9th USENIX conference on
Operating systems design and implementation.

Felt, A.P., Chin, E., Hanna, S., Song, D. and Wagner, D. (2011a)
‘Android Permissions Demystified’, Proceedings of the 18th ACM
Conference on Computer and Communications Security, ACM.

Felt, A.P., Greenwood, K. and Wagner, D. (2011b) ‘The
effectiveness of install-time permission systems for third-
party applications’, 2nd USENIX Conference on Web
Application Development (WebApps11), Portalnd, OR.

Gibler, C., Crusell, J., Erickson, J. and Chen, H. (2012)
‘AndroidLeaks: Automatically Detecting Potential Privacy
Leaks In Android Applications on a Large Scale’, 5th
International Conference on Trust & Trustworthy Computing
(TRUST), Vienna, Austria.

Google (2012a) Google Play – Official Android Application
Market. Available online at: https://play.google.com/
(accessed on May 2012).

Google (2012b) Safety and Security – Malware. Available online
at: http://support.google.com/adwordspolicy/bin/answer.py?
hl=en&answer=1308246&topic=1310876&ctx=topic&path=1
308243-1308243-2585946 (accessed on May 2012).

Google Ads (2012) Advertise on Google. Available online at:
http://www.google.com/intl/en/ads/ (accessed on May 2012).

Grace, M.C., Zhou, W., Jiang, X. and Sadeghi, A. (2012) ‘Unsafe
exposure analysis of mobile in-app advertisements’,
Proceedings of the fifth ACM conference on Security and
Privacy in Wireless and Mobile Networks, ACM.

Isohara, T., Akemori, K. and Kubota, A. (2011) ‘Kernel-based
Behavior Analysis for Android Malware Detection’, 7th
International Conference on Computational Intelligence and
Security (CIS).

Kim, J., Yoon, Y. and Yi, K. (2012) ‘ScanDal: Static Analyzer for
Detecting Privacy Leaks in Android Applications’, Mobile
Security Technologies (Most), IEEE Symposium on Security
and Privacy, San Francisco, CA.

Lantz, P. (2011a) An Android Application Sandbox for Dynamic
Analysis, Masters Thesis, Department of Electrical and
Information Technology, Sweden, Lund University.

Lantz, P. (2011b) The Honeynet Project. Available online at:
http://www.honeynet.org/gsoc/slot5

Leontiadis, I., Efstratiou, C., Picone, M. and Mascolo, C. (2012).
‘Don’t kill my ads! Balancing Privacy in an Ad-Supported
Mobile Application Market’, The 13th International
Workshop on Mobile Computing Systems and Applications,
San Diego, California.

Luo, T., Hao, H., Du, W., Wang, Y. and Yin, H. (2011) ‘Attacks
on WebView in the Android system’, Proceedings of the 27th
Annual Computer Security Applications Conference, Orlando,
Florida, pp.343–352.

Mann, C. and Starostin, A. (2011) ‘A Framework for Static
Detection of Privacy Leaks in Android Applications’,
Proceedings of 27th Symposium on Applied Computing
(SAC), ACM.

Mies, G. (2010) ‘Third-Party App Stores: Worth the Trouble?’,
PCWorld. Available online at: http://www.pcworld.com/
article/210624/thirdparty_app_stores_worth_the_trouble.html
(accessed on May 2012).

NirSoft (2007) HashMyFiles: Calculate hash of files. Available
online at: http://www.nirsoft.net/utils/hash_my_files.html
(accessed on May 2012).

Panzarino, M. (2011) ‘Android Market hits 10B apps download,
now at 53 apps per device, 10c app sale to celebrate’, The
Next Web. Available online at: http://thenextweb.com/google/
2011/12/06/android-market-hits-10b-apps-downloaded-now-
at-1b-a-month-10c-app-sale-to-celebrate/ (accessed on May
2012).

Pearce, P., Felt, A.P., Nunez, G. and Wagner, D. (2012) ‘AdDroid:
Privilege Separation for Applications and Advertisers in
Android’, Proceedings of AsiaCCS.

Shekhar, S., Dietz, M. and Wallach, D.S. (2012) AdSplit:
Separating smartphone advertising from applications, Arxiv
preprint arXiv:1202.4030.

Shih-Yao, D. and Sy-Yen, K. (2007) ‘MAPMon: A Host-Based
Malware Detection Tool’, 13th Pacific Rim International
Symposium on Dependable Computing, PRDC 2007.

SlideME (2008) SlideME – Your MarketPlace for Android
Applications. Available online at: http://www.slideme.org
(accessed on May 2012).

Stevens, R., Gibler, C., Crussell, J., Erickson, J. and Chen, H.
(2012) ‘Investigating User Privacy in Android Ad Libraries’,
IEEE Mobile Security Technologies (MoST).

Super Fishing (2012) Google Play - Official Android Application
Market. Available online at: https://play.google.com/store/
apps/details?id=com.AFTDMedia.superfishing1&hl=en
(accessed on May 2012).

VirusTotal (2011) Free Online Virus, Malware and URL Scanner.
Available online at: https://www.virustotal.com/ (accessed on
May 2012).

World Stock Alert Widget (2012) Google Play – Official Android
Application Market. Available online at: https://play.google.
com/store/apps/details?id=fr.aperto.android.worldstockalert&
hl=en (accessed on May 2012).

 Towards an understanding of the impact of advertising on data leaks 193

Appendix A

Step 1

Step 2

Step 3

Step 4

Step 5

