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1 Introduction 

Android applications can now be downloaded from official 
and non-official online markets. The sole official market is 
administrated by Google (Google, 2012a) which regularly 
tests the applications to make sure they do not contain 
malicious binaries. In contrast, the applications available on 
the non-official markets are managed by individuals and 

businesses and are not checked to determine if they are 
clean. While downloading applications from the non-official 
markets therefore represents a known threat to users, the 
attraction is that they offer unique applications not available 
elsewhere (Mies, 2010). The numbers of applications 
available and the numbers downloaded from both markets 
are increasing at exponential rates (AppBrain, 2010; 
Panzarino, 2011). 
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A major challenge in the development and provision of 
applications for mobile phones has been the business model 
(Dhar and Varshney, 2011); however, this now seems to be 
solved by means of advertising revenue. Google offers  
an advertisement software development kit (SDK) that 
allows Android developers to add advertisements into  
their applications to generate revenue (Apvrille, 2011). 
Application developers earn revenue from in-application 
advertisements and are thus encouraged to market their 
application free of charge; in fact, the more advertising 
libraries they embed in their applications, the higher the 
revenue. However, embedded advertisements connect to the 
operating system level and are difficult to remove once the 
application is installed. Once an Android user clicks on an 
advertisement, the system exposes a web browser, and a 
website might then invoke collection of the international 
mobile equipment identity (IMEI) code identifying the 
mobile device; such a website may also invoke the 
international mobile subscriber identity (IMSI) number 
found in the SIM card. Researchers (Enck et al., 2010) and 
(Pearce et al., 2012) have found applications in the 
applications markets which send the phone identifier and 
SIM card serial number to developers without the 
knowledge of the mobile user; the current authors in 
(Alazab et al., 2012) also discovered applications from the 
Google market which leak these values. 

While we may expect malicious applications to steal or 
leak identifying device information to third-parties without 
user permission, it is disturbing that applications classified 
as non-malicious do so. Thus, the aim of the current paper is 
to examine a set of applications, all identified as being non-
malicious, taken from both the official and non-official 
markets, and examine them to see if they leak any data 
identifying the android phone. Financial and games 
applications are of particular interest to us since they are 
often used in conjunction with sensitive data and may be a 
target of attackers trying to steal money or gold. We expect 
to see attack-resistant development and cautious use of such 
applications by developers and users respectively; however, 
we found that approximately 10% of our data set of clean 
financial and games applications leaked private data about 
the phone to a third-party without the knowledge of the 
user. 

Throughout the paper, we regularly make use of the 
phrases ‘malicious application’, ‘clean application’ and 
‘leaky application’ and so define them formally here: 

 A Malicious application is an application specifically 
designed to harm a computer or the software it is 
running (Google, 2012b). Such behaviour is usually 
identified by anti-virus software products. 

 A Clean application is an application which has not 
been identified as malicious. 

 A Leaky application is an application which, unknown 
to the user, sends data about the mobile hardware to a 
third-party. A leaky application can be either clean or 
malicious. 

In this paper, we make the following contributions: 

 We demonstrate that, without the knowledge of the 
user, even applications considered to be clean can leak 
data about the device to a third-party 

 For applications in our data set that leak, we determine 
what data is leaked, how, why, and where it is leaked 
to.  

The paper is organised as follows: in Section 2 we discuss 
the research literature on Android permissions and the 
connection between these and advertising libraries and 
consider the work to date on examination of leaky 
applications. Section 3 describes DroidBox, an open source 
dynamic analysis tool designed to analyse Android 
applications (see Lantz, 2011a)) which we use for dynamic 
analysis of our data set. Section 4 describes the set of data 
collected in our experiment. In Section 5, we present the 
environmental set-up and, in Section 6, we provide a 
comprehensive analysis of leaky applications. Finally in 
Section 7, we draw conclusions. 

2 Related work  

In this section, we present some of the recent work related 
to Android permissions, to in-application advertising 
libraries and to data leaks. The reader is referred to Figure 1 
in (Android Developers, 2012a) for an excellent illustration 
of the components of an Android application. 

2.1 Android permissions 

The Android framework makes use of install-time 
permissions in order to control access to restricted resources 
on the smart device. These permissions are generally 
defined in the AndroidManifest.xml file and require the user 
to accept them upon application installation.  

Felt et al. (2011b) investigate the effectiveness of 
install-time permission systems in Android applications. 
They demonstrate that such permissions can be 
advantageous compared to the traditional user-based 
permissions system; for example, the install-time 
permission system ensures that a vulnerable application, 
present in the host system, will not affect the functionalities 
of other applications, whilst in the case of a traditional user-
based permissions system, all applications are treated 
equally. However, the authors also found that users are so 
frequently presented with warning messages about 
permission requests that they tend to be careless about the 
use of those permissions once granted. We demonstrate, in 
our work, that application developers are similarly careless 
about permissions since they are driven by the revenue 
earned from in-application advertising.  

In other work, Felt et al. (2011a) developed a tool, 
Stowaway to detect over-privileged applications; these are 
applications which have more permissions than actually 
required to execute. They manually generate a permission 
map for the entire Android system which defines the 
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relationship between an API call and the permission it 
requires for execution. Stowaway includes a static analysis 
component which takes as input an application, 
disassembles it and parses through the Java classes to 
collect the API calls defined in each method. In the next 
step, the tool then compares the API call with the 
permission map to check if the correct permission has been 
assigned. It should be noted that Stowaway is an efficient 
tool to ensure that application developers do not request 
unnecessary permissions for their applications. However, 
the tool cannot differentiate between the permissions that 
can cause data leaks and those required for the execution of 
the application.  

2.2 Advertising libraries  

In-application advertising is a major source of revenue for 
application developers. The service is provided by 
advertising companies such as Google Ads (Google Ads, 
2012) and Admob (Admob, 2012) which distribute pre-
packaged advertising libraries to be embedded in existing 
applications in order to allow the developers to earn 
revenues. Fundamentally, advertising libraries inherit the 
same permissions granted to their host applications. 
Nevertheless, application developers also have the 
possibility of including additional permissions which can be 
used to enhance targeted-advertising, thereby generating 
more revenue. Unfortunately, unnecessary permissions can 
inadvertently introduce vulnerabilities within the 
functionalities of the application as for example, causing 
data to leak through advertisements.  

Shekhar et al. (2012) investigate the idea of splitting the 
host application and advertising into separate processes. 
This means that the advertising libraries will no longer be 
able to inherit the same permissions as the host application. 
It also prevents malicious applications from being able to 
generate fraudulent clicks in order to steal revenues from 
application developers. In their framework, the authors  
also examine the extent to which applications use their 
permissions only for advertising purposes. The results  
show that permissions such as internet and 
READ_PHONE_STATE are widely used only for 
advertisement; this observation agrees with the results from 
our experiment.  

The work of Pearce et al. (2012) looks into separating 
the privilege of the host application from the embedded 
advertising library. In order to effect this, they introduce a 
new set of API calls and permissions to be used only within 
advertising libraries. The authors claim that this change in 
the Android framework will not require application 
developers to embed advertising libraries anymore; instead, 
the new set of API calls and permissions will be used to 
instruct the applications to fetch the advertisements from 
certain sites. This new framework would eliminate the need 
for an application to request unnecessary permissions during 
install-time in order to ensure that advertising libraries are 
executing properly. 

 

Grace et al. (2012) focus on the potential privacy and 
security risks posed by advertising libraries. They collected 
a dataset of 100,000 applications from the official market 
and manually extracted the AndroidManifest.xml files in 
order to separate the applications that used the internet 
permission. Then they manually investigated the set of 
approximately 52,000 applications with internet permission 
to determine if the advertising libraries requested dangerous 
permissions and to establish their impact on the related API 
calls. In contrast, in our work, we first execute the 
applications in our dataset and then by examining the log 
files and AndroidManifest.xml files, we are able to deduce 
if an application leaked device-related information via 
advertising libraries.  

2.3 Data leaks in android applications 

As mentioned in Section 1, we consider a data leak to be an 
event where an application reads private information and 
sends it to a third-party without the primary user’s consent.  

The work by Gibler et al. (2012), Chan et al. (2012), 
Mann and Starostin (2011), Kim et al. (2012) applied static 
analysis to identify data leaks in Android applications. 
Gibler et al. (2012) proposed a framework to detect leaks of 
personal information. They started by generating a 
permission map, which included information about API 
calls and the related permissions they require to execute; the 
map also contained information about potential sources of 
leaks. Next, they used the decompiled version of an 
application to generate a call graph. They iterated repeatedly 
to cover all possible execution paths of the application and 
recorded the instances where external methods invoke 
restricted information; hence identifying potential leaks and 
their types. After evaluating their work on a set of 23,000 
applications which were collected from two different non-
official markets, they found 9631 possible privacy leaks in 
3258 applications. As for the work of Chan et al. (2012), the 
authors parsed the AndroidManifest.xml files to collect the 
requested permissions and then identified components, such 
as activity and broadcast receiver, that are potential sources 
of data leaks. They then applied inter-procedural control 
flow searching for each component and followed the 
information flow to confirm if the leaks actually occurred.  

The work by Mann and Starostin (2011) and Kim et al. 
(2012) investigated the occurrence of data leaks within the 
Dalvik bytecode implementation. They began by generating 
a reduced set of execution instructions in order to capture 
the relevant information flow paths. Based on the 
aforementioned set, the authors then manually traversed 
each application, written in bytecode, to identify potential 
sources of leaks. 

While Chan et al. (2012), Mann and Starostin (2011), 
Kim et al. (2012) and Desnos (2011) identify leaks, and 
what is leaked, in this paper, we go further and determine 
how the leaks occur and the destinations of the leaked data. 
In our work, we reverse engineer the application package 
files and statically analyse the Java version of the  
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applications in order to determine the occurrence of a leak 
and its possible cause(s). Moreover, we further support  
our experiment by dynamically executing the applications 
from our dataset in a sandbox to monitor and record the 
behaviours between an application and the operating system 
during run-time, thus identifying the leaked information as 
well as its destination.  

In the next section, we expand further on the tool that 
was used to perform the dynamic analysis.  

3 DroidBox 

In our previous paper (Alazab et al., 2012), we determined 
that some clean applications in fact leaked private data 
about the Android phone to a third-party without the 
knowledge of the user. We suspected that this happened 
because of a vulnerability in the permissions set-up and so 
in using DroidBox in the current experiment, we focus on 
analysis of permissions. In this section we describe the 
features of DroidBox that were used to assist us with our 
experiment. 

DroidBox is an open source dynamic analysis tool and is 
the extended version of TaintDroid, which was developed 
by Enck et al. (2010). A thorough description of DroidBox 
is available in the thesis of Lantz (2011) and also in Alazab 
et al. (2012) and so we limit ourselves here to only those 
details which are important for the current paper. 

Figure 1 demonstrates the architecture of DroidBox 
showing the several phases during the analysis of an 
Android application. First, the sample is located in the 
windows host as an .apk or .jar extension. Then DroidBox 
performs static analysis to unzip each sample by using 
Androguard (Desnos, 2011); DroidBox relies on 
Monkeyrunner (Android Developers, 2012c) to install and 
run the application, without any human interaction, by 
sending random commands and events from an API to the 
sample. After the sample is installed, the modified system 
records the requested APIs and then compares each 
operation with the corresponding manifest file to check 
whether the application bypasses permissions. DroidBox 

continues to run and track the sample until the analyser 
triggers an outcome.  

Subsequently, logcat (a logging mechanism provided by 
Google) is applied for the duration of running the 
application in the sandbox; the log displays the following: 
each operation, level, process identification, time, and date 
in the Android SDK. The DroidBox system then pipelines 
the log output from an emulator to Python script in order to 
allow an analyser to read the log file from the host operating 
system; a script will parse the logcat output to find relevant 
operations. In the final stage of using DroidBox, and once a 
log file is created in the host operating system, two graphs 
are produced – the behaviour graph and the treemap graph; 
these graphs, together with the DroidBox log assist in 
interpreting the behaviour of the application. 

3.1 The DroidBox log file 

As explained by Lantz (2011a), the log file is generated 
from the sandbox logs collected by logcat at the end of the 
application execution period. Each log file begins with the 
following information: the name of the Android package 
and three types of hash values – MD5, SHA1 and SHA256. 
The hashes are computed at the end of the execution and 
they help to ensure that the application code has not been 
modified during run-time. 

The main body of the log file includes details of the 
following format: 

  [Section] 

     [Operation] 

         [Timestamp] log data 

where the Section tag captures information related to  
file operations, cryptographic functions, network-related 
activities, broadcast receivers, enforced and bypassed 
permissions, information leaks, sent SMS and phone calls. 
As for the Operation tag, it relates to the types of operations 
being performed, such as read from or write to file, encrypt 
or decrypt data and lastly, open, read or write network 
activities. The timestamp denotes the time the data was 
logged and is relative to the starting time of the analysis. 

Figure 1 DroidBox architecture 
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In our current work, we place special focus on the portion of 
the log file where the information leakage is recorded, as 
our aim is to better understand how data leaks work. First, 
we need to introduce the terms taint tag, taint source and 
taint sink in order to explain how DroidBox can intercept a 
leak. DroidBox is equipped with a list of pre-determined 
sources of information (also known as taint sources) such as 
network and databases that will be monitored during 
execution in order to intercept information outflow; taint 
sinks are used to filter and monitor this information. 
Whenever a piece of information is parsed through the taint 
source, it is assigned a tag – taint tag – in order to 
differentiate it from clean data. Any tainted data (that is, 
those marked with a tag) which pass through a taint sink and 
are about to leave the device, will trigger an alert, thus 
informing the emulator about the occurrence of a leak. For a 
full comprehension of how the taint process operates, and to 
view the full list of taint tags, we refer the reader to  
Chapter 3 and Appendix C in Lantz (2011a).  

In fact, in our analysis, we do not make use of the 
graphs provided by DroidBox; however, see Lantz (2011a, 
Chapter 4) or Alazab et al. (2012) for examples of DroidBox 
graphs which indicate data leaks. 

In the next section, Section 4, we describe the data 
collection process for our experiment. 

4 Data collection 

In this section we describe the data collection process, 
including our rationale for selecting the applications present 
in our dataset. 

In our previous work (Alazab et al., 2012), we found 
that three popular Games applications, which were pre-
classified as clean applications, leaked sensitive device-
related information, IMEI and IMSI, to external parties. 
This led us to raise the question whether there are other 
clean applications present on the application markets which 
can expose the data stored on smart devices to outsiders. 
The Finance and Games categories contain applications 
which are likely to keep track of personally identifiable 
information and so, for our experiment, we select applications 
from these two categories. One might hypothesise that 
applications from the non-official market would be more 
likely to leak private data than those from the official 
market, and in order to test such a hypothesis, we take 
applications from both markets. 

In the subsection below, we elaborate on the dataset 
collection process. 

4.1 The dataset 

We collect only the most popular (as defined in (a) below) 
clean applications which are classified under the Finance 
and Games category. It should be noted that we do not 
include (pre-classified) malicious applications in our dataset 
as one can expect these applications to leak, depending on 
the extent of the harmful actions they have been instructed 
to carry out. Hence, they are of no interest to this 

experiment. Additionally, we only collect those applications 
which include the internet permission; this decision is made 
based on the related works (Stevens et al., 2012; Grace  
et al., 2012; Leontiadis et al., 2012) which demonstrate that 
the internet permission is highly used in free applications 
and is also one of the main facilitators of information leaks.  

(a) Official market (known as Google Play): 

In order to identify the most popular applications available 
under the Finance and Games categories available in the 
Google Play market (Google, 2012a), we use a ranking 
website called Android RunDown (Android RunDown, 
2012) which lists by category those applications 
downloaded more than 250,000 times. Based on those 
listings, we then search for the top (largest number of 
downloads) 50 financial and 25 Games applications in the 
Google Play market.  

However, due to the fact that on several occasions 
malicious applications have been found on the official 
market (Burguera et al., 2011; Deng, 2011; Kim et al., 
2012), we run an additional scan to ensure that the 75 
applications are truly clean. This is accomplished by 
uploading each individual application to an online malware 
scanner, VirusTotal (VirusTotal, 2011) where 42 anti-virus 
engines examine it. We found that the following two 
applications, World Stock Alert Widget (World Stock Alert, 
2012) and Super Fishing (Super Fishing, 2012) were 
classified as malicious. It should be noted that at the time of 
writing, both applications were still available on the official 
market for download. The Finance application, World Stock 
Alert Widget, and Games application, Super Fishing, were 
detected as malicious by 6 and 7 anti-virus engines 
respectively. However, the remaining 123 applications were 
determined to be clean. 

The applications chosen under the Finance category are: 
ApiDemos, aCurrency lite, NYSE STOCKS LIVE 
WATCH, Stock Quote, Ministocks – Stocks Widget, 
Google Finance and Bloomberg, MoneySmart Financial 
Calc, Bloomberg for Smartphone, Money Lover, Daily 
Money, Droid Wallet, Mortgage Calculator, Loan Calc, 
Fifth Third Bank, EasyMoney – Expense Manager, 
Creditscore, Fidelity Investments, Financial Calculators, 
Cash Droid, Google Finance, ADP HR & Salaris Info, 
Gesture Tool, Tip N Split Tip Calculator, Higher One 
Mobile Banking app, TurboTax SnapTax, MyTaxRefund by 
TurboTax – Free, Tip Calculator by TradeFields, Balance 
and Budget, ABECU/AECU CU MobileAccess, City 
National Mobile, 3Rivers Mobile, Pinnacle Financial 
Partners, Mint.com Personal Finance, My Money Manager, 
Naver, Portfolio Manager, PNC Mobile, Quote Rocket 
Insurance, Regions Mobile, Rush Card, Check Book, 
Mortgage Calculator and Rates, Exchange Rates, Fuel 
Calculator Mileage Free, GestureBuilder, ING DIRECT, 
metatrader5 and Office Calculator Free. 

The 24 applications chosen under the Games category 
are: Hidden Ballons, Tiny Station, Whack Your boss, 
Sudoku, Solitaire, Word search, mobilityware Solitaire, 
noshufou, Crazy bike Racing Motor, Drage Racing, 
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Zombies Wave, Amazing Broken Display, copter, GameFly, 
blackjack, Chess, kayak, Sketchndraw, nyan, coloringbook, 
fialfree, tourality, plumber and moveitfree. 

(b) Non-official market (SlideMe): 

As for the non-official market, we use SlideMe (SlideMe, 
2008) to download the Finance applications because it 
allows us to download the Android application package 
(APK) files without the need of having an Android phone 
account. We proceed by searching for the applications under 
the Finance category and then start to collect the ones which 
include (at least) the internet permission. We apply the same 
rationale as mentioned at the beginning of subsection 4(i) 
for consistency. Finally, we upload each application to 
VirusTotal to confirm if it is clean.  

Table 1 Total numbers and types of applications we collected 
in the data set 

 Number of applications 

Google Play 49 Finance and 24 Games 

SlideME  50 Finance 

Total 123 applications 

The applications installed from SlideMe under the finance 
category are: Finance Central, Corporate, Finance News, 
Footprint, Swift Tip Calculator, Symbol Lookup, Budget 
Manager, StockLite (V.1.4.9), Technical Stock Charting, 
mDroid, Stock Analyst Free, InOut, Connector, I Spent Too 
Much Money, Anvestor, Tip Split, Personal Financial 
Organiser, Tip Calculator, Pocket Books, Xpense Lite, 
Stock Observer, Stock Watcher, Budget Helper, Media 
Budget, Stock Buzz, Mobile Forex, Funky Expense, 
Moneybag, Cash Droid, American Stock Exchange, Simple  
 

Budget, Toshl, Till Budget Free, WorkIt Expenses, Debt 
Droid, CashLog, Dividend Predictor, My Stock Ticker  
Lite, Best Deal, Wallet Manager Lite, Housing Loan 
Calculator, Expense Notes, Tipped Off, Budget Droid, 
honeyCombWalletManager, Pocket Budget, Go Dutch, 
Track Moneyand and Pulse. 

5 Experimental work 

In this section, we describe how we apply the different 
phases of our methodology on the entire set of 123 
applications collected. We begin by performing a dynamic 
analysis to identify any leaky applications in our dataset.  

We then proceed to the static analysis stage where we 
extract the AndroidManifest.xml files to look at the 
permissions requested by the applications; the collected 
permissions are used later to determine their impact on 
leaky applications. Additionally, we also convert the 
applications Java (.jar) so that we can examine the 
advertising libraries embedded in the application code and 
thus have a better understanding of the effect of those 
libraries on the general execution of the application. Once 
the above steps are completed, we conduct a further analysis 
on the leaky applications to determine the cause of the leak 
and the destination of the leaked information. The steps are 
described in Figure 2. 

5.1 Set up sandbox environment for dynamic analysis 

In this subsection we expand on the set-up of the virtual 
environment where the dynamic execution of the 
applications takes place. We also explain the different types 
of behaviours we record during application run-time. 

Figure 2 Overall experimental framework (see online version for colours) 
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We maintain the same experimental set-up of Alazab et al. 
(2012) in conducting the dynamic analysis. Only two of  
the applications chosen for this paper were also examined  
in Alazab et al. (2012); however, we rerun our entire 
experiment described in this paper on each application in 
our current data set. We used a research laptop which is 
equipped with Intel (i7) CPU 2.7 GHZ, 8 GB of DDR3 
RAM and 720 GB hard disk on windows 7. We then install 
the virtual machine, VMware Workstation build-591240, 
which runs an Ubuntu 11.10 32bit operating system. Next, 
we set up the Android Emulator (Andoid Developers, 2012), 
along with DroidBox (Lantz, 2011b) and disable all 
interaction between the virtual and local host in order to 
build a safe environment to run the applications and record 
the execution process. 

Figure 3 illustrates the architecture used to execute the 
applications. First, we generate the MD5, SHA1 and 
SHA256 hashes for all applications, using the tool – 
HashMyFiles (NirSoft, 2007). We choose HashMyFiles 
since it is able to take more than one application at a time 
and give the output in a few seconds and thus saves us time. 
In fact, it also generates the hashes for all of the 123 
applications at one time. Matching the hash values with the 
ones computed by DroidBox after the execution phase is 
completed is a key step as it ensures that the code has not 
been modified during execution. The hash values pre- and 
post-execution were identical; hence no modifications were 
made to the code during run-time. 

Next, we move to the dynamic analysis and execute our 
set of 123 applications in the sandbox environment. We had 
to decide on a cut-off time at which to end the execution 
process. Other research work showed that 5 minutes (Shih-
Yao and Sy-Yen, 2007) or even 1 minute (Bayer et al., 

2010) are enough to execute each application and be able to 
collect sufficient behaviours to conduct further analysis. We 
therefore opt to run each application for 3 minutes as we 
believe that, based on the above work, this cut-off time 
would generate an adequate amount of behaviours for 
analysis. Nevertheless, restricting the execution time to a 
fixed period is always problematic in this type of 
experiment as some applications may need hours or even 
days to expose all features of the execution; malicious 
applications are particularly good at avoiding detection by 
waiting for long periods of time before exhibiting their 
behaviour. However, all of our applications are clean and so 
unlikely to be deliberately avoiding detection by suppressing 
behaviour. 

During the execution, DroidBox records several types of 
system operations in the log files. We are interested in the 
following as these have been shown to be related to leaks 
(Isohara et al., 2011): read and write operations, open 
network connections, enforced and bypassed permissions, 
information leaks, sending sms and making phone call. We 
refer the reader to Chapter 4 in Lantz (2011a) for an 
extensive description of the generic log file generated. 
Finally, after executing the entire dataset, we import the log 
files to our local machine and start the static analysis, as 
explained in the next subsection.  

5.2 Perform static analysis on the dataset 

In this subsection, we describe our static analysis of the set 
of 123 applications in order to view the list of permissions 
requested by extracting the Manifest files. We also 
decompile the applications to identify whether advertising 
libraries were embedded in them. 

Figure 3 Architecture for detecting leaky applications (see online version for colours) 
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We begin by extracting the AndroidManifest.xml files using 
the publicly available tool – Apktool – to identify the 
permissions requested by each application. We then parse 
the files, look for the <uses-permission> tag and record the 
declared permissions. This process helps us to: firstly, 
ensure that the application includes the internet permission – 
as this was a pre-requisite defined in the data collection 
phase (Section 4); and secondly, find out if the application 
requested additional permissions by analysing the individual 
AndroidManifest.xml file. It should be noted that Android 
developers can define their own permissions to protect their 
applications from being exploited; however, we focus only 
on the set of permissions defined in the official 
documentation (Android Developers, 2012d).Moreover, in 
order to have a better understanding of the in-application 
advertising libraries, we use the tool – dex2jar – to 
decompile the application package files into JAR format, 
which is easily readable by a Java decompiler. We then 
search for the advertising libraries by browsing for the 
namespaces. For example: com.google.ads defines the 
classes required to implement advertisements from Google 
Ads. Similarly, we identify the various advertising libraries 
used by the other applications in our dataset, as illustrated in 
Figure 3. We elaborate on our experimental results below.  

Permissions: 

While the internet permission was legitimately requested for 
most applications in our dataset, we observed that 6 
applications which were collected from the official market 
bypassed it. Moreover, although these 6 applications did not 
explicitly request the internet permission during install-time, 
all of them had the READ_PHONE_STATE permission 
defined in their AndroidManifest.xml file. This leads us to 
suspect that the aforementioned permission together with 
the TelephoneManager class (provided in the Android 

official documentation (Android Developers, 2012b)) could 
eventually result in leaking device-related information such 
as the IMEI and IMSI.  

Advertising Libraries:  

During the static analysis phase, we examined the 
decompiled version of the APKs. We found that, as 
illustrated in Figure 4, Google Ads was the most popular 
advertising library implemented by most Android developers. 
Eighty percent of the applications in our data set included 
one or more advertising libraries and all the advertising 
libraries in our dataset used the internet permission to 
communicate with the advertisers.  

5.3 Identify leaky applications 

In order to determine if an application leaked during the 
dynamic analysis, we parse the log files and search for the 
section where the leak is recorded, as shown in Figure 5. 
DroidBox keeps track of five types of information when 
documenting a leak in the log file. These include the source 
of the leak (also referred to as ‘sink’), the destination of the 
leak, the port number through which the information is sent 
to an external party, the name of the taint tag and the html-
encoded data which is leaked through the GET command.  

Therefore, it can be seen from Figure 5 that the 
application leaked the IMSI to an external server with 
address ‘intuitandroidtaxstatprod.122.2o7.net’ via the 
network sink. Similarly, we browsed through the 123 log 
files which were collected from the dynamic analysis 
(Section 5.1) and searched for the information leakage 
section to identify the presence of leaky applications. In the 
end, we found a total of 13 applications which leaked 
device-related information, such as IMEI and IMSI, to 
external networks. 

Figure 4 The distribution of advertising libraries for 123 applications (see online version for colours) 

 

Figure 5 Extract of a log file, showing the section about information leakage 

 
  



 Towards an understanding of the impact of advertising on data leaks 189 

5.4 Determine the cause(s) of leaks in applications 

After confirming that 13 out of the 123 applications from 
our dataset leak information to external parties, we proceed 
to conduct further analysis of the AndroidManifest.xml files 
and decompile APKs to have a better understanding of the 
events that triggered the leaks. 

We begin by examining the individual Android 
Manifest.xml files for each leaky application to find out the 
list of permissions that were requested. Table 2 shows the 
distribution of permissions across the set of 13 applications 
under consideration; ‘X’ denotes a request that was made 
for a particular permission. It should be noted, at firsthand, 
that all 13 leaky applications include both the internet and 
READ_PHONE_STATE permissions. A combination of 
these two permissions is sufficient to render an application 
vulnerable, as noted in (Stevens et al., 2012). 

Table 2 Permissions requested by the 13 leaky applications 
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y Tax 
Refund 

  X  X  X     

iStock 
Manager 

  X  X  X     

Sudoku     X  X   X X 

Solitaire   X  X  X  X  X 

Crazy Bike 
Racing 
Motor 

  X  X  X X   X 

Drage 
Racing 

  X  X  X  X   

Sketch n 
Draw 

    X  X    X 

Connector X  X  X  X     

Finance 
Central 

  X X X  X    X 

Mint.com 
Personal 
Finance 

  X  X X X     

Stock 
Analyst 
Free 

X X X X X  X     

Symbol 
Lookup 

X X X X X  X     

Xpense 
Lite 

  X  X  X    X 

Additionally, it should be noted that out of the 123 applications, 
only 36 applications (with advertising libraries) included  

both the internet and READ_PHONE_STATE permissions. 
However, only 13 applications leaked either the IMSI or IMEI 
information to advertising networks. We believe that this is the 
case because the 3 minute cut- off that we used as execution 
time did not permit the remaining 23 applications to execute 
the code that could potentially lead to leaks; thus DroidBox 
was unable to record any information leaks (see Figure 6 for a 
break-down of the numbers). 

Figure 6 Applications with INTERNET and READ_PHONE_ 
STATE permissions 

 
 
 
 
 
 
 
 
 
 
 
 

 

Next, we analyse the classes defined within the decompiled 
version of each application, generated in the static analysis 
stage (Section 5.2). We use the destination addresses, recorded 
under the information leakage section within the log files, to 
search through the Java classes and compare the namespace to 
confirm if the application developer has made use of any 
external in-application libraries. This led to us to observe that 
all the 13 applications had third-party advertising libraries 
embedded in their respective Java packages. 

Furthermore, the design of the Android security framework 
does not permit the operating system to differentiate between 
the permissions required by an application and those needed by 
an advertising library (Shekhar et al., 2012; Pearce et al., 
2012). Consequently, any in-application advertising library 
will, by default, inherit the same permissions requested for  
an application and eventually accelerate the occurrence of 
information leaks.  

6 Analysis of leaky applications 

In this section, we present an in-depth analysis of the 13 
leaky applications. 

6.1 Description of leaky applications 

We give in Tables 3 and 4 the full description of the leak, 
including the name and size of the application, the leaked 
information and its destination. We found 7 and 6 leaky 
applications from Google Play and SlideME respectively. 
We observed in Section 5.4 that the cause of information 
leakage can be attributed to the use of in-application 
advertising libraries and the inheritance of permissions 
requested by host applications.  
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Table 3 Leaky applications found in the official market (7) 

 Application 
name 

Detected 
leak 

Leak  
destination 

My Tax 
Refund 

IMSI  
(3 times) 

 intuitandroidtaxstatprod. 
122.2o7.net (hosted by 
Omniture) 

F
in

an
ce

 

iStock 
Manager 

IMEI  
(4 times) 

 my.mobfox.com (hosted 
by MobFox) 

Sudoku IMEI  
(5 times) 

 ads2.greystripe.com 
(hosted by GreyStripe) 

 ads.mp.mydas.mobi 
(hosted by Millennial 
Media) 

 androidsdk.ads.mp.mydas.
mobi (leaks 3 times) 
(hosted by Millennial 
Media) 

Solitaire IMEI  
(3 times) 

 ads2.greystripe.com 
(hosted by GreyStripe) 

 service.sponsorpay.com 
(leaks twice) (hosted by 
SponsorPay) 

Crazy Bike 
Racing 
Motor 

IMEI  
(2 times) 

 www.umeng.com (hosted 
by Umeng) 

Drage 
Racing 

IMEI 
(once) 

 data.flurry.com (hosted by 
Flurry) 

G
am

e 

Sketch n 
Draw 

IMEI  
(3 times) 

 ads.mp.mydas.mobi 
(hosted by Millennial 
Media) 

 androidsdk.ads.mp.mydas.
mobi (leaks twice) (hosted 
by Millennial Media) 

6.2 Investigation of leaky applications 

Upon further analysis, we noticed that 9 out of those 13 
applications included on average two additional third-party 
advertising libraries, excluding the one through which they 
leaked. Moreover, we also found a total of 9 advertising 
libraries embedded in one leaky application which is 
classified under the Games category and at most 3 
advertising libraries included, at one time, in a leaky 
application from the Finance category.  

Generally, it is well-known that application developers 
earn revenues from in-application advertisements and 
hence, providing them with the incentive to market their 
application free of charge. In fact, the more advertising 
libraries they embed in their applications, the higher the 
revenue. It is also worth mentioning that each advertiser has 
their own set of advertising libraries which can be obtained 
after signing up with the advertising company. Application 
developers do not have to fully comprehend the advertising 
code as they only need to follow the instructions given  
by the advertising companies to successfully include 
advertisements in their applications; therefore unknowingly 
leaking sensitive information through the advertising 
libraries. 

Table 4 Leaky applications found in the non-official market (6) 

 Application 
name 

Detected 
leak 

Leak  
destination 

Connector IMEI 
(5 times) 

 wv.inner-active.mobi 
(hosted by Inneractive) 

Finance 
Central 

IMEI 
(7 times) 

 ads.mp.mydas.mobi (hosted 
by Millennial Media)  

 androidsdk.ads.mp.mydas.m
obi (leaks 6 times) (hosted 
by Millennial Media) 

Mint.com 
Personal 
Finance 

IMSI 
(once) 

 ci.intuit.com (hosted by 
Omniture) 

Stock 
Analyst 

Free 

IMEI 
(twice) 

 my.mobfox.com (hosted by 
MobFox) 

Symbol 
Lookup 

IMEI 
(twice) 

 my.mobfox.com (hosted by 
MobFox) 

F
in

an
ce

 

XpenseLite IMEI 
(6 times) 

 ads.mp.mydas.mobi (hosted 
by Millennial Media) 

 androidsdk.ads.mp.mydas.m
obi (leaks 5 times) (hosted 
by Millennial Media) 

The following steps demonstrate, through an examination  
of the application Mint.com Personal Finance how an 
embedded advertising library extracts the IMSI information 
and sends it to the advertising server:  

Step 1: 

We look for the main entry point of the application in its 
AndroidManifest.xml file. This information is stored within 
the Activity component, with the description <android. 
intent.action.MAIN>. In this case, the .activity.MintLogin 
Activity is the main activity that starts the application (see 
Appendix A). 

Step 2: 

Next, we search for the Java class named ‘MintLogin 
Activity’ in the decompiled version of the application 
package file. We notice that after the user has successfully 
logged in, the application invokes the class ‘MintOmniture 
TrackingUtility’ (see Appendix A). 

Step 3: 

The ‘MintOmnitureTrackingUtility’ class subsequently invokes 
the ‘AppMeasurement’ class which contains a method, 
‘getDefaultVisitorID()’ whose purpose is to extract the IMSI 
using the ‘getSubscriberId()’ method (see Appendix A). 

Step 4: 

The advertising code also included the method ‘send’ which 
allowed the application to leak the IMSI via the network 
(see Appendix A). 

Step 5: 

Below is an excerpt from the DroidBox log file generated 
during the dynamic execution of the application. It can be seen 
that the application did indeed leak the IMSI via Port 80 – 
which is used for HTTP communications (see Appendix A). 
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Advertising libraries, by default, require the application 
developer to include the internet permission in the 
AndroidManifest.xml file so that the advertising company 
can track the number of clicks which will then be used to 
determine the revenue to be paid to the application 
developer. This leads us to conclude that the application 
developers follow do not follow the least-privilege method 
when requesting permissions for their applications. 

Furthermore, we also noted that 10 leaky applications 
made use of the WebView class and APIs to embed the in-
application advertisements. WebView can be regarded as an 
in-application browser and enhances the advertising display 
to allow the application to present web content in the 
advertisements. The downfall of this type of advertisement 
implementation is that it offers a gateway to external parties 
through the WebView browser to initiate an attack and 
eventually take control of the device, as explained in  
(Luo et al., 2011). Additionally, in order for the WebView 
components to function correctly, the application must 
request the internet permission during the installation thus, 
opening a pathway for possible web attacks that can be 
routed through WebView browser to the application.  

In Section 7, we conclude our work and present some 
ideas for future research.  

7 Conclusion and future work 

We have demonstrated that, without the knowledge of  
the user, applications considered to be clean can leak data 
about the device to a third-party. Our analysis of those 
applications which leak, described how, why and where 
information is leaked to. 

Clean applications, irrespective of whether they are 
collected from official or non-official markets, are capable 
of leaking phone-related information without the users’ 
knowledge. We also observed that third-party advertising 
libraries were the principal cause of all the leaks that were 
recorded for our dataset. In order to obtain revenue, 
embedded advertising libraries often require certain 
permissions not always available in the application, and so 
such applications must be made over-privileged in order for 
the advertiser to obtain revenue; this usage of unnecessary 
permissions facilitates the occurrence of leaks. Advertisers 
use the device information to track sites viewed by the user 
in order to get a picture of what goods and services may be 
of interest to the user. 

7.1 Recommendations 

Some device users may indeed be happy to have advertisers 
track their location in order to be provided with a 
customised advertising profile and targeted advertising. On 
the other hand, many users feel that leakage of device ID 
data is an invasion of privacy (and in some cases may even 
be illegal) and do not want their location tracked. We 
believe that the user should have the option. We recommend 
that every application be equipped with the functionality of 

permitting the device user to use a downloaded application 
for a fixed trial period (as determined from the date of the 
download) and at the completion of this period, be asked to 
opt in to location tracking, with the option of not doing so. 
We also recommend that anti-virus software developers 
include in their products identification of applications 
containing advertising libraries, or, since this is likely to be 
by far the majority of applications, those which do not; this 
flags the presence of advertising libraries to the user who 
may later make a decision to opt out of location tracking. In 
making these recommendations, we note that the authors of 
(Pearce et al., 2012) have also made recommendations for 
changes in the Android framework to address the issue of 
private data leaks. We believe that our solution would be 
easier and cheaper to implement than theirs.  

7.2 Limitations of our work 

Our restricted data set was of course a limitation, both in the 
number of applications it contained and in the fact that only 
Financial and Games applications were chosen. However, as 
argued in Section 4, these applications were chosen for 
specific reasons. In further work, we plan to investigate 
larger and more varied data sets.  

In dynamic analysis, restricting the execution time to a 
fixed three minute period is problematic as some 
applications may need much more time to expose all 
features of the execution. We noted in Section 5 that 
malicious applications are particularly good at avoiding 
detection by waiting for long periods of time before 
exhibiting their behaviour. In our case, all applications 
executed were clean and it is in the interest of advertisers to 
make an internet connection quickly. We circumvented this 
limitation by conducting a thorough static analysis on each 
potentially leaky application, as identified in Figure 6.  
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