Future Generation Computer Systems 36 (2014) 122-132

Contents lists available at ScienceDirect

FiGICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs =

Mining permission patterns for contrasting clean and malicious

android applications

Veelasha Moonsamy, Jia Rong*, Shaowu Liu

—

@ CrossMark

School of Information Technology, Deakin University, 221 Burwood Highway, Vic 3125, Australia

HIGHLIGHTS

We collected a new dataset with 1227 clean Android applications.
We considered both required and used permission.
Biclustering method has been employed to provide visualization.

A pattern mining algorithm is proposed to identify contrast permission patterns.

The permission patterns show big contrasts between clean apps and malware.

ARTICLE INFO ABSTRACT

Article history:

Received 16 March 2013

Received in revised form

1 August 2013

Accepted 5 September 2013
Available online 18 September 2013

An Android application uses a permission system to regulate the access to system resources and users’
privacy-relevant information. Existing works have demonstrated several techniques to study the required
permissions declared by the developers, but little attention has been paid towards used permissions.
Besides, no specific permission combination is identified to be effective for malware detection. To fill these
gaps, we have proposed a novel pattern mining algorithm to identify a set of contrast permission patterns

that aim to detect the difference between clean and malicious applications. A benchmark malware

Keywords:

Android permission
Data mining
Biclustering
Contrast mining
Permission pattern

patterns.

dataset and a dataset of 1227 clean applications has been collected by us to evaluate the performance
of the proposed algorithm. Valuable findings are obtained by analyzing the returned contrast permission

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Smartphone is used to describe a mobile device equipped with
enhanced computing capability and connectivity [1], such as Nexus
by Google [2], iPhone by Apple [3], Blackberry by RIM [4] and
Windows Phone by Microsoft [5]. In the past few years, the global
telephony industry has witnessed an upsurge in the sales of smart-
phones. A smartphone is usually sold with an in-built mobile
operating system (OS) together with a number of pre-installed
“applications” packaged by the device manufacturer. An applica-
tion, the software running on smartphones, enhances the smart-
phone’s functionality and supports the interaction with end users
to accomplish their tasks. Calendar, address book, alarm clock, media
player and web browser are the common applications provided by
the device manufacturers, but one important application exists on
every smartphone—the “application store”, which allows end users

* Corresponding author. Tel.: +61 411645497.
E-mail addresses: v.moonsamy@research.deakin.edu.au (V. Moonsamy),
jiarong@acm.org, jiarong@tulip.org.au (J. Rong), swliu@deakin.edu.au (S. Liu).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.09.014

to access online application markets to browse and download addi-
tional applications of their choice.

Every device manufacturer hosts an application market for its
own OS platform, such as Apple’s App Store [6], Blackberry’s App
World [7] and Google Play [8]. However, far before the first official
application markets were introduced in 2008 by Apple, smart-
phone application distribution was highly dependent on third-
party sources, where individual application developers were free
to upload their products. Due to a huge number of low-price ap-
plications being available, there is still a large group of end users
who prefer visiting third-party application markets, but not all the
applications from markets are “safe”. The software that is specially
designed to harm a device, its OS or other software is called “Mal-
ware”, which stands for malicious software [9]. The increasing sales
of smartphones has pushed the rapid growth of mobile malware.

As pointed out by Zhou and Jiang [10], malware or malicious
applications might cause a series of user unexpected operations,
for example, stealing user’s personal information, making calls or
sending an SMS without the user’s knowledge. Such malicious be-
haviors not only cost users extra data usage, but also potentially
bring privacy issues. Furthermore, the users may not be aware of

http://dx.doi.org/10.1016/j.future.2013.09.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.09.014&domain=pdf
mailto:v.moonsamy@research.deakin.edu.au
mailto:jiarong@acm.org
mailto:jiarong@tulip.org.au
mailto:swliu@deakin.edu.au
http://dx.doi.org/10.1016/j.future.2013.09.014

V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132 123

running malware on their smartphones because in many cases the
malware are downloaded and/or installed without authorization.
Accordingly, an efficient and effective malware detection tech-
nique is highly demanded to protect smartphone users from the
potential prevalence.

To effectively detect malware from millions of applications
available on official and third-party markets, many efforts have
contributed to studying the nature of smartphone platforms and
their applications in the past decade. As the most popular mobile
platform, Google's Android overtook others to be the top mo-
bile malware platform. The Android platform employs the per-
mission system to restrict applications’ privileges to secure the
users’ privacy-relevant resources [11]. An application needs to
get a user’s approval for the requested permissions to access the
privacy-relevant resources. Thus, the permission system was de-
signed to protect users from applications with invasive behaviors,
but its effectiveness highly depends on the user’s comprehension
of permission approval. We refer to the permissions that are re-
quested during application installation as required permissions. Un-
fortunately, not all the users read or understand the warnings of
required permissions shown during installation. To improve this
situation, many researchers have tried to interpret Android permis-
sions and their combinations [12-15]. Frank et al. [11] proposed
a probability model to identify the common required permission
patterns for all Android applications. Zhou and Jiang [10] listed
the top required permissions for both clean and malicious ap-
plications, but only individual permissions were considered by
frequency counting. A problem is still remaining of whether the
patterns in a permission combination can provide better per-
formance for malware detection. Furthermore, in the existing
literature, only the required permissions are considered in permis-
sion pattern mining, no work has incorporated the used permis-
sions that are extracted from static analysis by the Andrubis system
(http://anubis.iseclab.org) [16]. Therefore, we are the first group to
explore both the required and used permissions. Accordingly, our
aim is to propose an efficient pattern mining method to identify a set
of contrast permission patterns that effectively distinguish malware
from the clean applications.

By using a pattern mining technique to identify the desired
permission patterns, we need two datasets: one has only clean
Android applications and the other contains all malicious ones. In
2012, Zhou and Jiang [10] published the first benchmark dataset of
malicious applications in 49 malware families, which was collected
from third-party markets between August 2010 and October 2011.
This is an ideal malware dataset for our experiments. On the other
hand, due to the lack of a dataset of clean applications published
at the same time period as Zhou and Jiang’s, we collected our
own clean dataset. The clean applications were collected from
two popular third-party Android applications markets: SlideME
(http://slideme.org) and Pandaapp (http://android.pandaapp.com).
We sorted the collected applications based on the times of their
download and the ratings given by the users, and only the top
ones were picked. Each application was scanned by forty-three
antivirus engines on VirusTotal (https://www.virustotal.com) [17],
and only the ones that passed all virus tests were considered as
“clean” and kept to form the clean dataset. These clean applications
do not impede on the smooth execution of the OS. Like Zhou and
Jiang, we represent applications in the collected clean dataset using
a vector of 130 binary values, each of which is associated with
one of the 130 official Android permissions. A value 1 is assigned
to a permission only if it is required or used by an application,
otherwise, 0 is given instead.

The novelty and contributions of this work can be summarized
as follows:

e We collected a new dataset that contains 1227 clean applica-
tions that were uploaded to third-party markets from August
2010 to October 2011.

e Beyond the current studies that focused on required permissions
only, we also considered the used permissions.

e We utilized a hierarchical Biclustering method to initially an-
alyze both clean and malware datasets. The obtained result-
ing figures provided a straightforward preview of the data
distribution, from which we built up our model of mining a set
of permissions rather than using individual permissions as the
patterns.

o We proposed a contrast permission pattern mining algorithm
to identify the interesting permission sets that can be used to
distinguish applications from malicious to clean.

e Our demonstration of the proposed Contrast Permission Pattern
Mining proved that both required and used permissions should
be considered in late malware detection tasks.

The rest of the paper is organized as follows: Section 2 briefly
reviews the concepts of the Android platform, its applications,
the permission system and the current research work in malware
detection. In Section 3, we present our initial analysis on the
collected datasets using a statistical method and biclustering
followed by the proposed contrast pattern mining algorithm. The
experiments and the obtained results are then reported in Section 4
followed by a further discussion on findings. Finally, Section 5
concludes the entire paper together with our future work.

2. Background and related work

2.1. Android

Android is a Linux-based OS which was designed and developed
by the Open Handset Alliance in 2007 [18]. The Android platform is
made up of multiple layers consisting of the OS, the Java libraries
and the basic built-in applications [19]. Additional applications can
be downloaded and installed from either official or third-party
markets.

Google provides the application developer community with a
Software Development Kit (SDK) [20] to build Android applications
and it includes a collection of Java libraries and classes, sample
applications and developer documentations. The SDK can be used
as a plug-in for Eclipse IDE [21] and therefore allows developers to
code their applications in a rich Java environment. One particularly
useful feature of the SDK is the Android emulator which allows
developers to test their applications in virtual devices on various
versions of Android OS.

An Android application includes two folders and one file: (i)
Class, (ii) Resources and (iii) AndroidManifest.xml. The Class folder
contains the application’s source code in Java; the Resources folder
stores the multimedia files; and the AndroidManifest.xml file
lists the required permissions that are declared by the developer.
After the Java source code is done, it is then compiled and
converted into Dalvik byte code [22] and bundled with the
Resources folder and AndroidManifest .xml file to generate the
Android Application Package (APK). Finally, before the APK can be
installed on a device or emulator, the develop has to generate a
key and sign the application.

Android developers can upload their applications to either the
official market, Google Play [23], or any third-party market. To
secure the privacy-relevant resources for its users, Google provides
automatic antivirus scanning [24]. The applications will be rejected
from Google Play if any malicious content is detected. From 2012,
Google has extended its antivirus service on the new Android 4.2
0S, which is claimed to be able to scan applications before they are
installed on the device [25].

2.1.1. Android permission system

Google applies the permission system as a measure to restrict
access to privileged system resources. Application developers have
to explicitly mention the permissions that need user’s approval

http://anubis.iseclab.org
http://slideme.org
http://android.pandaapp.com
https://www.virustotal.com

124 V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132

in the AndroidManifest.xml file. Android adopts an ‘all-or-
nothing’ permission granting policy. Hence, the application is
installed successfully only when the user chooses to grant access
to all of the required permissions.

There are currently 130 official Android permissions that are
categorized into four types: Normal, Dangerous, Signature and Sig-
natureOrSystem [26]. Normal permissions do not require the user’s
approval but they can be viewed after the application has been in-
stalled. Dangerous permissions require the user’s confirmation be-
fore the installation process starts; these permissions have access
to restricted resources and can have a negative impact if used in-
correctly. A permission in the Signature category is granted with-
out the user’s knowledge only if the application is signed with the
device manufacturer’s certificate. The SignatureOrSystem permis-
sions are granted only to the applications that are in the Android
system image or are signed with the device manufacturer’s certifi-
cate. Such permissions are used for special situations where the
applications, built by multiple vendors, are stored in one system
image and share specific features.

After an application is installed, a set of application program-
ming interfaces (APIs) are called during the runtime. Each API call is
associated with a particular permission. When an API call is made,
the Android OS checks whether or not its associated permission has
been approved by the user. Only a match result will proceed to ex-
ecute the certain API call. In this way, the required permissions
are able to protect the user’s privacy-relevant resource from the
unauthorized operations. However, it cannot fully stop the mal-
ware developers who can declare any required permissions for
their applications. With this reason, several studies have tried to
identify the common required permissions that are frequently de-
clared by Android application developers.

By applying the Self-Organizing Map (SOM) algorithm, Barrera
et al. [12] studied the trends of permission requests from a dataset
of 1, 100 applications downloaded from the official market. Frank
et al. [11] selected 188,389 applications from the official market
and analyzed the combinations of permission requests by these
applications. A probabilistic method was proposed to deduce the
popular permission patterns based on the applications’ popularity
(ratings together with number of reviews), that is, the deviation
of permission requests for high- and low-ranked applications.
Bartel et al. [27] proposed an automated tool that can statistically
analyze the methods defined in an application and subsequently
generate the permissions required by the application. This in
turn ensures that the user does not grant access to unnecessary
permissions when installing the application. A model designed by
Sanz et al. [28] is based on features which comprised solely of
Android permissions. These works studied the applications that
were collected mainly from the official market. The results and
findings help us to understand the Android permission system and
the patterns for normal permission requests. However, comparing
with the clean applications, we are more interested in the
abnormal permission requests, which are considered as more
valuable to help detect the malware and their malicious behaviors.

2.2. Android malware detection with permissions

Malware detection is an emerging topic in Android application
study with many successful achievements, but not much attention
has been paid to detection using permission patterns. Rassameeroj
and Tanahashi [29] used visualization techniques and clustering
algorithms to reveal normal and abnormal permission request
combinations. They evaluated their methodology on a dataset
comprising of 999 applications. After analyzing the extracted
permission combinations, they claimed that nearly 8% of the
applications were potentially malicious. Chia et al. [15] argue
that the current user-rating system is not a reliable source of

measurement to predict whether or not an application is malicious.
Their dataset consisted of 650 applications from the official
market and 1,210 applications from a third-party market. The
required permissions were extracted from the dataset, together
with other application-related information to develop a risk signal
mechanism for detecting malware. Sahs and Khan [30] focused
on feature representation as one of the challenges of malware
detection. The features to be represented included: (i) permissions
extracted from manifest files and (ii) control flow graphs for
each method in an application. Each feature was processed
independently using multiple kernels and a one-class Support
Vector Machine to train the classifiers was applied. However, the
evaluation results showed that the common features existing in
both clean and malware datasets cause a detection error rate.
Wu et al. [31] put forward a static feature-based technique
that can aid towards malware detection. First, they apply K-
means algorithms to generate the clusters and use Singular Value
Decomposition to determine the number of clusters. In the second
step, they classify clean and malicious applications using the k-
Nearest Neighbor (kNN) algorithm. Zhou et al. [32] proposed a
two-layered system known as, DroidRanger that makes use of
“permission-based behavioral foot-printing and heuristics-based
filtering”. The authors observed that the permissions extracted
from the AndroidManifest.xml files of malicious applications
gave an insight into uncommon permission requests by some
malware families. In Sanz et al.’s work [28], they extracted the
permissions and the hardware features to build the feature set.
As a result, clean applications require two to three permissions
on average, but some of malicious applications only have one
permission and are still able to carry out the attack.

Most of the work extracted a feature set to represent the ap-
plications. The information carried by those features was different
from work to work. There is no evidence to show which features
give the best detection result, but required permissions are con-
sidered in each study. Accordingly, we are interested in taking the
permissions as the only features to represent the applications and
expect to find specific permission patterns to show the difference
between clean and malicious applications.

2.3. Summary

Malware proliferation is rising exponentially and the attack
vectors used by malware authors are getting more sophisticated.
Current solutions proposed to thwart attacks by malicious appli-
cations will struggle to keep up with the increase of malware. The
Android platform relies heavily on its permission system to con-
trol access to restricted system resources and private information
stored on the smartphone. As demonstrated by [11,33,34], permis-
sions that are requested by applications during installation can be
helpful in identifying permission patterns.

However, we identify the following problems in the existing
literature:

Problem 1 What required permission patterns can be used to
detect malicious applications?

Problem 2 What used permission patterns can be used to detect
malicious applications?

Problem 3 Can we extract useful information by incorporating
used permissions into the permission patterns?

Problem 4 What method can we use to identify these expected
permission patterns?

In this paper, we aim to extend the current statistical method
used for identifying permission patterns in Android applications by
applying pattern mining techniques to a set of clean and malicious
applications in order to better understand the similarities and dif-
ferences between these two datasets. With the help of visualization

V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132 125

Table 1
Top 20 required permissions by clean and malicious applications.

Clean applications

Malicious applications

Required permission Frequency Required permission Frequency
INTERNET 1121(91.36%) INTERNET 1199 (97.72%)
ACCESS_NETWORK_STATE 663 (54.03%) ACCESS_COARSE_LOCATION 1146 (93.40%)
READ_PHONE_STATE 391(31.87%) VIBRATE 994 (81.01%)
WRITE_EXTERNAL_STORAGE 362 (29.50%) WRITE_EXTERNAL_STORAGE 823 (67.07%)
ACCESS_COARSE_LOCATION 236 (19.23%) READ_SMS 779 (63.49%)
VIBRATE 210 (17.11%) WRITE_SMS 762 (62.10%)
WAKE_LOCK 188 (15.32%) READ_CONTACTS 680 (55.42%)
ACCESS_FINE_LOCATION 162 (13.20%) BLUETOOTH 633 (51.59%)
GET_TASKS 125(10.19%) WRITE_CONTACTS 542 (44.17%)
SET_WALLPAPER 102 (8.31%) DISABLE_KEYGUARD 491 (40.02%)
ACCESS_WIFI_STATE 64 (5.22%) WAKE_LOCK 471(38.39%)
RECEIVE_BOOT_COMPLETED 60 (4.89%) RECORD_AUDIO 461 (37.57%)
READ_CONTACTS 58 (4.73%) ACCESS_FINE_LOCATION 446 (36.35%)
WRITE_SETTINGS 45 (3.67%) ACCESS_NETWORK_STATE 416 (33.90%)
CAMERA 43(3.50%) READ_PHONE_STATE 414 (33.74%)
CALL_PHONE 42 (3.42%) SET_ORIENTATION 413 (33.66%)
SEND_SMS 34(2.77%) CHANGE_WIFI_STATE 384 (31.30%)
RESTART_PACKAGES 32(2.61%) READ_LOGS 361(29.42%)
RECEIVE_SMS 31(2.53%) BLUETOOTH_ADMIN 342 (27.87%)
RECORD_AUDIO 27 (2.20%) RECEIVE_BOOT_COMPLETED 325 (26.49%)

graphs, we establish possible connections between required per-
missions and used permissions in order to extrapolate emerging
permission patterns that are frequently requested by applications.
Then, we apply contrast set mining on the permissions patterns
from clean and malicious applications to identify which patterns
are most prevalent in each dataset.

3. Mining permission patterns

The common methods used widely to analyze Android permis-
sions are statistical ones, such as frequency counting by Zhou and
Jiang [10], and the probabilistic model by Frank et al. [35]. Thus, we
started our work from an initial analysis on the clean and malware
datasets using frequency counting following Zhou and Jiang’s work
and extend it to explore used permissions. As inspired by the work
of Barrera et al. [12] who utilized SOM for application clustering
and visualization, we would like to employ the Biclustering algo-
rithm to group not only the applications but also the permissions.
Finally, a novel contrast permission pattern mining algorithm is
presented to identify specific permission patterns that help to dis-
tinguish clean and malicious applications.

3.1. Classic statistical analysis on android permissions

We employed statistical analysis to study both required and
used permissions for clean applications as well as malicious ones,
so four sub-datasets were further extracted: (1) Required permis-
sions for clean applications; (2) Required permissions for mali-
cious applications; (3) Used permissions for clean applications; and
(4) Used permissions for malicious applications. Direct frequency
counting is employed on all four sub-datasets to find out the most
popular permissions required or used by clean and malicious ap-
plications.

By comparing the top 20 required permissions for clean and
malicious applications listed in Table 1, we found that malicious
applications requested a total of 14,758 permissions, which was
much more than clean applications (4,470 permissions). Among
these permissions, we found some of them only appeared in one
dataset, that is, those permissions are only requested or used by
clean applications but not malicious ones, and vice versa. We call
these permissions ‘unique permissions’. Similarly, we name those
permissions that appear in both clean and malware datasets as
‘common permissions’. Totally, there are 33 unique required per-
missions for clean applications and 20 for malicious ones; and

also 70 common required permissions. Another 5 permissions
have never been requested by any application. For used permis-
sions, there are 9 unique ones for clean applications and only 4
for malicious ones. The number of commonly used permissions
drops to 28, and a large number of 87 permissions have never
been used by any application. Four common permissions were
most frequently required by both clean and malicious applications:
INTERNET, ACCESS_COARSE_LOCATION, WRITE_EXTERNAL_
STORAGE and VIBRATE. In contrast, there were nine out of twenty
required permissions that appeared frequently in the malware
dataset than in the clean one. Malicious applications need permis-
sions to read or write an SMS rather than clean applications which
prefer to get the approval of sending an SMS. BLUETOOTH-related
permissions are also popular for malicious applications as well. In
addition, malicious applications have a greater desire to get access
to change data on smartphones than clean applications, for exam-
ple, they request more to write contacts, to set orientation, and to
change WiFi state. On the other hand, by listing the top 20 used
permissions for clean and malicious applications, there is a small
difference that can be observed from Table 2. Sixteen out of twenty
popular used permissions are commonly existing in both datasets.

A classic statistical method like direct frequency counting is
good at identifying single permissions that are popular in each sub-
dataset respectively. However, it still needs manual checking to
compare the obtained permission lists for clean and malicious ap-
plications. Moreover, the counting process becomes complicated
and time-consuming in order to consider permission combinations
instead of single permissions. Therefore, we continued the analysis
of Android permissions with the biclustering algorithm in the next
step, which is able to provide a visualization of the relationship be-
tween permissions and applications.

3.2. Visualization using biclustering

Biclustering [36] is a special cluster analysis method, which ap-
plies classic clustering to both rows and columns simultaneously in
a two-dimensional data matrix. In this work, biclustering can help
group applications that request or use different permission combi-
nations as well as show us the clusters of permission combinations
based on the various applications associated with them.

The biclustering is achieved by performing Agglomerative
Hierarchical Clustering (AHC) [37,38] on both dimensions of the
data matrix. The AHC is first applied along the columns of the data

126 V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132

Table 2
Top 20 used permissions by clean and malicious applications.

Clean applications

Malicious applications

Used permission Frequency Used permission Frequency
INTERNET 1029 (83.86%) INTERNET 1161 (94.62%)
WAKE_LOCK 816 (66.50%) ACCESS_COARSE_LOCATION 1125 (91.69%)
ACCESS_NETWORK_STATE 738 (60.15%) VIBRATE 954 (77.75%)
VIBRATE 608 (49.55%) WAKE_LOCK 826 (67.32%)
READ_PHONE_STATE 457 (37.25%) ACCESS_WIFI_STATE 584 (47.60%)
ACCESS_COARSE_LOCATION 372 (30.32%) ACCESS_NETWORK_STATE 519 (42.30%)
SET_WALLPAPER 126 (10.27%) READ_SMS 473 (38.55%)
ACCESS_FINE_LOCATION 116 (9.45%) WRITE_CONTACTS 426 (34.72%)
GET_ACCOUNTS 98 (7.99%) READ_PHONE_STATE 354 (28.85%)
ACCESS_WIFI_STATE 85 (6.93%) RECORD_AUDIO 319 (26.00%)
READ_SMS 82 (6.68%) SET_WALLPAPER 297 (24.21%)
RESTART_PACKAGES 65 (5.30%) ACCESS_FINE_LOCATION 199 (16.22%)
GET_TASKS 61(4.97%) GET_ACCOUNTS 178 (14.51%)
CHANGE_CONFIGURATION 55 (4.48%) GET_TASKS 124 (10.11%)
RECEIVE_SMS 37 (3.02%) RECEIVE_BOOT_COMPLETED 111(9.05%)
FLASHLIGHT 37 (3.02%) ACCESS_CACHE_FILESYSTEM 101(8.23%)
WRITE_CONTACTS 34 (2.77%) WRTIE_OWNER_DATA 59 (4.81%)
RECEIVE_BOOT_COMPLETED 23(1.87%) CHANGE_CONFIGURATION 52 (4.24%)
WRTIE_OWNER_DATA 12 (0.98%) READ_HISTORY_BOOKMARKS 49 (3.99%)
WRITE_SETTINGS 10(0.81%) EXPAND_STATUS_BAR 41(3.34%)

ny

suones)|ddy

-

[
e g

|
TSI g v
'
|

VIoniamm e min o
'

suones||ddy

...,,..,.-...\-.,,".,..‘,..\.,,..,,..
I———————

Permissions

(a) Required permissions.

Permissions
(b) Used permissions.

Fig. 1. Visualization of sub-datasets for biclustering: white for Os; gray for 1s in clean applications; and black for 1s in malicious applications.

matrix, and then is applied along the rows of the row-clustered
data matrix.

Unlike the common clustering methods which identify a single
set of clusters, the AHC is a bottom-up clustering method that
seeks to identify clusters with sub-clusters. It forms a multilevel
hierarchical clustering tree where lower level clusters are joined
to form higher level clusters. The procedures are given as follows:

Step 1: Generate the Disjoint Clusters—The AHC starts with every
single data object, i.e. each data object is assigned to a
separate cluster.

Step 2: Form a Distance Matrix—The pairwise distances between
the disjoint clusters are calculated using the Ward’s
linkage [39] and are used to initialize the distance matrix.

Step 3: Merge two Closest Clusters—Based on the distance matrix,
each cluster is merged with another one that has the
shortest distance between them.

Step 4: Update the Distance Matrix—After the merging, the dis-
tance matrix needs to be updated by calculating the new
distances between every two merged clusters.

Step 5: Obtain the Hierarchical Clustering Tree—The steps 3 and
4 are repeated until all clusters are merged into one large
single cluster. By recording the mergence in each iteration,
a complete hierarchical clustering tree is then presented.

We applied the above biclustering procedures on two separate
sub-datasets extracted from the malware dataset and our collected
clean one. One sub-dataset contains all clean and malicious

applications with required permissions (see Fig. 1(a)); the other
has the same applications but with used permissions (see Fig. 1(b)).
As a result, we had two output matrices, the required permis-
sions are shown in Fig. 2 and the used permissions are in Fig. 3.
Based on the statistical analysis presented in Section 3.1, there ex-
ist unique and common permissions for either clean or malicious
applications. As binary values are shown in these matrices, we
manually picked up four colors to mark the values to visualize dif-
ferent types of permissions for clean and malicious applications:

e Black shows Common permissions for clean applications;

e Light Grey shows Common permissions for malicious applica-
tions;

e Dark Grey indicates Unique permissions for clean applications;
and

e Grey indicates Unique permissions for malicious applications.

From these two figures, we can easily observe that more per-
missions are declared as required than are actually used, which
matches our statistical analysis results. Malicious applications
either request or use many more permissions than clean appli-
cations. In normal cases, the unique permissions should perform
better than the common permissions to detect a contrast between
clean and malicious applications. However, from the resulting ma-
trices, we have a few unique permissions shown in Grey and Dark
Grey colors, but a large set of common permissions. Therefore, it
is easy to ignore those unique permissions due to their low fre-
quency using classic statistical methods. A challenge is then raised.

V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132 127

It
1l
suoneo)ddy

tll!lh:i

Permissions

Fig. 2. Resulting matrix for required permissions by biclustering. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

|
|
suoneoiddy

Permissions

Fig. 3. Resulting matrix for used permissions by biclustering. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

How can we take use of these rare but unique permissions for con-
trast detection? Furthermore, it is obvious to see the color blocks
in both figures, which indicate specific permission combinations
have a potential capability to group applications in separate clus-
ters. How we can find out these permission combinations and use
them as the patterns for malware detection is the second challenge
to be solved in the next step of our work.

3.3. Contrast permission pattern mining

In order to find the answers to the two challenges from the bi-
clustering results in previous subsection, the Contrast Permission
Pattern Mining (CPPM) is proposed. The output permission pat-
terns were expected to have the ability to indicate the difference
between the clean and malicious applications. CPPM was designed
to process more than one dataset and take both frequent and infre-
quent permissions and their combinations into consideration. Two
major processes are involved in CPPM: (1) candidate permission
itemset generation, and (2) contrast permission pattern selection.

3.3.1. Candidate permission itemset generation

The purpose of this process is to obtain a number of candidate
permission combinations that have the potential to be the
expected contrast patterns. CPPM takes at least two datasets as
input. In this case two datasets are loaded, each of which contains
either clean or malicious applications. We generate the candidate
permission itemsets from every dataset using the same procedure,
which can be described in two steps:

Apriori-based Itemset Enumeration Given Dx is one of the input
datasets with either required or used permissions, which
contains n application examples. Let | = {A,B,C...}
be the set of possible items (or permissions requested
or used by the applications) in Dx. The Apriori-based
approach [40], enumerates a candidate itemset from
the simplest structure with only a single item. Based
on this single item, a more complex itemset is then
obtained by adding new items. This joining operation
is repeated continuously to increase the number of the
items in the itemsets. In each iteration, only one item
is added into the existing candidate itemset. One item
will not appear twice in one itemset. However, the
Apriori-based approach has an obvious weakness that a
large number of candidate itemsets will be generated
with high computational cost. To solve this problem, we
employ a support-based pruning technique to cut the
number of candidate itemsets and reduce the cost.

Support-based Candidate Pruning Supportis usually used to mea-
sure the occurrence frequency of a certain item or itemset
in a dataset. Let A, B C I be two items, and {A, B} forms a
candidate itemset. The support of the candidate itemset
{A, B} can be calculated by:

supp(A, B)
number of applications that contain A and B in Dx

(1)

total number of applications in Dx

The candidate itemset {A, B} is considered as frequent
only if supp(A, B) > 8,pp, Where J,pp is a user-specified
minimum support threshold. In classic pattern mining
methods, only the frequent itemset is considered. Any
itemset with a lower support than the pre-determined
threshold is treated as infrequent and discarded imme-
diately. However, in our case, both the statistical anal-
ysis and biclustering results show most of the unique
permissions are requested or used by few applications.
Their supports are definitely low. With the idea of avoid
missing any valuable patterns, we decide to take both
frequent and infrequent candidate itemsets, but only use
frequent ones to generate new candidate itemsets to cut
down the computational cost.

3.3.2. Contrast permission pattern selection

The permission itemsets obtained from the previous steps are
still the candidates which need to be finally selected according
to pre-defined selection criteria. This process guarantees that the
output itemsets are highly contrasted between clean and malicious
applications. The contrasts are shown by the different occurrence
behaviors in two datasets. If one permission itemset is frequent in
one dataset, it is often considered to carry more common features
than the infrequent ones. Therefore, the selection of a specific
contrast permission pattern is based on comparison of its supports
in both datasets. The bigger the distance shown in supports, the
greater contrast the permission pattern has.

Given one candidate permission itemset {A, B} and its sup-
ports in clean and malware datasets, supp(A, B)¢ean and supp(A,
B) malicious, calculate the difference by diff(A, B) = supp(A, B)cean —
supp(A, B)maticious- {A, B} is identified as a contrasted permission
pattern only if diff(A, B) > &q4ier, Where St is a user-specified mini-
mum support difference. All the candidate permission itemsets need
to be tested using this approach, and the ones with big support
difference will be selected as the final output contrast permission
patterns.

128 V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132

Table 3
Four sub-datasets used in contrast permission pattern mining experiments.

Table 5
Unique required permission sets in malware dataset (normal permissions).

Dataset Permission involved Permission discarded
1 Clean_Required 103 27
2 Malicious_Required 90 40
3 Clean_Used 37 93
4 Malicious_Used 31 99
Table 4

Permission index.

Permission category Permission ID Permission name

Normal pms0001 INTERNET

Normal pms0006 ACCESS_NETWORK_STATE
Normal pms0007 VIBRATE

Normal pms0012 RESTART_PACKAGES
Normal pms0013 RECEIVE_BOOT_COMPLETED
Normal pms0023 ACCESS_WIFI_STATE
Dangerous pms0002 ACCESS_FINE_LOCATION
Dangerous pms0003 WAKE_LOCK

Dangerous pms0004 WRITE_EXTERNAL_STORAGE
Dangerous pms0005 READ_PHONE_STATE
Dangerous pms0008 READ_CONTACTS
Dangerous pms0011 READ_LOGS

Dangerous pms0020 ACCESS_COARSE_LOCATION
Dangerous pms0021 SEND_SMS

Dangerous pms0022 GET_TASKS

Dangerous pms0024 CHANGE_WIFI_STATE
Dangerous pms0028 WRITE_CONTACTS
Dangerous pms0029 RECEIVE_SMS

Dangerous pms0030 READ_SMS

Dangerous pms0031 WRITE_SMS

Dangerous pms0036 CALL_PHONE

Signature pms0010 FACTORY_TEST
SignatureOrSystem pms0052 INSTALL_PACKAGES

Permission set Support Permission set
Clean Malware 1D

pms0001, pms0005, pms0023 0 0.6309 URPSet
pms0001, pms0006, pms0023 0 0.6031 URPSet,
pms0001, pms0013 0 0.5542 URPSet 3
pms0006, pms0013 0 0.5168 URPSet 4
pms0006, pms0031 0 0.4964 URPSets
pms0001, pms0021 0 0.4312 URPSetg
pms0013, pms0023 0 0.4263 URPSet;
pms0021, pms0029 0 0.3701 URPSetg
pms0004, pms0013 0 0.3660 URPSetq
pms0001, pms0005, pms0020 0 0.3562 URPSet 1o
pms0001, pms0005, pms0006, pms0007 0O 0.3497 URPSet 11
pms0001, pms0004, pms0020 0 0.3122 URPSet |,
pms0023, pms0024 0 0.3097 URPSet 13
pms0006, pms0008 0 0.2975 URPSet 14
pms0013, pms0031 0 0.2943 URPSet 15
pms0006, pms0036 0 0.2869 URPSet 16
pms0013, pms0021 0 0.2804 URPSet 17
pms0007, pms0036 0 0.2494 URPSet g
pms0012, pms0021 0 0.2405 URPSet 19
pms0013, pms0036 0 0.2380 URPSet o
pms0006, pms0012 0 0.2372 URPSety;
pms0012, pms0029 0 0.2282 URPSet,
pms0012, pms0013 0 0.2234 URPSet 3
pms0012, pms0036 0 0.2119 URPSet 4
pms0001, pms0004, pms0005, pms0007 O 0.2014 URPSet ;5

Table 6
Unique required permission sets in malware dataset (ACCESS_FINE(COARSE)_
LOCATION).

4. Experiments and results

4.1. Experiment settings

According to the statistical analysis and biclustering resulting
figures, not all the permissions are required or used. In the
experiment to evaluate the proposed Contrast Permission Pattern
Mining algorithm, we ignore the permissions that are not required
or used in each sub-datasets respectively. Table 3 gives more
details of the four new sub-datasets.

The statistical analysis results also show that only a small set
of permissions have support that are greater than 0.1 (10%), so we
follow the previous studies [41-43] to set 0.05 as an acceptable
value for minimum support threshold for all four sub-datasets in
CPPM. The minimum support difference threshold is set to be 0.15
(15%) and is applied to filter out itemsets that are highly contrasted
between clean and malicious applications.

4.2. Contrast permission patterns

Among the permission patterns that were generated, we found
that 23 distinct permissions were present in the highly contrasted
permission combinations as listed in Table 4. We classified
the permissions based on the following permission categories:
normal, Dangerous, Signature and SignatureOrSystem. We recorded
6 permissions belonging to the Normal category, 15 permissions
for the Dangerous category and 1 permission each for the Signature
and SignatureOrSystem category.

We found that the generated permission combinations are cor-
related and differed between clean and malicious applications.
Based on the experimental results, we recorded 56 required per-
mission patterns that are unique to the malware dataset, 31
used permission patterns that only appear amongst malware, 17

Permission set Support Permission set
Clean Malware ID

pms0002, pms0005, pms0020 O 0.2690 URPSet g

pms0002, pms0004, pms0020 0 0.2576 URPSet 7

pms0002, pms0005, pms0023 0O 0.2307 URPSet g

pms0002, pms0004, pms0023 0 0.2234 URPSet ;9

required permission patterns and 9 used permission patterns that
are present in both clean and malware dataset. These findings are
formed as permission combinations which are listed in Tables 5-
13, and summarized with respect to the usage type of the permis-
sion as follows:

4.2.1. Unique Required Permission (URP) Patterns

From Tables 5-10, we present the permission patterns that
were frequently required by the applications in our dataset. It is
worth noting that these required permission patterns were unique
to the malware dataset only; hence the support value for the clean
applications is 0.

In Table 5, we list the top 25 permission combinations where
the first permission in the listed patterns belongs to the normal
permissions category. The permission combinations from URPSet;
and URPSet, were both required by more than 60% of the malware.
In fact, we found that the INTERNET permission (pms0001) is
frequently requested along with other permissions and their
support value are relatively high. The permission combination,
INTERNET and RECEIVE_BOOT_COMPLETED were present in
55% of the malware dataset. Other such patterns involving the
INTERNET permission are listed in Table 5.

In Tables 6-10, we present the permission patterns that can
have an impact on the following actions: access location informa-
tion, read/write/send and receive SMS, access to contact list, write
to external storage and access to phone state.

4.2.2. Unique Used Permission (UUP) Patterns
In Table 11, we list the combinations of the used permissions
that are unique to the malware dataset only. It can be noted that

V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132 129

Table 7
Unique required permission sets in malware dataset (SMS).

Table 11
Unique used permission sets in malware dataset.

Permission set Support Permission set Permission set Support Permission set
Clean Malware 1D Clean Malware 1D
pms0030, pms0036 0 0.3228 URPSet 3o pms0001, pms0005, pms0006, pms0007 0O 0.5542 UUPSet
pms0021, pms0036 0 0.3163 URPSet3q pms0001, pms0005, pms0011 0 0.4687 UUPSet,
pms0031, pms0036 0 0.2690 URPSet 3, pms0001, pms0006, pms0011 0 0.4320 UUPSet 3
pms0029, pms0036 0 0.2674 URPSet 33 pms0005, pms0006, pms0011 0 0.4312 UUPSet 4
pms0021, pms0028 0 0.2519 URPSet 34 pms0001, pms0007, pms0011 0 0.4149 UUPSets
pms0005, pms0007, pms0011 0 0.4133 UUPSetg
pms0006, pms0007, pms0011 0 0.3855 UUPSet;
Table 8 pms0001, pms0002, pms0005, pms0007 0O 0.3423 UUPSetg
Unique required permission sets in malware dataset (CONTACTS). pms0001, pms0021 0 0.3358 UUPSet
Permission set Support Permission set pms0005, pms0021 0 03236 UUPSet
pms0001, pms0002, pms0011 0 0.2845 UUPSet 11
Clean Malware 1D pms0002, pms0005, pms0011 0 02845 UUPSet,
pms0008, pms0030 0 0.3269 URPSet 35 pms0001, pms0002, pms0006, pms0007 0 0.2829 UUPSet 13
pms0008, pms0021 0 0.2894 URPSet 35 pms0002, pms0005, pms0006, pms0007 0 0.2829 UUPSet 14
pms0008, pms0031 0 0.2649 URPSet 37 pms0002, pms0006, pms0011 0 0.2755 UUPSet 15
pms0008, pms0029 0 0.2429 URPSet 3g pms0007, pms0021 0 0.2723 UUPSet 16
pms0028, pms0036 0 0.2413 URPSet 39 pms0001, pms0020 0 02600 UUPSetq7
pms0008, pms0028 0 0.2282 URPSet 49 pms0005, pms0020 0 0.2600 UUPSets
pms0008, pms0013 0 0.2250 URPSet 41 pms0002, pms0007, pms0011 0 0.2568 UUPSet 19
pms0028, pms0029 0 0.2128 URPSet 4 pms0006, pms0020 0 02511 UUPSeto
pms0001, pms0005, pms0010 0 0.2421 UUPSet
pms0001, pms0007, pms0010 0 0.2413 UUPSet,,
Table 9 pms0005, pms0007, pms0010 0 0.2413 UUPSet 53
Unique required permission sets in malware dataset (WRITE_EXTERNAL_STORAGE). pms0011, pms0020 0 0.2380 UUPSet 4
Permission set Support Permission set pms0001, pms0006, pms0010 0 0.2372 UUPSets
pms0005, pms0006, pms0010 0 0.2372 UUPSet ¢
Clean Malware ID pms0006, pms0007, pms0010 0 02364 UUPSety;
pms0004, pms0006, pms0023 0 0.4475 URPSet 43 pms0006, pms0021 0 02348 UUPSetas
pms0004, pms0030 0 0.3896 URPSet 44 pms0007, pms0020 0 0.2266 UUPSet 9
pms0004, pms0005, pms0020 0 03106 URPSet 45 pms0001, pms0003, pms0005, pms0007 0 0.2258 UUPSet 3
pms0004, pms0021 0 0.2462 URPSet 45 pms0002, pms0020 0 02185 UUPSets
pms0004, pms0020, pms0023 0O 0.2258 URPSet 47
pms0004, pms0029 0 0.2022 URPSet 43

Table 10
Unique required permission sets in malware dataset (READ_PHONE_STATE).

Permission set Support Permission set
Clean Malware ID
pms0005, pms0013 0 0.5453 URPSet 49
pms0005, pms0031 0 0.5094 URPSet 5
pms0005, pms0021 0 0.4190 URPSet s
pms0005, pms0029 0 0.3798 URPSet s,
pms0005, pms0008 0 0.3538 URPSet 53
pms0005, pms0036 0 0.3350 URPSet sy
pms0005, pms0028 0 0.2934 URPSetss
pms0005, pms0012 0 0.2560 URPSet ¢

the INTERNET permission is included in the top 3 permission
combinations, UUPSet, to UUPSet; and appears in over 40% of
the malware samples. The combination of INTERNET and READ _
PHONE_STATE permission is another frequent permission pattern,
as depicted by UUPSet, and UUPSet 3g.

Another interesting observation is the presence of the READ_
LOGS (pms0011) permission in one-third of the permission
patterns presented in Table 11. It is often combined with the
INTERNET (pms0001) and ACCESS_FINE_LOCATION (pms0002)
permissions. The remaining patterns include combinations of
network-related and SMS permissions.

4.2.3. Common Required Permission (CRP) Patterns

Previously, we presented the permission patterns that were
unique to malicious applications only. In Table 12, we list the
permission combinations that appear in both clean and malware
datasets. However, it can be observed based on the support value
difference that the permission patterns are more prevalent in the
malware dataset, as shown by the negative support difference
values.

We identify four permissions: INTERNET (pms0001), READ_
PHONE_STATE (pms0005), ACCESS_NETWORK_STATE (pms0006)
and ACCESS_WIFI_STATE (pms0023)that are present in different
permission combinations and appear in more than 40% of the
malware dataset. One interesting observation is CRPSet14 which
comprises of a combination of four permissions and appear in a
significant 40% of the malicious applications.

4.2.4. Common Used Permission (CUP) Patterns

In Table 13, we present the used permission combinations that
appeared in both the clean and malware datasets. We note that
although both datasets have the same permission patterns, the
ones in the malware dataset have higher support values.

The permissions included in the patterns are INTERNET
(pms0001), READ_PHONE_STATE (pms0005), ACCESS_NETWORK _
STATE (pms0006), VIBRATE (pms0007) and READ_LOGS (pms
0011). It is also worth noting that CUPSet; and CUPSet, have
almost the same support difference, hence indicating that the oc-
currence of these permission combinations are highly relevant.
Moreover, we observed that even though READ_LOGS (pms0011)
permission did not appear in the common required permission
patterns, but it appeared in three common unique permission pat-
terns READ_LOGS, CUPSet;—CUPSety.

4.3. Discussion

The Android smartphone has gained in popularity in the past
few years. Two main factors that contributed towards this change
is the open-source nature of the platform and the flexibility
provided to users and developers alike when downloading and
developing Android applications, respectively. However, not all
applications present on the application markets, both official and
third-party, are clean. Previous work showed that malware authors
take advantage of the Android permission system to entice users

130 V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132

Table 12
Common required permission sets in both clean and malware datasets.

Permission set Support Difference Permission set
Clean Malware ID
pms0001, pms0005 0.3121 0.9307 —0.6186 CRPSet
pms0005 0.3187 0.9340 —0.6153 CRPSet,
pms0005, pms0023 0.0236 0.6308 —0.6072 CRPSet s
pms0030 0.0147 0.6210 —0.6064 CRPSet4
pms0001, pms0023 0.0505 0.6349 —0.5844 CRPSets
pms0023 0.0522 0.6349 —0.5827 CRPSetg
pms0006, pms0023 0.0399 0.6031 —0.5632 CRPSet;
pms0005, pms0006 0.2421 0.7905 —0.5485 CRPSetg
pms0001, pms0005, pms0006 0.2421 0.7897 —0.5477 CRPSetqy
pms0001, pms0004, pms0005 0.1328 0.6544 —0.5216 CRPSet 19
pms0004, pms0005 0.1337 0.6553 —0.5216 CRPSet 1y
pms0013 0.0489 0.5542 —0.5053 CRPSet1;
pms0031 0.0106 0.5159 —0.5053 CRPSet 13
pms0001, pms0004, pms0005, pms0006 0.1149 0.5623 —0.4474 CRPSet 14
pms0004, pms0005, pms0006 0.1149 0.5623 —0.4474 CRPSet s
pms0004, pms0023 0.0293 0.4637 —0.4344 CRPSet ¢
pms0021 0.0277 0.4417 —0.4140 CRPSet17
Table 13
Common used permission sets in both clean and malware datasets.
Permission set Support Difference Permission set
Clean Malware ID

pms0001, pms0005 0.2991 0.9152 —0.6161 CUPSet,
pms0005 0.3032 0.9169 —0.6137 CUPSet,
pms0001, pms0005, pms0006 0.2363 0.7718 —0.5355 CUPSet3
pms0005, pms0006 0.2363 0.7718 —0.5355 CUPSet 4
pms0001, pms0005, pms0007 0.2168 0.6512 —0.4344 CUPSets
pms0005, pms0007 0.2192 0.6528 —0.4336 CUPSetg
pms0005, pms0011 0.0538 0.4686 —0.4148 CUPSet;
pms0011 0.0693 0.4760 —0.4067 CUPSetg
pms0001, pms0011 0.0685 0.4711 —0.4026 CUPSetq

into installing unsafe applications. As such, this study aims to un-
derstand required and used permissions by Android applications by
applying data mining techniques to find emerging permission pat-
terns that can be used to contrast clean and malicious applications.

4.3.1. Observations from statistical analysis

Our proposed methodology considers the patterns of both
required and used permissions. From our statistical analysis in
Section 3.1, we observe that the INTERNET permission remains
the most required (97.72%) and used (94.62%) permission in our
experimental dataset. We also find, from Tables 1 and 2, that
there is a significant difference in the frequencies of required
and used permissions for the clean and malware datasets. This
observation aligns with the one made by Felt et al. in [33] and
therefore, demonstrates that both clean and malicious applications
can be over-privileged. Until, most of the proposed solutions have
only considered required permissions which are extracted from
the AndroidManifest.xml files. From our statistical results, we
argue that used permissions should also be considered as part of
the feature set and as such, can aid towards malicious application
detection.

Additionally, in order to have a comparative distribution of
required and used permissions, we extend the statistical analysis
by applying the biclustering algorithm to generate visualization
maps. It should be noted that we apply biclustering mainly to
visualize the distribution of required and used permissions. Thus,
we do not aim to identify clusters of permissions. As expected,
since applications generally request more permissions than are
actually used, the distribution of required permissions for clean
and malware datasets is sparser than that of used permissions—
as shown in Figs. 2 and 3, respectively. The visualization maps
provide researchers and analysts alike with a first-hand overview
of permissions that are common and unique between clean and

malicious applications. Furthermore, the maps can be used as
a substitution for statistical analysis as it is a time-consuming
process and requires little or no margin of error. As Zhou
et al. [44] pointed out in their work, the increasing number of
malicious applications is mostly due to how easy it is to produce
repackaged applications. These applications can contain additional
advertising libraries, malicious code and most importantly,
additional permissions that were previously not present in the
original applications. The maps can outline these differences in
permissions for clean and malicious applications. Subsequently,
the permission distribution visuals can also portray required and
used permissions for different variants belonging to the same
malware family. Hence, the maps can be used for a preliminary
analysis of zero-day samples detected by antivirus companies.

4.3.2. Analysis of permission visualizations

From the biclustering results, we observed that several applica-
tions, clean or malicious, have more than one (required and used)
permission in common between them. Conversely, we also no-
ticed similar observation for unique required and used permissions
for the two datasets. In general, existing works [11,32,29] con-
sider only individual permissions when studying permission re-
quest patterns. Therefore, we put forward a method that considers
co-dependencies between permissions that are unique and com-
mon amongst clean and malicious applications. In our paper, we
apply a data mining technique known as contrast mining to gen-
erate permission sets that constitute multiple permissions and can
be used to reinforce similarities and contrasts between clean and
malicious applications.

From our findings, we observe that 23 permissions (as shown
in Table 4), out of a total of 128 permissions that were ex-
tracted from our dataset, appear frequently in the permission sets.
It is also worth noting that two of the Dangerous permissions,

V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132 131

WRITE_EXTERNAL_STORAGE (pms0004) and READ_PHONE_
STATE (pms0005) can be implicitly granted to an application that
utilizes API level 3 or lower, as described in [26]. This implies
that if these two permissions are not recorded as required permis-
sions, they can still be present as used permissions. Upon further
investigation, we found that whilst the number of required per-
missions for WRITE_EXTERNAL_STORAGE exceeds that of used
permissions, the same observation cannot be made for READ_
PHONE_STATE. From Tables 1 and 2, it can be noticed that the
number of clean applications (391) which required READ_PHONE _
STATE is less than the number of clean applications (457) that
used this permission. Although we do not keep a record of the
API level information for the applications in our dataset, in this
case we can deduce that some clean applications from the set of
457 applications were implicitly granted the READ_PHONE_STATE
permission. This permission can have nefarious ramifications on
users’ private information as it allows an application to read unique
device identifiers such as, International Mobile Equipment Identity
(IMEI), International Mobile Subscriber Identity (IMSI) and the SIM
serial number, as shown by [45].

4.3.3. Analysis of contrast permission patterns

In Section 4.2, we present the most significant permission sets
generated by contrast mining. Based on our experimental results,
we found that a large number of required and used permission
sets were unique in malicious applications only. This is a good
indication that the permission sets can be further applied during
the malware detection phase to identify malicious applications. For
normal required permissions, we observed from Table 5 that the
permission set IDs, URPSet and URPSet, were required by 63% and
60% of the malicious applications in our dataset, respectively. We
deduce that this might be the case due to the fact that 25% of our
experimental malware samples (malicious applications) belong
to the DroidKungFu3 malware family. As demonstrated in [46],
malware samples classified under DroidKungFu3 attempt to extract
device ID, network-related information and send all information
back to the attacker’s server.

As for the Dangerous required permission sets included in
Tables 6-10, we notice several interesting permission sets on
which we provide further explanation. For permission set IDs
URPSet,¢ and URPSet,;, we find that 25% of malicious ap-
plications require both ACCESS_FINE_LOCATION (pms0002)
and ACCESS_COARSE_LOCATION (pms0020) permissions. While
ACCESS_COARSE_LOCATION grants access to GPS location
sources, ACCESS_COARSE_LOCATION is used for location in-
formation related to network sources. However, the documen-
tation [47] provided by Google specifies that if a developer
requires network and GPS location information, they do not need
to include both permissions in the application; only requesting
ACCESS_FINE_LOCATION should suffice. The presence of unused
permissions can be exploited via permission inheritance during
inter-component communications, as explained in [48].

Moreover, we observe that for SMS-related permissions: SEND _
SMS (pms0021), RECEIVE_SMS (pms0029), READ_SMS (pms0030)
and WRITE_SMS (pms0031), as shown in Table 7, the CALL_PHONE
(pms0036) permission is associated with these four permissions
in over 25% of the malicious applications in our dataset. The
CALL_PHONE permission allows an application to proceed with
making a phone call without going through the usual dialer inter-
face. Some malware samples exploit the aforementioned permis-
sion combinations to make premium calls and send text messages
to premium numbers.

As for the used permission sets that are unique in our
malware dataset (Table 11), we observed that the permission
set: INTERNET (pms0001), READ_PHONE_STATE (pms0005),
ACCESS_NETWORK_STATE (pms0006), VIBRATE (pms0007) with
permission set ID UUPSet; was used by 55% of the malware sam-
ples. Interestingly, we also found that the same permission set was

present in Table 5 under the permission set ID URPSet 1, with the
only exception that it was required by only 35% of the malware
samples. We attribute this 20% difference to the observation made
in Section 4.3.2, on the READ_PHONE_STATE permission. More-
over, it can be noted from Table 11 that the READ_LOGS (pms0011)
permission is frequently associated with the permission sets and
appeared in 25%-50% of the malware dataset. There was previously
no indication that (pms0011) was a highly used permission among
malicious applications as the permission did not appear in the Top
20 most used permissions in Table 2. This further consolidates our
argument that permission patterns cannot be generated by only
considering the number of frequencies for that particular permis-
sion.

Furthermore, we also noted that there are several permission
sets which appeared in both clean and malware datasets, shown
in Tables 12 and 13. The negative support difference given in the
table shows that the permission sets are more prevalent in ma-
licious applications than in clean ones. We observed that the top
two permission sets, CRPSet and CRPSet, in Table 12 and CUPSet
and CUPSet; in Table 13 are the same. However, we noted some
discrepancies for permissions such as READ_LOGS (pms0011) and
VIBRATE (pms0007). Similar to our previous observations, it ap-
pears that the above two permissions are not recorded during the
generation of required permission sets but for used permission
sets, their high support values indicate that they are highly signif-
icant.

5. Conclusion

In this paper, we studied the Android permission system as
the smartphone platform makes use of permissions to regulate
access to system resources and users’ private information. In
order to understand and identify permission patterns, the existing
work considers only those permissions that are declared in the
AndroidManifest.xml files. We refer to those permissions
as ‘required’ permissions. However, there is another permission
check that takes place after an application has been installed and
is executed by the smartphone OS. We refer to such permissions as
‘used permissions’.

In our work, we considered the implications of incorporating
used permissions in permission patterns and determined their use-
fulness in contrasting between clean and malicious applications.
We proposed an efficient pattern mining method to generate a set
of emerging contrast permission patterns for our clean and mal-
ware dataset. Based on our experimental results, we observed that
there are several permissions that do not appear in the required
permission sets but are present in the used permission sets. We
found out that there is a discrepancy in the official documentation
that allows for application with API level 3 or level to implicitly
inherit certain permissions—although they are not declared in the
AndroidManifest.xml file.

Additionally, the patterns obtained from our proposed method-
ology ensures that the permission sets were not generated by
chance as we used support values to measure and rank the pat-
terns. This is an improvement over Frank et al.’s work [11] where
the authors had to simulate permission request data to test their
generated patterns. Last but not least, since obfuscation methods
cannot be applied to Android permissions, the generated permis-
sion sets can be used to contrast clean and malicious applications.
In the future, we would like to work on finding contrasting pat-
terns that can differentiate between an original application and a
repackaged one.

References

[1] PC Magazine, Encyclopedia. http://www.pcmag.com/encyclopedia_term/0,
2542, t=Smartphone&i=51537,00.asp (accessed in December 2012).
[2] Google, Nexus. http://www.google.com/nexus (accessed in March 2013).

http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.google.com/nexus

132 V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132

[3] Apple Inc., iphone. http://[www.apple.com/iphone (accessed in March 2013).

[4] Research in Motion Ltd., Blackberry. http://au.blackberry.com (accessed in
March 2013).

[5] Microsoft, Windows phone. http://www.windowsphone.com/en-gb (accessed
in March 2013).

[6] Apple Inc., Welcome to Apple store. http://store.apple.com/au (accessed in
March 2013).

[7] BlackBerry, Blackberry world. http://appworld.blackberry.com/webstore (ac-
cessed in March 2013).

[8] Google, Google play. https://play.google.com/store (accessed in March 2013).

[9] Google, Malware—what's the policy?
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&
answer=1308246&topic=1626336&path=1316546&ctx=leftnav (accessed in
March 2013).

[10] Y. Zhou, X. Jiang, Dissecting Android malware: characterization and evolution,
in: Proceedings of the IEEE Symposium on Security and Privacy, SP 2012, San
Francisco, CA, May 2012, pp. 95-109.

[11] M. Frank, B. Dong, A.P. Felt, D. Song, Mining permission request patterns from
Android and Facebook applications, in: Proceedings of the IEEE International
Conference on Data Mining, ICDM 2012, Brussels, Belgium, December 2012,
pp. 1-16. http://arxiv.org/abs/1210.2429.

[12] D. Barrera, H.G. Kayacik, P.C. van Oorschot, A. Somayaji, A methodology for
empirical analysis of permission-based security models and its application
to Android, in: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October 2010,
pp. 73-84.

[13] AP. Felt, K. Greenwood, D. Wagner, The effectiveness of application
permissions, in: Proceedings of the USENIX Conference on Web Application
Development, WebApps 2011, Portland, Oregon, June 2011, pp. 1-12.

[14] A.P.Felt, E. Ha, S. Egelman, A. Haney, E. Chin, D. Wagner, Android permissions:
user attention, comprehension and behavior, in: Proceedings of the Sympo-
sium on Usable Privacy and Security, SOUPS 2012, No. 3, Washington, DC, July
2012, pp. 1-14.

[15] P.H. Chia, Y. Yamamoto, N. Asokan, Is this app safe? A large scale study
on application permissions and risk signals, in: Proceedings of the 21st
International Conference on World Wide Web, WWW 2012, Lyon, France,
April 2012, pp. 311-320.

[16] International Secure Systems Lab. Andrubis: analyzing Android binaries.
http://anubis.iseclab.org/?action=home (accessed in May 2012).

[17] virusTotal, Credits & acknowlegements. https://www.virustotal.com/en/
about/credits (accessed in March 2013).

[18] Open Handset Alliance, Android. http://www.openhandsetalliance.com/
android_overview.html (accessed in November 2007).

[19] F. Ableson, Introduction to Android development. http://www.ibm.com/
developerworks/library/os-android-devel (accessed in May 2009).

[20] Google, Android SDK. http://developer.android.com/sdk/index.html (accessed
in December 2012).

[21] The Eclipse Foundation, Eclipse ide for java developers. http://www.eclipse.
org/downloads/packages/eclipse-ide-java-developers/junosr1 (accessed in
December 2010).

[22] Android Open Source Project, Bytecode for the Dalvik virtual machine.
http://source.android.com/tech/dalvik/dalvik-bytecode.html (accessed in De-
cember 2012).

[23] Google, Google play. https://play.google.com (accessed in December 2012).

[24] Google Play, Security on Android. http://support.google.com/googleplay/bin/
answer.py?hl=en&answer=1368854 (accessed in December 2012).

[25] J.R. Raphael, Inside Android 4.2's powerful new security system. http://
blogs.computerworld.com/android/21259/android-42-security (accessed in
November 2012).

[26] Google, Android permissions. http://developer.android.com/guide/topics/
manifest/permission-element.html (accessed in December 2012).

[27] A. Bartel,]J. Klein, M. Monperrus, Y.L. Traon, Automatically securing
permission-based software by reducing theattack surface—an application to
Android, in: Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2012, Essen, Germany, September
2012, pp. 274-277.

[28] B. Sanz, L. Santos, C. Laorden, X. Ugarte-Pedrero, P.G. Bringas, G. Alvarez,
PUMA: permission usage to detect malware in Android, in: Proceedings of the
International Joint Conference CISIS’12-ICEUTE’12-SOCO’12 Special Sessions,
in: Advances in Intelligent Systems and Computing, vol. 189, Springer, Berlin,
Heidelberg, 2013, pp. 289-298.

[29] 1. Rassameeroj, Y. Tanahashi, Various approaches in analyzing Android
applications with its permission-based security models, in: Proceedings of the
IEEE International Conference on Electro/Information Technology, EIT 2011,
No. 44, Minnesota, USA, May 2011, pp. 1-6.

[30] J. Sahs, L. Khan, A machine learning approach to Android malware detection,
in: Proceedings of the European Intelligence and Security Informatics
Conference, EISIC 2012, Odense, Denmark, August 2012, pp. 141-147.

[31] DJ. Wu, C.H. Mao, T.E. Wei, H.M. Lee, K.P. Wu, DroidMat: Android malware
detection through manifest and API calls tracing, in: Proceedings of the 2012
Seventh Asia Joint Conference on Information Security, Asia JCIS 2012, Tokyo,
Japan, August 2012, pp. 62-69.

[32] Y. Zhou, Z. Wang, W. Zhou, X. Jiang, Hey, you, get off of my market: detecting
malicious appsin official and alternative Android markets, in: Proceedings of
the 19th Annual Network and Distributed System Security Symposium, NDSS
2012, San Diego, California, February 2012, pp. 1-13.

[33] A.P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, Android permissions
demystified, in: Proceedings of the ACM Conference and Communications
Security, CCS 2011, Chicago, USA, October 2011, pp. 627-638.

[34] T. Vidas, N. Christin, L. Cranor, Curbing Android permission creep, in:
Proceedings of the 2011 Web 2.0 Security and Privacy Workshop, W2SP 2011,
Oakland, CA, May 2011, pp. 1-5.

[35] A.P.Felt, M. Finifter, E. Chin, S. Hanna, D. Wagner, A survey of mobile malware
in the wild, in: Proceedings of the ACM Workshop on Security and Privacy in
Mobile Devices, SPSM 2011, Chicago, USA, October 2011, pp. 3-14.

[36] S.C. Madeira, A.L. Oliveira, Biclustering algorithms for biological data analysis:
a survey, I[EEE Transactions on Computational Biology and Bioinformatics 1 (1)
(2004) 24-45.

[37] GJ. Szekely, M.L. Rizzo, Hierarchical clustering via joint between-within dis-
tances: extending ward’s minimum variance method, Journal of Classification
22(2)(2005) 151-183. http://dx.doi.org/10.1007/s00357-005-0012-9.

[38] A.Fernandez, S. Gémez, Solving non-uniqueness in agglomerative hierarchical
clustering using multidendrograms, Journal of Classification 25 (1) (2008)
43-65. http://dx.doi.org/10.1007/s00357-008-9004-x.

[39] Joe H. Ward, Hierarchical grouping to optimize an objective function, Journal
of the American Statistical Association 58 (1963) 236-244.

[40] R. Agrawal, T. Imieinski, A. Swami, Mining association rules between sets of
items in large databases, in: P. Buneman, S. Jajodia (Eds.), Proceedings of the
ACM SIGMOD International Conference on the Management of Data, ACM
Press, Washington, DC, 1993, pp. 207-216.

[41] S. Liu, R. Law,]. Rong, G. Li,]J. Hall, Analyzing changes in hotel customers
expectations by trip mode, International Journal of Hospitality Management
34(2012) 359-371.

[42] J. Rong, H.Q. Vu, R. Law, G. Li, A behavioral analysis of web sharers and
browsers in Hong Kong using targeted association rule mining, Tourism
Management 33 (4) (2012) 731-740. http://www.sciencedirect.com/science/
article/pii/S0261517711001592.

[43] R.Law, R.Rong, H.Q. Vu, G. Li, H.A. Lee, Identifying changes and trends in Hong
Kong outbound tourism, Tourism Management 32 (5) (2011) 1106-1114.

[44] W. Zhou, Y. Zhou, X. Jiang, P. Ning, Detecting repackaged smartphone
applications in third-party Android marketplaces, in: Proceedings of the
Second ACM Conference on Data and Application Security and Privacy,
CODASPY 2012, San Antonio, Texas, USA, February 2012, pp. 317-326.

[45] V. Moonsamy, M. Alazab, L. Batten, Towards an understanding of the impact
of advertising on data leaks, International Journal of Security and Networks 7
(3)(2012) 181-193.

[46] F-Secure, Trojan:android/droidkungfu.c.
http://www.f-secure.com/v-descs/trojan_android_droidkungfu_c.shtml (ac-
cessed in January 2013).

[47] Android Developer, Location strategies. http://developer.android.com/guide/
topics/location/strategies.html (accessed in January 2013).

[48] E. Chin, A.P. Felt, K. Greenwood, D. Wagner, Analyzing inter-application
communication in Android, in: Proceedings of the 9th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys 2011,
Washington, USA, June 2011, pp. 239-252.

Veelasha Moonsamy is a current Ph.D. candidate at
Deakin University, Australia. Her research thesis focuses
on security and privacy in smartphone applications. She
received her Bachelor (Hons) in Information Technology,
majoring in IT Security and Mathematical Modelling from
Deakin University in 2011. Her research interests include
mobile technology, malicious software, machine learning
algorithms and security protocols. Veelasha is also a
member of the Australian Computer Society and IEEE.

Jia Rong, Ph.D. is a research associate at the School
of Information Technology, Deakin University, Australia.
Her research interests are data mining, multimedia data
analysis, and technological applications to tourism and
hospitality. She was awarded the Professor of Information
Technology Award (2010) for the most academically
outstanding Ph.D. student, School of IT, Deakin University,
Australia.

Shaowu Liu is a current Ph.D. candidate at Deakin Univer-
sity, Australia. He received the Bachelor of Computer Sci-
ence with Honors degree from Deakin University in 2012.
His research interests include data mining and machine
learning.

http://www.apple.com/iphone
http://au.blackberry.com
http://www.windowsphone.com/en-gb
http://store.apple.com/au
http://appworld.blackberry.com/webstore
https://play.google.com/store
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://support.google.com/adwordspolicy/bin/answer.py?hl=en&answer=1308246&topic=1626336&path=1316546&ctx=leftnav
http://arxiv.org//abs/1210.2429
http://anubis.iseclab.org/?action%3Dhome
https://www.virustotal.com/en/about/credits
https://www.virustotal.com/en/about/credits
https://www.virustotal.com/en/about/credits
https://www.virustotal.com/en/about/credits
https://www.virustotal.com/en/about/credits
https://www.virustotal.com/en/about/credits
https://www.virustotal.com/en/about/credits
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html
http://www.ibm.com/developerworks/library/os-android-devel
http://www.ibm.com/developerworks/library/os-android-devel
http://www.ibm.com/developerworks/library/os-android-devel
http://www.ibm.com/developerworks/library/os-android-devel
http://www.ibm.com/developerworks/library/os-android-devel
http://www.ibm.com/developerworks/library/os-android-devel
http://www.ibm.com/developerworks/library/os-android-devel
http://developer.android.com/sdk/index.html
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr1
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr1
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr1
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr1
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr1
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr1
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr1
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr1
http://source.android.com/tech/dalvik/dalvik-bytecode.html
https://play.google.com
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1368854
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1368854
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1368854
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1368854
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1368854
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1368854
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1368854
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1368854
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1368854
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1368854
http://blogs.computerworld.com/android/21259/android-42-security
http://blogs.computerworld.com/android/21259/android-42-security
http://blogs.computerworld.com/android/21259/android-42-security
http://blogs.computerworld.com/android/21259/android-42-security
http://blogs.computerworld.com/android/21259/android-42-security
http://blogs.computerworld.com/android/21259/android-42-security
http://blogs.computerworld.com/android/21259/android-42-security
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://refhub.elsevier.com/S0167-739X(13)00193-3/sbref28
http://refhub.elsevier.com/S0167-739X(13)00193-3/sbref36
http://dx.doi.org/doi:10.1007/s00357-005-0012-9
http://dx.doi.org/doi:10.1007/s00357-008-9004-x
http://refhub.elsevier.com/S0167-739X(13)00193-3/sbref39
http://refhub.elsevier.com/S0167-739X(13)00193-3/sbref40
http://refhub.elsevier.com/S0167-739X(13)00193-3/sbref41
http://www.sciencedirect.com/science/article/pii/S0261517711001592
http://www.sciencedirect.com/science/article/pii/S0261517711001592
http://www.sciencedirect.com/science/article/pii/S0261517711001592
http://www.sciencedirect.com/science/article/pii/S0261517711001592
http://www.sciencedirect.com/science/article/pii/S0261517711001592
http://www.sciencedirect.com/science/article/pii/S0261517711001592
http://www.sciencedirect.com/science/article/pii/S0261517711001592
http://www.sciencedirect.com/science/article/pii/S0261517711001592
http://refhub.elsevier.com/S0167-739X(13)00193-3/sbref43
http://refhub.elsevier.com/S0167-739X(13)00193-3/sbref45
http://www.f-secure.com/v-descs/trojan_android_droidkungfu_c.shtml
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html

	Mining permission patterns for contrasting clean and malicious android applications
	Introduction
	Background and related work
	Android
	Android permission system

	Android malware detection with permissions
	Summary

	Mining permission patterns
	Classic statistical analysis on android permissions
	Visualization using biclustering
	Contrast permission pattern mining
	Candidate permission itemset generation
	Contrast permission pattern selection

	Experiments and results
	Experiment settings
	Contrast permission patterns
	Unique Required Permission (URP) Patterns
	Unique Used Permission (UUP) Patterns
	Common Required Permission (CRP) Patterns
	Common Used Permission (CUP) Patterns

	Discussion
	Observations from statistical analysis
	Analysis of permission visualizations
	Analysis of contrast permission patterns

	Conclusion
	References

