
New Protocols for
Proving Knowledge of Arbitrary Secrets

While not Giving Them Away

Wouter Teepe
University of Groningen

w.g.teepe@ai.rug.nl

Abstract

This paper introduces and describes new protocols for proving knowledge of secrets without
giving them away: if the verifier does not know the secret, he does not learn it. Three role
configurations exist for this type of protocols: (1) the prover may want to pro-actively prove
knowledge of a secret, (2) a verifier may ask someone to prove knowledge of a secret, or (3) two
players may mutually prove knowledge of a secret. Protocols for all three cases are shown in this
paper. This can all be done while only using one-way hash functions. If also the use of encryption
is allowed, these goals can be reached in a more efficient way, giving a total of six protocols (three
without encryption and three with).

keywords protocols, zero knowledge, interactive proving, comparing information without leaking it
(CIWLI), one-way hash functions, MAC’s, list intersection problem

1 Introduction

In zero-knowledge protocols, two players play a game in which the prover (player one) proves to the
verifier that the prover has somespecial knowledge. This special knowledge could be for example
knowing a Hamiltonian tour for a graph, or a password to Ali Baba’s cave. The verifier (player two)
does not possess the special knowledge, nor does he learn it by means of the protocol. Thus, zero-
knowledge protocols are convincing but yield nothing beyond the validity of the assertion proven (in
the example “the prover knows a Hamiltonian tour”) [17, 15, 3, 7].

The type of knowledge that can be proven, is limited to knowledge within a mathematical context:
the two players in a protocola priori know somex, and the prover proves his knowledge of some
special objecty. The objectx may be a public key andy the corresponding private key, orx may be a
graph andy the Hamiltonian tour of it, as in the example. The required mathematical relation between
x andy is, loosely spoken, that it is NP-hard to computey from x. It might seem that the requirement
of a specific mathematical relation betweenx andy somehow restricts the possible applications of
zero-knowledge protocols.

In this paper we show that we can create an NP-hard “puzzle” on the fly to prove knowledge of
anyy, provided that the verifier also knowsy a priori. If the verifier does not knowy a priori, he does
not gain any information which helps him to computey. Stated equivalently: This paper presents
the first zero-knowledge protocols in which possession ofanykind of knowledge can be proven. The
knowledge need not be special in any mathematical or contextual way. The assertion “the prover

1

knowsy” can only be verified if the verifier also knows (all of)y. The verifier never learns anything
more than the prover’s knowledge ofy.

This new type of protocols has applications where securely comparing secrets allows transactions
which could not be allowed otherwise. For example, secret agents might like to test each other’s
knowledge without exposing their own. Many examples can be found where privacy requirements or
non-disclosure requirements are an obstruction for performing righteous tasks.

The type of problem the protocol solves is similar to, but different from, the problem described
by Fagin et al. in [12]. We will first give a description which is broad enough to cover both problems,
after which we will describe why our new type of protocols solves a fundamentally different problem.

By a secret, we mean information possessed by an agenta, of which agenta is not willing to share
it with another agent. Whether other agents indeed possess this information as well is not relevant for
it being a secret (of agenta). Here follows the problem “Comparing Information Without Leaking It”
(CIWLI)1:

Two players want to test whether their respective secrets are the same, but they do not
want the other player to learn the secret in case the secrets do not match.

Not specified yet iswhichsecrets are to be compared, and how it isdecidedwhich secrets are to
be compared. Do the two players each take a specific secret into their mind which they compare? e.g.
Is “the person I voted for” equal to “the person you voted for”? Or does one player take a secret “The
General will attack tomorrow at noon” and does the other player see whether he knows this specific
secret as well? In the former case, the two players first have to agree upon what they want to compare.
I call this CIWLI “with reference”. In the latter case, no a priori agreement is needed and I call it
CIWLI “without reference”, because of its lack of an agreement which refers to a secret.

CIWLI “With reference” is symmetric in the sense that both players have a specific secret in mind
while performing the protocol, whereas in CIWLI “without reference”, only one of the players has
one specific secret in mind.

An example of CIWLI with reference is the Socialist Millionaires’ problem, in which two players
want to test their riches for equality, but do not want to disclose their riches to the other player [18, 8].
Another example is that two managers each have received a complaint about a sensitive matter, know
this of one another, and would like to compare whether the complainer is the same person (without
contacting the complainer) [12]. Solutions exist for CIWLI with reference [12, 8, 18]. In [12] a series
of interesting applications is listed where protocols solving this problem could be used.

It could also be the case that it is not clear what the secret is about. In that case, we have CIWLI
without reference. For example, Alice could have a file on her hard disk, and would like to know
whether Bob possesses the same file as well. Alice can not naively show the file to Bob and ask him
to search for a matching file, because this will obviously result is Bob obtaining the file (though Bob
could be honourable and delete it voluntarily). In cases of CIWLI with reference, it is common that
two specific secrets are tested for equality, whereas in cases without reference, one specific secret is
tested againstnumeroussecrets for equality. The file-comparison problem would be a case with refer-
ence if the two players would like to know whether twospecificfiles are equal. (“Are the instructions
you got from Carol the same as the instructions I got from Carol?”)

This paper presents a solution for CIWLI without reference. It only assumes the existence of
collision-free one-way hash functions [10, 16]. A more efficient solution, which depends on encryp-
tion as well as on collision-free one-way hash functions, is also shown. In a forthcoming paper, we
will present results on CIWLI without reference in which theintersectionof two or moregroupsof

1This is a slight variation from [12].

2

secrets can be computed, without leaking the secrets. This is also called thelist intersection prob-
lem[20]. This will make it possible to create indexes on distributed, secured databases, which can be
searched without leaking information on the contents of the databases. This will be similar to, but
much more advanced than the approaches in [14, 13].

In CIWLI with reference, a commitment is required of both parties that their inputs to the protocol
satisfy the reference, i.e. they are truthful. (e.g. in the socialist millionaires’ problem that the inputs
correspond to the wealth of the players.) In fact, these protocols can only be used to test whether the
two inputs are equal, and only assuming truthfulness one can say something about, for example, the
riches of the players. Furthermore, it is required that player A cannot infer anything on the input of
player B, in case their inputs do not match. This includes that it should not be possible for player
A to test the input of player B for likely values, that is to guess and verify whether the guess is
correct. This is called semantic security [26, 27]2. The semantic security is important in CIWLI with
reference, because what is tested is not whether the other player canimagineor guesssome input [25],
but whether he actuallystatesthe input. Thus, cases with reference should withstand guessing attacks.

In case of CIWLI without reference, there is no need to withstand guessing attacks of the players.
Basically this is because cases without reference test whether the other player possesses a specific file,
which is roughly equivalent to being able toimagineor guessit within the limits of its storage capacity
and computational resources. In fact, the protocol we describe in this paper is based on the fact that a
player can verify the other player’s knowledge of a file by correctly “guessing” it. Semantic security
is still required in the sense that if a player cannot guess thecompleteinput of the other player, he
should not be able to inferanythingof the input of the other player. And, of course, there must be full
semantic security with respect to eavesdroppers: third persons other than the two players.

Regarding truth for CIWLI without reference, a player can always fake not possessing a certain
file, while he actually does possess the file. A player can however never fake possessing something
which he does not possess (or only with negligible probability).

It may need notice that CIWLI problems are very different from card deal problems such as Van
Ditmarsch’s Russian cards problem [11]. Firstly, in CIWLI the number of “cards” is unlimited in
number, and it is not publicly known which “cards” exist. Secondly, in CIWLI there is no such thing
asexclusivepossession of a “card”.

Throughout this paper we will sometimes loosely use the verb “knowing X” where we technically
mean “possessing information X, which may be false”, becauseknowledgeis a more intuitive notion
for the examples.

The protocols we describe assume the players voluntarily want to prove their knowledge to the
other player. In some circumstances it can be detected when a player does not adhere to this intention.
This will be addressed in sections 5.3 and 5.4.

In section 2, we will further narrow down our problem description, and we will elaborate on our
assumptions in section 3. Section 4 presents three of our new protocols, which will be thouroughly
analysed in section 5. In section 6 we will show more efficient versions of the protocols, without
making them any weaker. We conclude with a discussion, conclusion and sketch of our future reseatch
on the issue.

2Informally, an encryption scheme is semantically secure, if cyphertexts leak no information about the plaintext.

3

2 Problem description

Victor is a secret agent, and keeping secret his intelligence has a high priority. However, his mission is
to protect Peggy from great dangers, so when needed, protecting Peggy takes priority over keeping his
information secret. Now he is confronted with the following situation: Victor does not know whether
certain information known to him, is also known to Peggy. (“Peggy is kindly invited for a dinner at the
Mallory’s place.”)3 Victor knows that Mallory is a very malicious person. If Peggy does know that she
is kindly invited, Victor would like to send her a warning message (“Don’t go there, it is a trap. You
will get killed in case you go there.”). However, if Peggy has somehow not received the invitation,
Victor would like to keep his warning for himself, as well as his knowledge of Peggy’s invitation.
Therefore, Victor asks Peggy to prove her knowledge of the invitation. Only after the proof, Victor
will disclose his warning to Peggy.

Peggy is willing to prove her knowledge of the invitation, but only if she can make sure Victor
does not cheat on her, and actually finds out about the invitation because he tricks her into telling
him (she has been invited). That is, she only wants to prove her knowledge of the invitation if Victor
actually knew about the invitation beforehand.

The protocol described in section 4 facilitates the described situation. Both Victor and Peggy can
initiate the protocol. In the protocol, Peggy does not learn whether Victor actually knew about the
invitation, other than from his possible next actions, such as sending a warning. The protocol could
however easily be used for Victor to prove his knowledge to Peggy afterwards, or even in parallel.

A situation where suchmutualverification could be used in real life is “cautious gossip”. Alice and
Bill would like to gossip about the pregnancy of Georgia, but wouldn’t want the to be the one to tell
the other Georgia is indeed pregnant. Therefore, it is not allowable just to ask “Did you know Georgia
is pregnant?”. Only after mutually establishing both Alice and Bill know of Georgia’s pregnancy, they
can start gossiping.

For the sake of clarity, we will focus mainly on the simpler, asymmetric protocol throughout this
paper. The reasoning is however easily extendible to the more symmetric variant of the protocol.

From here on I will call pieces of information “information blocks”, or IB’s for short. A bit more
formally, we arrive to this description:

Peggy has a certain IB (y). If and only if Victor also possesses this IBy, she wants to
prove her possession of it to Victor. Furthermore, Peggy need not know whether Victor
indeed possesses IBy, in order to execute the protocol safely.

Thus, if Victor has the same IB, he can verify Peggy indeed has it, but if Victor does not have the
same IB, he does not learn anything.

3 Protocol prerequisites and assumptions

We assume the communication channel cannot be modified by an adversary, and that it is authenticated
[23, 2, 10, 24].

The protocols depend heavily on two important cryptographic functions. If you are not very
familair with cryptography, you may skim over this paragraph. The two functions are:

3For clarity, this information could be possession of a computer file stating the invitation. This sets apart the matter
whether the information is truthful.

4

keyed padding function A function pad(M,n), whereM is a message consisting ofl bits, andn is
a collection of noncesNi wit corresponding sizesli (again in bits). It should generate a new
messageM2, based onM and the collectionn, in such a way that at leastl bits inM2 depend
onM and on all noncesNi ∈ n: any single change toM or a nonceNi ∈ n must result in a
differentM2. The entropy ofM2 should be (at least) the entropy ofM ∪ n.

Many ways exist to implement a function satisfying these properties. A simple implementation
is this one:

1. SetM2 to an empty message, append the numberl toM2.

2. For each nonceNi ∈ n, appendli andNi toM2.

3. XORM with all the nonces inn, and append thisM toM2.

one-way hashA collision-free one-way hash functionhash(M) [21, 9, 10, 28, 2].

The way these functions are used ishash(pad(M,n)). If a player knowsh1 = hash(pad(M,n)),
and this player is required to computeh2 = hash(pad(M,n′)), wheren 6= n′, hemustknowM . It is
precisely this property that will be exploited in the protocols.

This use may seem equivalent to the notion of a message authentication code (MAC), or of a
keyed hash[2]MAC(M,n), buthash(pad(M,n)) is a stronger notion. Many MAC’s allow a player to
computeh2 = MAC(M,n′) from certain intermediary states of the computation ofh1 = MAC(M,n),
without knowingM . Hereby players would be allowed to bypass the strict requirement to knowM .4

In all noninterrupted runs of the presented protocols, two hash values will be computed:

H1 = hash(pad(M,n)) (1)

H2 = hash(pad(M,n′)) (2)

If a player knows only one equation with all variables butM , he cannot inferM sincehash(.) is
one-way.

In a noninterrupted run, both players always known, n′,H1 andH2. Thus we have two equations
(1) and (2) with only one variable, the messageM . If the protocol is run multiple times using the
sameM , numerous instances of these equations might be collected5, so we may well have many
formulas with only one variable. However, a requirement of the protocols is that no player (nor any
eavesdropper) may learn anything from which he feasibly can compute any property ofM . This
means we want the following statement to be true:

It is infeasibly expensive to compute any information onM , no matter how many in-
stances ofH = hash(pad(M,n)) with H andn known are available.

If the hash function is not vulnerable to differential cryptoanalysis[5], the desired statement is
true. Luckily, resistance to differential cryptoanalysis is a very common if not standard requirement
for the design of cryptographic one-way functions. The one-way hash SHA-1 [1] is believed not to be
vulnerable to this attack.

4In fact, the ability to recompute a MAC from intermediary states is often rightfully considered afeaturerather than a
problem. In [4] this is calledincrementality.

5Though the protocol may be run multiple times with the sameM , it will be impossible to detect this from the protocol
runs alone. However, even assuming that it can be detected or properly guessed what protocol runs share the sameM , M
cannot be deduced, as shown.

5

1. Peggy chooses an IBIP ∈ KBP of which she wants to prove her knowledge to Victor

2. Peggy sends Victor the message{H1 = hash(pad(IP , {N}))}

3. Victor computesIV ? ⊆ KBV

4. Victor does one of the following:

• Victor generates a random challengeC such that it discriminates withinIV ?, and
sends Peggy the message{C}

• Victor sends Peggy the message{halt} and the protocol is halted

5. Peggy sends Victor the message{H2 = hash(pad(IP , {N,P,C}))}

6. Victor verifies whetherH2 (received from Peggy) is equal to any
hash(pad(IVj , {N,P,C})), whereIVj ∈ IV ? (locally computed). If they are equal, Victor
concludes thatIP equals the matchingIVj , and thereby verifies that Peggy knowsIVj .

Figure 1: The protocol where Peggy initiates

4 Protocol description

The collections of IB’s possessed by Peggy theProver and Victor theVerifier areKBP andKBV ,
respectively.P Is a unique representation of Peggy’s identity, such as her full name and birth date,
or something like her passport number. Peggy and Victor have agreed upon a commonly known
secret nonceN beforehand. The purpose and necessity of this nonce will be addressed in section 5.5.
Upon first time reading, the option of the responding player to halt the protocol may be ignored. In
section 5.4 the purpose of this option will be explained.

Both Peggy and Victor may initiate the protocol, this is shown in figure 1 and figure 2 respectively.
The setIa? is the set of IB’s in possession of agenta, of which hash(pad(Ia, {N})) is equal toH1.
If a setIa? is empty, agenta has no IB to prove or verify knowledge of. If there is one IB in the set,
the agent may prove or verify knowledge of this IB.

If there is more than one IB in the setIi?, an (external[22]) collision of the hash function has
occurred. This is highly improbable, but not impossible. In such a case Victor wants to discriminate
between the members of the set. He can do this making sure his challengeC yields a different hash
hash(pad(IV , {N,P,C})) for each elementIV of IV ?. Ensuring this is easy because it is extremely
unlikely for two IB’s A andB that bothhash(A) andhash(B) clash and thathash(pad(A, {C}))
andhash(pad(B, {C})) clash as well.6 In practice, Victor may choose aC at random and check for
security’s sake whether there are new clashes, and choose anotherC if this would be the case. This
whole process of generating the challenge makes sure each possibleH2 corresponds to exactly one
IVj in IV ?. In the figures, we summarize this process as “generating a random challenge such that it
discriminates”.

Depending on the output size of the hash function, and the degree of confidence to be transferred,
generating the challenge and verification ofH2 might be repeated a number of times, making it a

6Or stated otherwise: if this would not be extremely unlikely, this would be a a very severe problem of the supposedly
one-way hash function.

6

1. Victor chooses an IBIV ∈ KBV of which he wants to test Peggy’s knowledge

2. Victor computesIV ? ⊆ KBV and generates a random challengeC such that it
discriminates withinIV ?

3. Victor sends Peggy the message{H1 = hash(pad(IV , {N})),C}

4. Peggy generatesIP ? ⊆ KBP

5. For eachIPi ∈ IP ? of which Peggy is willing to prove her knowledge to Victor, Peggy
sends Victor the message{H2 = hash(pad(IPi , {N,P,C}))}

6. For eachH2 received from Peggy, Victor verifies whetherH2 is equal to any
hash(pad(IVj , {N,P,C})), whereIVj ∈ IV ? (locally computed). If they are equal, Victor
concludes thatIPi equals the matchingIVj , and thereby verifies that Peggy knows the
matchingIVj .

Figure 2: The protocol where Victor initiates

multiple-step interactive protocol.
Note that without the challengeC in the protocol, the prover could fool the verifier if the prover

could somehow obtainH1 andH2 without ever knowingIP . Therefore, the challengeC should be
unpredictable to the prover, because it makes such a scenario infeasible. The challenge is there to
assure the verifier the prover does not present precomputed, stored values.

Figure 3 shows the symmetric variant of the protocol, in which both players prove their possession
of the involved IB. Since both players both prove and verify, their names are changed into the role-
neutral names Alice and Bob. In the figure, Bob waits to sendH2B until Alice has sentH2A . It may
well be the case that Bob is willing to sendH2B as early as directly after step 4. However, before step
6 there might still be some ambiguity as to which IB Alice wants to have proven. Waiting until after
step 7 prevents Bob from unnecessarily proving possession of IB’s Alice did not mean to refer to.

5 Analysis and properties of the protocols

The prover will not know whether the verifier is convinced. However, the verifier could in turn prove
his knowledge ofIP to the prover.

In typical applications of one-way hashes, the input to the hash is more or less public knowledge.
This protocol on the other hand exploits the fact that the input maynotbe publicly known. Successful
completion depends on one of the players being able to “invert” the one-way hash, since it knows
the original input to the hash function. It is the player not initiating the protocol that has to do this.
There is only a negligible probability of false completions because the probability of guessing two
corresponding hashes without the knowledge of the input is negligibly small.

The protocol satisfies a number of properties common to zero-knowledge protocols. I will prove
these properties heuristically by two cases depending on whether verifier already knowsIP before-
hand. Furthermore, I will analyse what the results are of “faking” players. Then, I will make some
comments on the possibilities for an eavesdropper. In a forthcoming paper we will present a formal
proof.

7

1. Alice chooses an IBIA ∈ KBA of which she wants to prove her knowledge to Bob, and of
which she wants to test Bob’s possession

2. Alice computesIA? ⊆ KBA and generates a random challengeCA such that it
discriminates withinIA?

3. Alice sends Bob the message{H1 = hash(pad(IA, {N})), CA}

4. Bob computesIB? ⊆ KBB

5. Bob does one of the following:

• Bob generates a random challengeCB such that it discriminates withinIB?, and
sends Alice the message{CB}

• Bob sends Alice the message{halt} and the protocol is halted

6. Alice sends Bob the message{H2A = hash(pad(IA, {N,A,CB}))}

7. Bob verifies whetherH2A (received from Alice) is equal to any
hash(pad(IBi , {N,A,CB})), whereIBi ∈ IB? (locally computed). If they are equal, Bob
concludes thatIA equals the matchingIBi , and thereby verifies that Alice knows the
matchingIBi (which we will call IB from here on)

8. If Bob is willing to prove his knowledge ofIB to Alice, Bob sends Alice the message
{H2B = hash(pad(IB, {N,B,CA}))}

9. Alice verifies whetherH2B (received from Bob) is equal tohash(pad(IA, {N,B,CA}))
(locally computed). If they are equal, Alice concludes thatIA equalsIB, and thereby
verifies that Bob knows the matchingIA.

Figure 3: The symmetric protocol. Since both players both prove and verify, their names are changed
into the more role-neutral names Alice and Bob.A AndB are unique representations of Alice’s and
Bob’s identity. Some variation is possible in the order of the steps, this is explained in the text.

5.1 Case 1: The verifier already knowsIP beforehand

All the following properties hold in this case:

The verifier cannot learn anything from the protocol The verifier already knowsIP , so leaking of
IP is of no issue. The verifierdoeslearn the prover knowsIP .

The prover cannot cheat the verifier The verifier can verify whether the prover knowsIP , because
the prover needsIP to be able to computehash(pad(IP , {N,P,C})).

The verifier cannot cheat the prover The only communication the verifier performs is sending a
challenge to the prover. Since this challenge may be anything, the verifier cannot “harm” the
prover.

The verifier cannot pretend to be the prover to any third party The verifiercanprove knowledge
of IP to a third party, but he could also have done this before executing the protocol with the
prover. So in this sense, this really is an irrelevant requirement.

8

5.2 Case 2: The verifier did not knowIP beforehand

All the following properties hold in this case:

The verifier cannot learn anything from the protocol The verifier only hearshash(pad(IP , {N}))
andhash(pad(IP , {N,P,C})), and it is computationally infeasible to compute any information
on IP from these two hashes. Therefore learning the two hashes can be considered equal to
learning two encrypted messages, which is learning nothing of any value.

The prover cannot cheat the verifier When the verifier computes the collectionIV ?, it will not con-
tain anIVj equal toIP . In practice,IV ? will be empty, in which case the verifier cannot even
guess what the prover wants to prove. In the unlikely caseIV ? is not empty, the verifier will
guess that the prover wants to prove possession of one of the members ofIV ?. However, since
IP /∈ IV ?, the verifier will not receive anyH2 corresponding to any member inIV ?.

The verifier cannot cheat the prover The verifier only hears two hash samples, and the prover will
not provide more than these two hash samples (or the number of agreed upon cut-and-choose
rounds). From these samples only, he cannot deduceIP .

In case the verifier initiates the protocol, he also possessesH1 = hash(pad(IV , {N})). This
might suggest to the prover that the verifier knowsIV and thereby the verifier can compute
hash(pad(IV , {N})), but this is not necessarily the case. The verifier may have made upH1,
or may have learnedH1 from some third party. Nevertheless, if the verifier does not have the
correspondingIV , the verifier cannot verify the prover’s knowledge ofIV . Actually, while the
verifier might be making up his values ofH1, so might the prover make up his values ofH2.

The verifier cannot pretend to be the prover to any third party The third party will pose a new
challengeC ′ to the verifier and require him to compute and showhash(pad(IP , {N,P,C ′})),
which he can not.

The verifier cannot perform a man-in-the-middle attack, because the verifier only receives
hash(pad(IP , {N,P,C ′})) from the prover, which has the identity of the prover incorporated.
From this he cannot computehash(pad(IP , {N,V,C ′})).7, which must have the identity of the
verifier (V) incorporated.

5.3 Faking players

The protocols prescribe the players to perform certain computations, and to post some of the results
of those computations to the other player. This raises the question what would happen if one or
both of the players actually does not post the results of the prescribed calculations, but some other
information, possibly just made up.

The information to be sent to the other player consists of hashes values and challenges, and these
“look like” uniformly distributed noise. Thus, instead of sending such a hash, a player could generate
some random noise and send it to the other player. This is what I call a “faking player”. The player
receiving such faked messages cannot recognize they are fake by syntax.

A player which is not faking, only initiates a protocol if the IB corresponding toH1 actually exists,
and only sends a responseH2 if Ia? is nonempty. Obviously, this means that upon receiving anH1

orH2 a player may not assume any corresponding IB exists. Next to not making false assumptions, a
player must gracefully handle these faked messages.

7The inclusion of the identity of the prover is very similar to the method used by Lowe in [19] to fix the Needham-
Schr̈oder public key authentication protocol.

9

The chances of a faked hash colliding with the hash of an existing IB is negligible, because the
range of possible hash values is many orders of magnitude greater than the number of IB’s ever
possessed by a player. The result of this is that a fakedH1 will result in an emptyIa? (with a possibility
negligibly close to 1). A fakedH2 will give no match with anyhash(pad(IVj , {N,P,CV })), where
IVj ∈ IV ? (again with a possibility negligibly close to 1).

Thus, due to the way the protocol works, a player needs to take no further action to gracefully
handle faked messages. Faked messages result in protocol runs which do not convince the verifier.

In certain circumstances, it is possible to detect a player is faking. The prover may send a fakeH2,
while the verifier possesses the IB which the protocol is run on. The verifier will detect a mismatch
between the expected and the receivedH2. Given that a good hash function with a large hash size
is used, the possibility of theH2 being non-fake is extremely small, because it would require a hash
collision of two IB’s, one residing at each player. The protocol nevertheless copes with such an
unlikely hash collision. A verifier which often or always responds with aH2 has either a huge number
of colliding hash values, or is faking extensively.

5.4 The purpose of halting the protocol

In all protocols where the responding player also verifies, the responding player has the option to halt
the protocol, instead of sending a challenge. Obviously, refusing to send a challenge and halting the
protocol will result in no player being convinced of certain knowledge of the other player.

Alternatively, when the protocol is not halted, what happens to the knowledge and meta-know-
ledge of the players is much more complex. The verifier will be convinced, but only if the verifier
possesses the relevant IB. The prover cannot infer whether the verifier gets convinced. The verifier
might tell the prover whether he got convinced, but the prover has to trust this answer: The verifier
might claim he was not convinced, while he actually was convinced by the protocol run. When the
verifier was not convinced, this means he did not possess the relevant IB. If the verifier did not possess
the relevant IB,IV ? (or IB?) was empty, or at least with a probability negligibly close to 0.

Before receiving anyH2 from the prover, the verifier can obviously claim he is not yet convinced.
If the verifier wants to credibly claim he is not convinced, nor can be convinced, he can halt the
protocol. Halting the protocol before sending the challenge prevents the prover from sending aH2.

In the symmetric protocol, Bob could verify the possession of Alice, while in the meantime Bob
could withhold Alice of the proof of Bob’s possession. Bob could do this by sending noH2B or a fake
H2B . In this situation, Alice cannot infer whether Bob has actually verified Alice’s possession.

Obviously, it may be desirable that the symmetric protocol is an all-or-nothing protocol: either
nobody gets convinced and this is known to both players, or both players get convinced and this is
known to both players. Halting can play a crucial role here if Bob adopts a certain “halting strategy”:
if Bob has an emptyIB?, he halts the protocol. In that case nobody gets convinced and this is known
to both players. In caseIB? is nonempty, Bob sends a challenge and commits himself to truthfully
proving IB, which he can, with a probability negligibly close to 1. If Bob acts according to this
commitment, both players get convinced and this is known to both players. If on the other hand Bob
does not act according to this commitment, Bob is still convinced, but Alice detects Bob has broken
his commitment.

If Alice and Bob do not jointly require a specific halting strategy for Bob, Bob may “lure” Alice
into proving her possession, while Bob verifies Alice’s possession. However, if Alice and Bob agree
on the above mentioned halting strategy for Bob, the symmetric protocol is all-or-nothing, to the
degree that Alice will detect any violation by Bob.

10

5.5 The eavesdropper learns nothing

How much an eavesdropper can learn from a protocol run depends on the secrecy of the nonceN and
on whether the eavesdropper knowsIP beforehand. If the eavesdropper does not know the secret of
the proverIP beforehand, he cannot deduce any information on it, just like the verifier cannot.8 If the
eavesdropper does not knowN beforehand, he cannot link any message from the prover to an IB.

The prover and the verifier cannot always make sure the eavesdropper does not possessIP , but
they can make sure the eavesdropper does not possessN , by secretly generating and agreeing upon
aN . They could use a coin-flipping protocol [6, 23] for this, or a trusted third party to generate a
N . If the prover and the verifier were to use a fixed, publicly knownN , an eavesdropper could only
learn something if he already knowsIP , which is in most cases quite unlikely. This means there might
be applications in whichN being publicly known would be acceptable. (Note that using a publicly
known nonceN is equivalent to using no nonce at all.)

More generally, it is possible to make IB’s unguessable to outsiders by adding (i.e. concatenating)
random noise to an IB at the time it is created. Another IB will then only be equal to it if it matches
the random noise as well. However, another agent can then only possess the same IB if it has gotten
the IB by some (possibly indirect) way from the creator of the IB. In this scheme, an IB can only have
one creator, and cannot be dynamically generated on the spot, because the generator cannot guess the
random noise. Thus, only if the applications creating the IB’s can practically be adapted to add noise,
and IB’s always have one unique creator, a publicly known nonce is allowable.

Another way of securing the system against an eavesdropper is to make sure an eavesdropper will
not observe the hashes. This is described in the next paragraph.

6 Making the protocol more efficient by encryption

The computation ofIa? has a time complexity ofO(size(KBa) + |KBa|), wheresize(KBa) =∑
Ia∈KBa

size(Ia), size(Ia) is the number of bits inIa, and |KBa| is the number ofIa’s in KBa.
Note that this time complexity essentially is the space required to store all IB’s.

This process of computingIa? can divided into two steps:

1. Precomputing a look-up table of sizeO(|KBa|) once, which can be used in all runs of the
protocol which share the same nonce. Generating the look-up table still has computational
complexityO(size(KBa) + |KBa|).

2. Looking up received hashesH1 in the table. When an efficient storage technique for the look-up
table is used, this has a time complexity of onlyO(2log |KBa|).

If an agent learns a new IBIa, this agent has to update the look-up table, which has a time
complexity ofO(2log |KBa|+size(Ia)). How to initialise and maintain the look-up table is described
in figure 4.

Computing a look-up table and performing the protocol once, has the same time complexity as per-
forming the protocol without any precomputations. Doing precomputations has two benefits. Firstly,
the speed of execution of the protocol is much higher, because there are no expensive computations
to wait for. Secondly, we can re-use the look-up table as far as it is safe to re-use the nonce that was
used to construct the look-up table. However, for each distinct nonce used, the player still needs to

8We here elaborate on the protocol where the prover initiates. The analysis for the protocols where the verifier initiates
or where the secret is mutually proven, is analogous.IP Should be replaced withIV or IA respectively.

11

1. Create the look-up table, with the columnshashandIB location. IB Locationis some
information on how to locate the IB on the local system. (If IB’s are files, this would
typically be the file name.) Make the table efficiently searchable on at least thehash
column.

2. For each IBIa ∈ KBa, computehash(pad(Ia, {N})), and insert
(hash(pad(Ia, {N})), location(Ia)) into the table. (Computing the hash value has a time
complexity ofsize(Ia).)

3. With each modification of personal knowledge, update the look-up table:

(a) For each added IBIa, insert(hash(pad(Ia, {N})), location(Ia)) into the table.

(b) For each removed IBI, remove(hash(pad(Ia, {N})), location(Ia)) from the table.

(c) Consider each modified IB an old IB to be removed, and a new IB to be added.

Figure 4: The initialisation and maintenance of the look-up table, needed by any non-initiating party
of the protocol

generate such a look-up table, which is by far the most expensive part of the protocols described in
this paper so far.

So we can improve dramatically on speed if we can find a way to safely re-use nonces, or to use no
nonces at all. The reason to use nonces was described in section 5.5: to make sure we have semantic
security with respect to any third party observing the conversation. Semantic security can also be
achieved by means of encryption of some crucial parts of the protocol. The adjusted protocol for the
case where Peggy initiates is shown in figure 5.

The parts that need to be encrypted are those of which an eavesdropper could either infer the
involved IB9, or could verify the proof. To prevent inferral of the involved IB,H1 should be encrypted.
To prevent verification of the proof, or the possibility to infer IB by a brute-force attack, at least one
of C andH2 should be encrypted.

If none ofC andH2 are encrypted, an eavesdropper has to solve the equation

H2 = hash(pad(IP , {P,C}))

which has only one unknown variable,IP . If the eavesdropper possessesIP , he could guess it cor-
rectly. Withholding eitherC or H2 from the eavesdropper makes it an equation with two unknown
variables, which cannot be solved. SinceC andH2 are always sent by opposing players, we may
choose to encrypt the one sent by the player that also sentH1, i.e. the player that initiated the proto-
col. Thus only the initiator needs to be able to send encrypted messages.

By using encryption and no nonce (or a constant nonce), any responding player of the protocol
needs to generate the look-up tableonly once. The need to establish a common nonce is no longer
there, but the need for key exchange has come in its place. Since the protocol requires authentication,
it may well be that key exchange is required anyway.

9With “infer”, we mean “properly guess” as described in the introduction.

12

1. Peggy chooses an IBIP ∈ KBP of which she wants to prove her knowledge to Victor

2. Peggy sends Victor the message{encrypt(H1 = hash(pad(IP , ∅)))}

3. Victor decrypts the message from Peggy and obtainsH1

4. Victor looks upIV ? in his look-up table:IV ? is the group of IB’s whose corresponding
hashcolumn in the table is equal toH1. Victor generates a random challengeC such that it
discriminates withinIV ?

5. Victor sends Peggy the message{C}

6. Peggy sends Victor the message{encrypt(H2 = hash(pad(IP , {P,C})))}

7. Victor decrypts the message from Peggy and obtainsH2

8. Victor verifies whetherH2 (received from Peggy) is equal to anyhash(pad(IVj , {P,C})),
whereIVj ∈ IV ? (locally computed). If they are equal, Victor concludesIP equals the
matchingIVj from IV ?, and thereby verifies Peggy knowsIVj .

Figure 5: The protocol where Peggy initiates, and encryption is used

7 Discussion

The protocols described use one-way hash functions in a way that has not been shown before, namely
to identify files, i.e. to “point at them”. We also use one-way hash functions for verification of
possession. This latter use is also described in [23]:

“If you want to verify someone has a particular file (that you also have), but you don’t
want him to send it to you, then you ask him for the hash value. If he sends you the
correct hash value, then it is almost certain that he has that file.”

Unfortunately the avobe described procedure does not guarantee possession of the particular file:
It is trivial to inform someone about hash values of numerous files, without giving the person the
files. This person can now “prove” possession of the files he does not have. Of course this is very
undesirable, and that is what the challengesC in the described protocols are for: The proving player
can only prove possession by computinghash(pad(M,n)) with C ∈ n. Maintaining hash value
look-up tables for all possible challenges is not feasible, and therefore presenting a value equal to
hash(pad(M,n)) proves the possession of a player.

The quote above does not mention how to determine which file is theparticular file. Verification
of possession can only be done if the file has beenpointed at. SendingH1 in the protocols can be
interpreted as pointing at a file of which possession will or should be proved.

Maintaining a look-up table with only one, or only a few possible values forn, is feasible. This
feasibility can be used to computeIa?, which is “finding out which file has been pointed at by the
other player”.

The need for a strong nonce has also been acknowledged for message authentication, specially by
Tsudik [24]. In his paper he describes an authentication protocol which has some similarities with the

13

protocols presented in this paper. However, his protocol does not include pointing at a file, since the
file is supposed to be known publicly. He also thoroughly elaborates on some keyed padding functions
to be used in a MAC, though the functions he proposes have been shown insufficient in [22]. In [4]
this problem is more or less solved. It should nevertheless be stressed that but the notion of a MAC is
not strong enough for the purposes presented in this paper. More elaboration on the requirements and
design considerations of keyed padding functions is required.

In [20], Naor and Pinkas present a way to solve the list intersection problem, and a way to solve
special case of it: the one-to-many intersection. This one-to-many intersection problem is very similar
though not equivalent to CIWLI without reference. The protocol they present is very expensive,
and it leaks some meta-information. The amount of communication required is of a complexity of
O(|KBV |), and the protocol leaks|KBV | to the other player. (|KBa| is the number of secrets held
by playera.) Moreover, the precomputations required have a complexity ofO(|KBa|2size(KBa)),
which is dramatically worse than our solution. It effectively prohibits|KBa| to be large.

If in the presented protocols the prover has signed its messages, the verifier can prove to a third
party knowingIP , that the prover did try to prove the prover’s knowledge ofIP to somebody.

8 Conclusion

We have given protocols which allow a player to prove his knowledge of a secret to another player,
without leaking the secret in case the verifier did not know the secret. Both the prover and the verifier
can initiate such a protocol. Also, a protocol is given in which two players mutually prove their
knowledge. This mutual protocol has the property that it is all-or-nothing: either no player can verify
the knowledge of the other, or both players know the secret and prove this to the other. Any violation
of this mutual protocol can easily be detected.

Two sets of protocols are presented: one group that meets all these requirements solely by the use
of one-way hash functions, and one group that meets all these requirements by also using encryption.

All protocols require a precomputation by the non-initiating player of the protocol. A precompu-
tation has a time complexity equal to the space required to store all the player’s secrets. The protocols
only using one-way hashes require one precomputation for each different communication partner. The
protocols also using encryption require only one single precomputation ever.

The protocols themselves take a constant number of communcation steps, and require computa-
tions by each player of a time complexity of at mostO(size(I)), whereI is the secret being proven or
verified.

9 Future research

We have just finished building a working implementation of the described protocols. It allows users
to test one another’s possession of files over the internet. This software and its documentation can be
found athttp://www.ai.rug.nl/˜woutr/provingsecrets/

Our attention now focuses on two issues. Firstly, we want to prove the properties of the presented
protocols in a more formal way. Secondly, we intend to use the described protocols as a means to
solve the list intersection problem [20] in a very efficient way.

The Dutch police offers us a very interesting application area for our protocols. Police investi-
gation teams typically want to keep their files secret, butdo want to know whether other teams are
investigating on the same persons or locations. It is intended that our protocols will be used in this
application area.

14

References

[1] Proposed federal information processing standard for secure hash standard.Federal Register,
57(21):3747–3749, 1992.

[2] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic hash functions: A survey. Techni-
cal Report 95-09, Department of Computer Science, University of Wollongong, July 1995.

[3] M. Bellare and O. Goldreich. On defining proofs of knowledge.Lecture Notes in Computer
Science, 740:390–420, 1993.

[4] Mihir Bellare, Roch Guerin, and Phillip Rogaway. XOR MACs: New methods for message
authentication using finite pseudorandom functions.Lecture Notes in Computer Science, 963,
1995.

[5] Eli Biham and Adi Shamir. Differential cryptanalysis of Snefru, Khafre, REDOC-II, LOKI and
Lucifer (extended abstract).Lecture Notes in Computer Science, 576:156+, 1991.

[6] M. Blum. Coin flipping by telephone: A protocol for solving impossible problems.Proceedings
of the 24th IEEE Computer Conference (COMPCON), pages 133–137, 1982.

[7] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications (ex-
tended abstract). InProceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting, pages 103–112, Chicago, Illinois, 2–4 May 1988.

[8] F. Boudot, B. Schoenmakers, and J. Traoré. A fair and efficient solution to the socialist million-
aires’ problem.Discrete Applied Mathematics, 111(1-2):23–36, 2001.

[9] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash functions
(preliminary version). InProceedings of the 30th Annual ACM Symposium on the Theory of
Computing, pages 131–140, Dallas, 1998.

[10] I.B. Damg̊ard. Collision free hash functions and public key signature schemes. In D. Chaum
and W.L. Price, editors,EUROCRYPT, volume 304 ofLecture Notes in Computer Science, pages
203–216, Berlin, 1988. Springer.

[11] H.P. van Ditmarsch. The russian cards problem.Studia Logica, 75:31–62, 2003.

[12] R. Fagin, M. Naor, and P. Winkler. Comparing information without leaking it.Communications
of the ACM, 39(5):77–85, 1996.

[13] J. Feigenbaum, E. Grosse, and J.A. Reeds. Cryptographic protection of membership lists.
Newsletter of the International Association for Cryptologic Research, 9(1):16–20, 1992.

[14] J. Feigenbaum, M. Liberman, and R. Wright. Cryptographic protection of databases and soft-
ware, 1991.

[15] O. Goldreich. Zero-knowledge twenty years after its invention. Technical report, Department of
Computer Science, Weizmann Institute of Science, 2002.

[16] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proofs.JACM, 38:691–729, 1991.

15

[17] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-
systems. Proceedings of the seventeenth annual ACM symposium on Theory of Computing,
pages 291–304, 1985.

[18] M. Jakobsson and M. Yung. Proving without knowing: On oblivious, agnostic and blindfolded
provers.Lecture Notes in Computer Science, 1109:186–200, 1996.

[19] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. InTools
and Algorithms for the Construction and Analysis of Systems (TACAS), volume 1055, pages
147–166. Springer-Verlag, Berlin Germany, 1996.

[20] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation.Proceedings of the
Thirty-First Annual ACM Symposium on the Theory of Computing, pages 245–254, 1999.

[21] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing. (May
15–17 1989: Seattle, WA, USA), pages 33–43, New York, NY 10036, USA, 1989. ACM Press.

[22] B. Preneel and P.C. van Oorschot. MDx-MAC and building fast MACs from hash functions.
Lecture Notes in Computer Science, 963:1–14, 1995.

[23] B. Schneier.Applied Cryptography. John Wiley & Sons, New York, 1996.

[24] G. Tsudik. Message authentication with one-way hash functions. InINFOCOM (3), pages
2055–2059, 1992.

[25] Y. Watanabe, J. Shikata, and H. Imai. Equivalence between semantic security and indistin-
guishability against chosen ciphertext attacks.Lecture Notes in Computer Science, 2567:71–84,
2003.

[26] A.C. Yao. Protocols for secure computations.Proceedings of the 23rd IEEE Symposium on
Foundations of Computer Science, pages 160–164, 1982.

[27] A.C. Yao. How to generate and exchange secrets.Proceedings of the 27th IEEE Symposium on
Foundations of Computer Science, pages 162–167, 1986.

[28] Y. Zheng, T. Mashumoto, and H. Imai. Provably secure one-way hash functions.

A The remaining protocols with encryption

The paper did not show the protocol where the verifier initiates the protocol, nor the one where both
players prove their possession. Though hese protocols can be deduced relatively easily, we fully
describe these 2 protocols for reference. These protocols are described in figures 6 and 7 respectively.

B Acknowledgements

The author would like to thank Kathy Cartrysse, Rineke Verbrugge, Rafael Accorsi Marius Bulacu,
and the anonymous referees for their feedback and numerous comments on drafts of this paper and
the ideas therein.

16

1. Victor chooses an IBIV ∈ KBV of which he wants to test Peggy’s knowledge

2. Victor computesIV ? ⊆ KBV and generates a random challengeC such that it
discriminates withinIV ?

3. Victor sends Peggy the message{encrypt({H1 = hash(pad(IV , ∅)), C})}

4. Peggy decrypts the message from Victor and obtainsH1 andC

5. Peggy generatesIP ? ⊆ KBP

6. For eachIPi ∈ IP ? of which Peggy is willing to prove her knowledge to Victor, Peggy
sends Victor the message{H2 = hash(pad(IPi , {P,C}))}

7. For eachH2 received from Peggy, Victor verifies whetherH2 is equal to any
hash(pad(IVj , {P,C})), whereIVj ∈ IV ? (locally computed). If they are equal, Victor
concludes thatIPi equals the matchingIVj , and thereby verifies that Peggy knows the
matchingIVj .

Figure 6: The protocol where Victor initiates, and encryption is used

C Paraphrasing the protocol

With thanks to my office mate, Marius Bulacu, I can present you a rough paraphrase of the type of
protocols described in this paper. It is very sketchy, but illustrates the non-intuitivity of the protocols
in an intuitive way. Consider this conversation by A and B:

A Hey! You know what?

B Huh, What?

A Well, you know, don’t you?

B I don’t know what you are talking about

A Well, nevermind

This could be considered a rough real-world equivalent of an unsuccessful protocol run. Finally,
consider this “successful” protocol run:

A Hey! You know what?

B Huh, What?

A Well, you know, don’t you?

B Ahh, yeah, of course

A Thank you, goodbye

17

1. Alice chooses an IBIA ∈ KBA of which she wants to prove her knowledge to Bob, and of
which she wants to test Bob’s possession

2. Alice computesIA? ⊆ KBA and generates a random challengeCA such that it
discriminates withinIA?

3. Alice sends Bob the message{encrypt(H1 = hash(pad(IA, ∅)), CA})}

4. Bob decrypts the message from Alice and obtainsH1 andC

5. Bob computesIB? ⊆ KBB

6. Bob does one of the following:

• Bob generates a random challengeCB such that it discriminates withinIB?, and
sends Alice the message{CB}

• Bob sends Alice the message{halt} and the protocol is halted

7. Alice sends Bob the message{encrypt(H2A = hash(pad(IA, {A,CB})))}

8. Bob decrypts the message from Alice and obtainsH2A

9. Bob verifies whetherH2A (received from Alice) is equal to any
hash(pad(IBi , {N,A,CB})), whereIBi ∈ IB? (locally computed). If they are equal, Bob
concludes thatIA equals the matchingIBi , and thereby verifies that Alice knows the
matchingIBi (which we will call IB from here on)

10. If Bob is willing to prove his knowledge ofIB to Alice, Bob sends Alice the message
{H2B = hash(pad(IB, {B,CA}))}

11. Alice verifies whetherH2B (received from Bob) is equal tohash(pad(IA, {B,CA}))
(locally computed). If they are equal, Alice concludes thatIA equalsIB, and thereby
verifies that Bob knows the matchingIA.

Figure 7: The symmetric protocol with encryption.

18

