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Abstract. We show that BAN logic, an epistemic logic for analyzing
security protocols, contains an inference rule that wrongly ascribes a
certain property to cryptographic hash functions. This faulty inference
rule makes the BAN logic not ‘sound’. That is, it is possible to derive
counterintuitive beliefs which cannot be computationally justified. We
will prove this in this paper. This result should count as a warning to
those who wish to extend their BAN-descendant logic to one that cap-
tures ‘all’ cryptographic primitives.

1 Introduction: BAN Logic

Formal analysis of security protocols requires one to reason about the knowledge
of the participants (principals) in the protocol. Critical for a security protocol is
that it should not only guarantee that certain information is communicated, but
also that certain other information is not communicated. For example, external
observers should typically not be able to infer session keys which are exchanged
in a security protocol.

BAN logic, introduced by Burrows, Abadi and Needham [1, 2] is an epistemic
logic specially crafted for analyzing security protocols. It models at an abstract
level the knowledge of the principals in a protocol. The principals are supposed
to have only polynomially many computational resources. It was the first logic of
its kind, and has had a tremendous influence on protocol analysis: it has helped
revealing weaknesses in known protocols, and many logics are based on it. This
is not to say that there has been no criticism of BAN logic. For one thing, a full
semantics is lacking, and many attempts have been made to fix this problem
[3–10]. Moreover, the logic fails to detect some very obvious protocol flaws [11].

Though the semantics of BAN logic is generally considered unclear, it is for
our purposes important to note that BAN logic does have a partial semantics,
which is defined over a part of the formal language of BAN logic.1

The general consensus about BAN-descendant logics appears to be that these
logics are computationally sound (detected protocol flaws are indeed flaws), but
certainly not computationally complete (they may fail to detect certain protocol

1 This partial semantics is defined in Section 13 of the original BAN papers [1, 2].



flaws). Recent work includes attempts to bridge the gap between the formal (i.e.
BAN-descendant) approach and the computational approach to security logics
[12], and attempts to obtain completeness results for BAN-descendant logics in a
kind of Kripke-style semantics [13, 14]. In the Multi-Agent Systems world, BAN
logic has been widely used (see for example, [15]).

In this paper we show a problem of BAN logic that has, to our knowledge,
not yet been identified, despite all research into formal protocol analysis. BAN
logic is not ‘sound’: false statements can be obtained by ‘valid’ inference rules
from true assumptions. A questionable inference rule causes this behavior. In
Sect. 2 we will explain the reasoning mistake behind this questionable inference
rule and how this works out in BAN logic. Section 3 discusses the need for com-
putational justification of inference rules, and the justification for the inference
rule questioned in this paper. Section 4 shows the protocol we use in our un-
soundness proof and Sect. 5 shows all inference rules used in our proof. Section 6
shows the actual proof. In Sect. 7 we will give an alternative proof, but in the
questionable semantics of BAN logic, therefore, we regard our proof of Sect. 6
more important. We close with some remarks on the relevance of our results.

2 Cryptographic Hash Functions and Justified Beliefs

A cryptographic hash function is a function H : {0, 1}∗ → {0, 1}k which is com-
putationally feasible to compute, but for which the inverse is computationally
infeasible. In particular, computing the inverse of a hash function takes O(2k)
operations. Thus, a cryptographic hash function is one-way : it is computation-
ally infeasible to construct a message x such that H(x) yields a given value
h [16].2

Cryptographic hash functions have a lot of applications, including password
protection, manipulation detection and the optimization of digital signature
schemes. Unfortunately however, the class of applications is sometimes over-
estimated. Consider for example the following quote from security expert Bruce
Schneier [18, page 31]:

“If you want to verify someone has a particular file (that you also have),
but you don’t want him to send it to you, then you ask him for the hash
value. If he sends you the correct hash value, then it is almost certain
that he has that file.”

Unfortunately, this claim is false. The problem is that in the above situation
sketch, there is no mention that the file should be kept totally secret. If there
is somebody who is willing to publish the hash value of the file, anybody can
‘prove’ possession of the file.

2 Cryptographic hash functions have more properties than the ones described here.
Fore an extensive treatment, see [17].



The authors of BAN logic [1, 2] made the same reasoning mistake as Bruce
Schneier, and incorporated into their logic an inference rule reflecting the above-
mentioned questionable reasoning3. The name of the questionable rule is H and
the rule will be shown in Sect. 5. As a result of this, BAN logic is not ‘sound’.
Essential in our proof is the fact that belief in BAN logic is considered to be
justified belief.

But first, let us recapitulate what soundness is. A proof procedure is sound
if it proves only valid formulae. In particular, from true formulae it should be
impossible to infer a false formula. A proof of soundness generally involves a
formal system and a class of models (a semantics): a proof of soundness es-
sentially shows that every formula that is derivable (|−) in the formal system is
observable (|=) in all relevant models. Our proof of unsoundness does not require
a model. Instead we rely on the definition of the modal operator belief (|≡) in
BAN logic which denotes true justified belief. As opposed to beliefs in general,
which may be ungrounded and false, a true justified belief should be true. To
see what the authors of BAN logic consider belief, let us look at the following
excerpt from [19, page 7]:

“More precisely, define knowledge as truth in all states (as in [20]4); our
notion of belief is a rudimentary approximation to knowledge, and it is
simple to see that if all initial beliefs are knowledge then all final beliefs
are knowledge and, in particular, they are true.”

In our ‘unsoundness’ proof, all initial beliefs are clearly knowledge, though
one of the obtained final beliefs is not knowledge, in particular, it is false. Thus,
by inferring an unjustified belief in BAN logic from true assumptions, we prove
that BAN logic is not sound. In particular, this means that it is impossible to
create a semantics in which BAN logic is sound.

3 On the Computational Justification of Beliefs

In the analysis of security protocols, if a principal obtains a new belief, there has
to be a computational justification for the newly obtained belief. For example,
if a principal sees a message cryptographically signed with private key K−1,
it is justified to believe that the message originates from the principal owning
private key K−1. The computational justification is in this case that it is com-
putationally infeasible for principals other than the one owning private key K−1

to construct a message signed with this key. This type of justification is essential
if security is of concern.5

3 See Appendix A for a detailed discussion of the papers presenting BAN logic, and
which papers exactly contain the reasoning mistake.

4 This is a reference to a preliminary paper. The final paper is [21] — WT.
5 Consider the alternative: we do not want principals to believe a message is sent by

Santa Claus just because the name ‘Santa Claus’ is written beneath it; writing the
name ‘Santa Claus’ is an exercise just as easy for Santa Claus himself as it is for
anybody else.



With this consideration in mind, it is worth noting the following bit from
page 266 of the BAN paper [1], (resp. pages 41–42 of [2]):

“Obviously, trust in protocols that use hash functions is not always war-
ranted. If H is an arbitrary function, nothing convinces one that when
A has uttered H(m) he must have also uttered m. In fact, A may never
have seen m. This may happen, for instance, if the author of m gave
H(m) to A, who signed it and sent it. This is similar to the way in
which a manager signs a document presented by a subordinate without
reading the details of the document. However, the manager expects any-
one receiving this signed document to behave as though the manager
had full knowledge of the contents. Thus, provided the manager is not
careless and the hash function is suitable, signing a hash value should
be considered the same as signing the entire message.”

This quote contains an assumption which is, in our opinion, unreasonable:
The manager expects anyone receiving the signed document as though something
would be the case which may not be the case. Of course, any principal including
the manager may be free to desire any behavior from other principals. But is
it reasonable to expect beliefs to be obtained which are not computationally
justified?

It is reasonable to assume that any principal, upon seeing {H(N)}K−1 will
believe the manager signed H(N), since it is computationally too difficult for
any principal other than the manager to construct the signature. However, it is
not reasonable to assume that any principal, upon believing a manager signed
H(N), is willing to believe the manager has seen N , as there is no computational
problem that would justify such a belief. Anybody may have computed H(N)
from N , in particular someone may have told the manager H(N) nut not N .
Therefore, the expectation of a manager that other principals should act as if
the manager knows N , is not warranted.

In fact, the text quoted above is the justification of the inference rule H
in BAN logic. We believe the identified problematic assumption explains the
problems that arise from the inference rule H.

4 The Two Parrots Protocol

To prove the ‘unsoundness’ of BAN logic, we rely on a protocol. The rather
simple two parrots protocol, shown in Fig. 1, will demonstrate the ‘unsoundness’.
Alice (denoted A) chooses a random number N , sends it to Cecil (denoted C),
who returns the number. Then Alice sends the cryptographic hash of the number
to Bob (denoted B), and Bob signs this hash value and returns it to Alice. As
Bob only sees the cryptographic hash value of N , and a cryptographic hash
function is one-way, Bob does not learn N itself. Nevertheless, if the two parrots
protocol is analyzed in BAN logic, Alice will believe that Bob knows N .

Of course, Cecil might privately disclose N to Bob, but this does not happen
in the two parrots protocol. Thus, though by private channels Bob might learn
N , the protocol certainly does not guarantee this.
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Fig. 1. The two parrots protocol.

In the two parrots protocol, the message N is transmitted without protection.
Thus, one can argue that Bob could learn N by mere eavesdropping. For the
sake of simplicity, we use a very simple protocol that suffices to demonstrate
our observation on BAN logic. Of course, protection of N can be achieved by
encryption of the messages between Alice and Cecil. Our proof can be easily
extended to obtain the same result for such an altered protocol. Moreover, our
proof does not rely on Bob eavesdropping.

Thus, though Bob could learn N through either an assistant (Cecil disclosing
N to Bob) or through eavesdropping, the communication in the two parrots
protocol simply does not warrant Bob knowing N , and therefore also does not
warrant Alice believing that Bob knows N .

When we want to formally analyze the protocol in BAN logic, we need to
transcribe it into BAN logic. First, we have the protocol assumptions

A |≡K7→ B, A |≡ N, A |≡ ](N)

which state that A knows the public key K of B, A knows N , and A believes N
to be fresh. A newly generated random number is particularly fresh. Then, we
have the protocol itself:

step 1 S1 : A → C : N

step 2 S2 : C → A : N

step 3 S3 : A → B : H(N)
step 4 S4 : B → A : {H(N)}K−1

This protocol description is rather straightforward. In general, the message
X cryptographically signed with the private key corresponding to public key K
is denoted as {X}K−1 . Thus, any agent that knows K can verify the signature
and read X.

What is achieved by a protocol can be stated in claims. For the two parrots
protocol, the following claim is true:

It will not be the case that B |≡ N

which essentially states that B will not know N . Note that this is true because

1. B only sees H(N),
2. the inverse of H(·) is hard to compute (H(·) is a one-way function), and



3. B has only polynomially many computational resources.

The problem that we identify in BAN logic (see Sect. 6) has the effect that
the following statement can also be inferred in BAN logic:

A |≡ B |≡ N

which states that A will believe that B will know N . This belief of A is not
computationally justified (cf. Sect. 3).

5 Used Inference Rules

The proof of ‘unsoundness’ in Sect. 6 involves three inference rules of BAN logic6:

1. the message meaning inference rule number ii as given on page 238 of [1]
(resp. page 6 of [2]):

MM P |≡K7→ Q, P C {X}K−1

P |≡ Q |∼ X

This rule formalizes that if P knows Q’s public key, and P receives a message
X signed with Q’s private key, P may infer that Q once sent X.7

2. the hashing inference rule H as given on page 266 of [1] (resp. page 42 of
[2]):

H
P |≡ Q |∼ H(X), P C X

P |≡ Q |∼ X

This rule is problematic, as it essentially infers belief (by P ) of “possession”
(by Q) of the message X from P believing that Q once said H(X). This
rule leads to the ‘unsoundness’ of BAN logic. Fortunately, none of the au-
thentication logics that descend from BAN logic, adopts the H inference
rule.

3. the nonce-verification inference rule as given on page 238 of [1] (resp. page
6 of [2]):

NV
P |≡ ](X), P |≡ Q |∼ X

P |≡ Q |≡ X

This rule formalizes that if P believes X to be fresh (it originates in the
current session), and P believes Q once sent X, then P may infer that Q
believes X (in the current session).8

6 The names of these inference rules are given by the writer of this text.
7 Inference rule MM has been questioned by Wedel and Kessler, as it is invalid if

interpreted according to their semantics [6]. However, they point out that it is unclear
whether BAN logic itself or their semantics of BAN logic is to blame for that.

8 This rule relies on the assumption that only beliefs are communicated.



6 Proof of ‘Unsoundness’ of BAN logic

In this section, we will present our formal proof. In our proof, we use the term
“false belief”. This might be perceived as unnecessarily harsh or misleading, but
we will argue that this is the right formulation, even in lack of a clear semantics
of BAN logic as a whole. The central construct of BAN logic, |≡, is defined as
follows on page 236 of [1] (resp. page 4 of [2]):

“P |≡ X: P believes X, or P would be entitled to believe X. In particular,
the principal P may act as though X is true. This construct is central
to the logic.”

In our proof, we obtain a result of the form P |≡ X, where X is not warranted.
It might be the case that X were true, if some more communication were to occur
than considered in our proof. Therefore, and in this way, we deem “false belief”
the appropriate term for such an X. With this explanation given, let us formulate
our main theorem:

Theorem 1 (‘Unsoundness’ of BAN logic). Within BAN logic [1, 2] it is
possible to derive false beliefs from true premises.

Proof (derivability). Consider the two parrots protocol, whose BAN idealization
is given in Sect. 4. It is trivial to verify that all of A, C and B are capable of
sending the messages they ought to send in the two parrots protocol.

As a result of protocol step 2 (S2), the following statement is inserted:

A C N (1)

As a result of protocol step 4 (S4), the following statement is inserted:

A C {H(N)}K−1 (2)

Using inference rule MM, assumption A |≡K7→ B and (2), we can infer:

A |≡ B |∼ H(N) (3)

Using inference rule H, (3) and (1), we can infer:

A |≡ B |∼ N (4)

Using inference rule NV, assumption A |≡ ](N) and (4), we can infer:

A |≡ B |≡ N (5)

Statement (5) should definitely not be derivable from the two parrots protocol.
With all premises true and based on valid inferences, a false belief is established.
More precisely, there exist no valid protocol annotations of the two parrots pro-
tocol which contain B |≡ N . ut



The culprit is the inference rule H. This problem cannot be fixed by adding
inference rules in such a way that B |≡ N can be inferred, as this would thwart
the definition of a cryptographic hash function: then N would be derivable from
H(N). Such a ‘fix’ would increase the number of computationally unjustified
inference rules from (at least) one to two.

Note that one more inference step is needed after application of the H rule
before a false belief is established. This is because we need to obtain belief of
belief, which cannot be directly inferred from H.9

7 The Semantic Approach

In the original BAN papers [1, 2], a rather limited semantics is given for a part
of the formal language of BAN logic. This semantics has been subject to an
enormous amount of criticism. For one thing, the semantics is very closely tied
to the formal language of BAN logic: what is derivable in the logic is by definition
observable in the semantics. One might even argue the semantics is so closely
tied to the formal language that it is of no additional value. Except for it being
the subject of criticism, the semantics has hardly ever been used.

In Sect. 6 we have explained why we used the formulation “false belief” in
a proof that does not rely on any formal semantics. Therefore, we have consis-
tently used quotes around the term unsoundness. In this section we will provide a
proof based on a semantics: therefore, we may omit the quotes around unsound-
ness. However, for this proof we need to disregard all criticisms of the semantics
of BAN logic. Therefore, we regard our proof in the previous section as more
important. But it is of course to the reader to choose what he likes best:

1. to agree with our use of “false belief” in the previous section, and with it
agree with the semantics-free proof of ’unsoundness’ (shown in the previous
section), or

2. to accept the semantics of BAN logic, regardless of all its shortcomings, and
with it agree to our proof of unsoundness (shown in this section).

Before we show a run of the two parrots protocol in the semantics of BAN
logic, it is appropriate to summarize this semantics:

– A local state of a principal P is a tuple (MP ,BP ), where MP is the set
of messages seen (C) by P , and BP is the set of beliefs (|≡) of P . These
sets enjoy closure properties which correspond to the inference rules of the
logic. For compactness and ease of reading, we have only included elements
in these sets which are relevant for our purposes.

– A global state s is a tuple containing the local states of all principals. If s is
a global state, then sP is the local state of P in s and MP (s) and BP (s) are
the corresponding sets of seen messages and beliefs. In our case the principals
are A, B and C, and a global state s is the triple (sA, sB , sC).

9 Note that in BAN logic, the semantics of belief (|≡) is defined, while the semantics
of once said (|∼) is still “largely a mystery” (literal quote from [1, 2, 22]).



– A run is a finite sequence of of global states s0, . . . , sn.
– A protocol run of a protocol of n steps of the form (Pi → Qi : Xi) is a run of

length n + 1, where s0 corresponds to the protocol assumptions and where
Xi 3 MQi

(si) for all i such that 0 < i ≤ n.

To be able to show a run of the two parrots protocol which is convenient
to read, we will first name and give all local states. Then, we will give the full
protocol run in which the names of these local states are used. For naming the
local states, we adhere to the following convention: snn

P is the local state of
principal P in in the global states nn.

The local states of principals A, B and C are as follows:

MA BA

s0,1
A = ( ∅, {K7→ B,N, ](N)} )

s2,3
A = ( {N}, {K7→ B,N, ](N)} )

s4
A = ( {N, {H(N)}K−1}, {K7→ B,N, ](N),

B |∼ H(N), B |∼ N,B |≡ N} )

MB BB

s0,1,2
B = ( ∅, ∅ )

s3,4
B = ( {H(N)} {H(N), {H(N)}K−1} )

MC BC

s0
C = ( ∅, ∅ )

s1,2,3,4
C = ( {N} {N} )

(6)

The following is a run of the two parrots protocol:

s0, s1, s2, s3, s4 (7)

where si are the global states after the consecutive steps of the protocol:

sA sB sC

s0 = ( s0,1
A s0,1,2

B s0
C )

s1 = ( s0,1
A s0,1,2

B s1,2,3,4
C )

s2 = ( s2,3
A s0,1,2

B s1,2,3,4
C )

s3 = ( s2,3
A s3,4

B s1,2,3,4
C )

s4 = ( s4
A s3,4

B s1,2,3,4
C )

(8)

Now that we have specified a protocol run of the two parrots protocol, we
can give our alternative proof of unsoundness:



Proof (observability). As shown in statement (5) of the derivability proof in Sect.
6, we can derive in BAN logic the sentence A |≡ B |≡ N in a run S1, S2, S3, S4

of the two parrots protocol. Thus, we have:

S1, S2, S3, S4 |−A |≡ B |≡ N (9)

Global state s4 corresponds to the semantics after a protocol run S1, S2, S3, S4 of
the two parrots protocol. When we take the model as given in equations (6)–(8),
we can observe that ‘A believes B knows N ’: B |≡ N ∈ BA(s4), which gives us:

s4 |= A |≡ B |≡ N (10)

On the other hand, we can also observe in our model that ‘B does not know N ’:
N /∈ BB(s4), which gives us:

s4 6|= B |≡ N (11)

Thus, the belief of A as given in (10) is not true as shown in (11). The false
belief of A as given in (10), is nevertheless derivable (9). Thus, it is possible to
derive a false belief within BAN logic. ut

Let us quote one last excerpt from Section 13, on page 269 of [1] (resp. pages
47–48 of [2]):

“Clearly, some beliefs are false. This seems essential to a satisfactory
semantics. [. . . ] Most beliefs happen to be true in practice, but the se-
mantics does not account for this coincidence. To guarantee that all
beliefs are true we would need to guarantee that all initial beliefs are
true.”

The existence of false beliefs in the semantics as such is not a problem, the
problem is that these beliefs are derivable.

8 Discussion

The formal approach to protocol analysis essentially started with BAN logic.
Many critiques of BAN logic have appeared, mentioning its incompleteness (i.e.
inability to detect some obvious problems, cf. [11]) and its poor semantics (among
many others, see [3]). Nevertheless, these critiques have not been a reason to
abandon the way of thinking introduced by BAN logic [23]. The many augmen-
tations to BAN logic (most notably, AT [3], GNY [4], AUTLOG [5, 6], VO [7],
SVO [8, 9] and SVD [10]) show the trust in the formal approach which originates
from BAN logic. In our opinion, this consensual trust in the way of thinking in-
troduced by BAN logic is justified. While obtaining completeness has long been
regarded as impossible, the soundness of BAN logic itself has never been seri-
ously doubted. Wedel and Kessler identified rules in BAN, AT and GNY which
are invalid in their semantics, but they point out that it is unclear whether the
inference rules or their semantics are to blame for that [6]. Various more recent



results [12–14, 24] provide directions on how completeness could be obtained for
formal protocol analysis.

Our unsoundness result does not at all invalidate the formal approach to
protocol analysis. It should merely count as a warning to those who wish to
complete their logic. All augmentations of BAN logic are incomplete in the sense
that they do not accommodate all cryptographic primitives known to date. These
logics are essentially ‘just big enough’ to capture the problems the authors in-
tend to capture. And to be fair, this has been difficult enough already. Just a
few BAN-descendant logics accommodate cryptographic hash functions, none of
them accommodate fancy primitives like (to name just an example) oblivious
transfer [25].

The fact that none of the hash-accommodating BAN-descendant logics a-
dopts the H inference rule, can probably be explained by the observation that
constructing a good logic is already so difficult that none of the authors will
have felt the urge to include an inference rule into their logic that was not
needed to capture the problem the author intended to capture. Nevertheless, it
is remarkable that we are apparently the first to find this result on a paper which
has been so extensively studied and is 17 years old.

So far, we know of only one publication which relies on the faulty H inference
rule [15]. In this publication, the SET protocol10 is analyzed in BAN logic. It
remains open whether the authors’ assessment of SET holds in a BAN logic with
the inference rule H omitted.
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A A Taxonomy of Versions of the BAN Paper

The seminal paper “A Logic of Authentication” has a respectable number of
versions. Its precursor, “Authentication: A Practical Study in Belief and Action”
was presented at the second conference on Theoretical Aspects of Reasoning
About Knowledge in March 1988 [22, 18 pages]. Then, there is the DEC technical
report, which was published in February 1989 and revised in February 1990 [2,
49 pages]. In April 1989, the work was submitted to the Royal Society of London,
which published it in December 1989 [1, 39 pages]. Also in December 1989, a
revised version of the article was presented on the twelfth ACM Symposium on
Operating Systems Principles, which was also published in the ACM SIGOPS
Operating Systems Review [26, 13 pages]. This led to a paper in the ACM
Transactions on Computer Systems in February 1990 [27, 19 pages]. In May
1994, an appendix to the DEC technical report was published [19, 10 pages].

The most notable distinction between these versions is that in the ACM-
published versions and the DEC appendix, the notation of many operators has
changed from symbols (e.g. |≡) to linguistic terms (e.g. believes). These versions
refer to the DEC technical report for full reference. The DEC technical report
and the Royal Society version [2, 1] should be considered the most complete
versions, due to their size and the fact that these papers are most often used in
self-references of the authors. Mart́ın Abadi considers the Royal Society version
the most definite one (on his homepage). These two versions of the article contain
a Section 12, “On Hashing”, which introduces and discusses the inference rule
essential in this paper. These two versions also contain a Section 13, “Semantics”,
which defines the partial semantics for BAN logic, used in Sect. 7 of this paper.


