
A higher-order iterative path ordering

Cynthia Kop and Femke van Raamsdonk

Vrije Universiteit, Department of Theoretical Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

kop@few.vu.nl, femke@few.vu.nl

Abstract. The higher-order recursive path ordering (HORPO) defined
by Jouannaud and Rubio provides a method to prove termination of
higher-order rewriting. We present an iterative version of HORPO by
means of an auxiliary term rewriting system, following an approach ori-
ginally due to Bergstra and Klop. We study well-foundedness of the ite-
rative definition, discuss its relationship with the original HORPO, and
point out possible ways to strengthen the ordering.

1 Introduction

This paper is about termination of higher-order rewriting, where bound variables
may be present. An important method to prove termination of first-order term
rewriting is provided by the recursive path ordering (RPO) defined by Dershowitz
[4]. Jouannaud and Rubio [6] define the higher-order recursive path ordering
(HORPO) which extends RPO to the higher-order case. The starting point is a
well-founded ordering on the function symbols which is lifted to a relation � on
terms, such that if l �+ r for every rewrite rule l→ r, then rewriting terminates.

Klop, van Oostrom and de Vrijer [10] present, following an approach ori-
ginally due to Bergstra and Klop [1], the iterative lexicographic path ordering
(ILPO) by means of an auxiliary term rewriting system. ILPO can be understood
as an iterative definition of the lexicographic path ordering (LPO), a variant of
RPO [9]. They show that ILPO is well-founded, and that ILPO and LPO coincide
if the underlying relation on function symbols is transitive.

The starting point of the present work is the question whether also for
HORPO an iterative definition can be given. We present HOIPO, a higher-order
iterative path ordering, which is defined by means of an auxiliary (higher-order)
term rewriting system, following the approach of [10]. HOIPO can be considered
as an extension of ILPO obtained by a generalization to the higher-order case
and the addition of comparing arguments as multisets.

We show well-foundedness of HOIPO as in [6] using the notion of computabil-
ity and the proof technique due to Buchholz [3], see also [5]. It then follows that
HOIPO provides a method for proving termination of higher-order rewriting.
Further, we show that HOIPO includes HORPO but not vice versa. So HOIPO
is (slightly) stronger than HORPO as a termination method; the reason is that
the fine-grained approach permits one to postpone the choice of smaller terms.

2 Preliminaries

In this paper we mainly consider higher-order rewriting as defined by Jouannaud
and Okada [5], also called Algebraic Functional Systems (AFSs) [16, Chapter 11].
The terms are simply typed λ-terms with typed constants. Every system has β
as one of its rewrite rules. That is, in AFSs we do not work modulo β as for
instance in HRSs [12]. Below we recall the main definitions.

Definition 1 (Types). We assume a set S of sorts also called base types. The
set T of simple types is defined by the grammar T ::= S | (T → T).

Types are denoted by σ, τ, ρ, As usual → associates to the right and we
omit outermost parentheses. A type declaration is an expression of the form
(σ1 × . . . × σm) → σ with σ1, . . . , σm and σ types. If m = 0 then such a type
declaration is shortly written as σ. Type declarations are not types, but are
used for typing terms. In the remainder of this paper we assume a set V of
typed variables, denoted by x : σ, y : τ, z : ρ, . . ., with countably many variables
of every type. In the following definitions we assume in addition a set F of
function symbols, each equipped with a unique type declaration, denoted by
f : (σ1 × . . .× σm)→ σ, g : (τ1 × . . .× τn)→ τ,

Definition 2 (Terms). The set T(F ,V) of terms over F and V is the smallest
set consisting of all expressions s for which we can infer s : σ for some type σ
using the following clauses:

(var) x : σ if x : σ ∈ V
(app) @(u, t) : σ if u : τ → σ and t : τ
(abs) λx : τ. t : τ → ρ if x : τ ∈ V and t : ρ
(fun) f(s1, . . . , sm) : σ if f : (σ1 × . . .× σm)→ σ ∈ F

and s1 : σ1, . . . , sm : σm

The application of n terms is sometimes written as @(t1, . . . , tn); here n ≥ 2 and
t1 may be an application itself. Note that a function symbol f : (σ1×. . .×σm)→
σ must get exactly m arguments, and that σ is not necessarily a base type.
Occurrences of x in t in the term λx : τ. t are bound. We consider equality on
terms modulo α-conversion, denoted by =. If we want to mention explicitly the
type of a (sub)term then we write s : σ instead of simply s.

A substitution [x := s], with x and s finite vectors of equal length, is the
homomorphic extension of the type-preserving mapping x 7→ s from variables
to terms. Substitutions are denoted by γ, δ, . . ., and the result of applying the
substitution γ to the term s is denoted by sγ. Substitutions only capture free
variables; we assume that bound variables are renamed if necessary.

Definition 3 (Rewrite rule). A rewrite rule over F and V is a pair of terms
(l, r) in T(F ,V) of the same type, such that all free variables of r occur in l.

A rewrite rule (l, r) is usually written as l → r. A higher-order rewrite system
is specified by a set F of function symbols with type declarations, and a set of
rewrite rules over F and V. The rewrite rules induce a rewrite relation which is
defined as follows; note that matching is modulo α, not modulo αβ nor αβη.

Definition 4 (Rewrite relations). Given a set of rewrite rules R over F and
V, the rewrite relation →R is defined by the following clauses:

(head) lγ →R rγ if l→ r ∈ R
and γ a substitution

(fun) f(s1, . . . , si, . . . , sn)→R f(s1, . . . , s′i, . . . , sn) if si →R s′i
(app-l) @(s, t)→R @(s′, t) if s→R s′

(app-r) @(s, t)→R @(s, t′) if t→R t′

(abs) λx : σ. s→R λx : σ. s′ if s→R s′

The β-reduction relation, denoted by →β , is induced by the β-reduction rule
@(λx : σ. s, t) →β s[x := t]. The rewrite relation of (F ,R), denoted by →, is
defined as the union of →R and β-reduction: → = →R ∪ →β . As usual, the
transitive closure of → is denoted by →+ and the reflexive-transitive closure of
→ is denoted by →∗.

Example 1 (Recursor). The rewrite system Rec for recursor on natural numbers
uses a base type N and function symbols 0 : N, S : (N)→ N, rec : (N×N× (N→
N→ N))→ N. The rewrite rules of Rec are as follows:

rec(0, y, z)→ y
rec(S(x), y, z)→ @(z, x, rec(x, y, z))

Addition of natural numbers can now be represented by the following term:

λx : N. λy : N. rec(x, y, λu : N. λv : N.S(v))

Example 2 (Map). The rewrite system Map uses base types N for natural num-
bers, and natlist for lists of natural numbers. The function symbols are nil : natlist,
cons : (N × natlist) → natlist, map : (natlist × (N → N)) → natlist. The rewrite
rules of Map are as follows:

map(nil, z)→ nil
map(cons(h, t), z)→ cons(@(z, h),map(t, z))

3 The Higher-Order Recursive Path Ordering

The starting point of the recursive path ordering due to Dershowitz [4] is a well-
founded ordering on the function symbols, which is lifted to a reduction ordering
�rpo on the set of terms. That is, the rewriting system is terminating if l �rpo r
for every rewrite rule l → r. Jouannaud and Rubio [6] present an extension of
RPO to the higher-order case, here called HORPO. Below we recall the definition
of HORPO and in the next section we introduce its fine-grained iterative version.

We have chosen to work with the definition as in [6] and not with later
versions as for instance [8,2]; we will come back to this issue in the last section.

In the following, multisets are denoted by {{. . .}}. If > is a binary relation,
then the multiset extension of >, denoted by >MUL, is defined as follows: X ∪
Y >MUL X ∪ Z, with ∪ the disjoint union of multisets, if Y 6= ∅ and ∀z ∈
Z.∃y ∈ Y. y > z. Sequences are denoted by [. . .]. The lexicographic extension

of >, denoted by >LEX , is defined as follows: [s1, . . . , sm] >LEX [s′1, . . . , s
′
m] if

either s1 > s′1 or s1 = s′1 and [s2, . . . , sm] >LEX [s′2, . . . , s
′
m]. If > is a well-

founded relation, then both >MUL and >LEX are well-founded.
We assume that the set of function symbols F is the disjoint union of FMUL

and FLEX. If f ∈ FMUL then its arguments will be compared with the multiset
extension of HORPO, and if f ∈ FLEX then its arguments will be compared with
the lexicographic extension of HORPO. We assume a well-founded precedence �

on F . Finally, in the remainder we identify all base types.

Definition 5 (HORPO). We have s � t for terms s : σ and t : σ if one of the
following conditions holds:

(H1) s = f(s1, . . . , sm)
there is an i ∈ {1, . . . ,m} such that si � t

(H2) s = f(s1, . . . , sm), t = g(t1, . . . , tn)
f � g
s �� {t1, . . . , tn}

(H3LEX) s = f(s1, . . . , sm), t = f(t1, . . . , tm), f ∈ FLEX

[s1, . . . , sm] �LEX [t1, . . . , tm]
s �� {t1, . . . , tm}

(H3MUL) s = f(s1, . . . , sm), t = f(t1, . . . , tm), f ∈ FMUL

{{s1, . . . , sm}} �MUL {{t1, . . . , tm}}
(H4) s = f(s1, . . . , sm), t = @(t1, . . . , tn) with n ≥ 2

s �� {t1, . . . , tn}
(H5) s = @(s1, s2), t = @(t1, t2)

{{s1, s2}} �MUL {{t1, t2}}
(H6) s = λx : σ. s0, t = λx : σ. t0

s0 � t0
Here � denotes the reflexive closure of �, and �MUL and �LEX denote the
multiset and lexicographic extension of �. Further, following the notation from
[11], the relation �� between a functional term and a set of terms is defined
as follows: s = f(s1, . . . , sm) �� {t1, . . . , tn} if for every i ∈ {1, . . . , n} we have
either s � ti, or there exists j ∈ {1, . . . ,m} such that sj � ti.

The first four clauses of the definition stem directly from the first-order defini-
tion of RPO, with the difference that instead of the requirement s �� {t1, . . . , tn}
for HORPO, we have for RPO the simpler s � ti for every i. This is not possible
for the higher-order case because of the type requirements; the relation � is only
defined on terms of equal type (after identifying all base types).

Jouannaud and Rubio prove well-foundedness of � ∪ →β . HORPO provides a
method to prove termination of higher-order rewriting: a higher-order rewrite
system (F ,R) is terminating if l � r for every rewrite rule l→ r ∈ R.

Example 3 (Recursor). We prove termination of the recursor on natural numbers
using HORPO. For the first rewrite rule, we have rec(0, y, z) � y by (H1). We
use (H4) to show rec(S(x), y, z) � @(z, x, rec(x, y, z)). There are three remaining
proof obligations. First, we have z � z by reflexivity of�. Second, we have S(x) �

x by clause (H1). Third, we have rec(S(x), y, z) � rec(x, y, z) by assuming rec to
be a lexicographic function symbol and using again S(x) � x, and reflexivity.

Example 4 (Map). The first rewrite rule is oriented using (H1). In order to orient
the second rewrite rule we apply (H2) with map�cons. Then first we need to show
map(cons(h, t), z) � @(z, h) which follows from (H4). Second we need to show
map(cons(h, t), z) � map(t, z) using (H3MUL). (Alternatively one can assume
map to be a lexicographic function symbol.) Note that in this example we need
the collapse of all base types to one.

4 An iterative version of HORPO

In this section we present an iterative version of HORPO, called HOIPO. HOIPO
is defined by means of a term rewriting system that intuitively step by step
transforms a term into a term that is smaller with respect to HORPO. We will
add marked function symbols: if F is a set of function symbols, then F∗ is defined
to be a copy of F which contains for every f ∈ F a symbol f∗ with the same
type declaration. We follow the approach and notations as in [10].

Definition 6 (HOIPO). We assume a set of function symbols F divided in
FMUL and FLEX, and a relation � on F . The rewriting system H(F ,�) uses
function symbols in F ∪ F∗ and contains the following rules:

f(x1, . . . , xm)→put f∗(x1, . . . , xm)
f∗(x1, . . . , xm)→select xi (a)
f∗(x1, . . . , xm)→copy g(lτ1 , . . . , lτn) (b)(f)

f∗(x1, . . . , si, . . . , xm)→lex f(x1, . . . , xi−1, s
′
i, lσi+1 , . . . , lσm) (c)(d)(f)

f∗(x1, . . . , si, . . . , xm)→mul f(r1, . . . , ri−1, s
′
i, ri+1, . . . , rm) (c)(e)(g)

f∗(x1, . . . , xm)→ord f∗(xπ−11, . . . , xπ−1m) (e)(h)
f∗(x1, . . . , xm)→appl @(lρ1→...→ρk→σ, lρ1 , . . . , lρk

) (f)

We assume that the typing and arity constraints are met (after identifying all
base types). In particular the left- and right-hand sides of rewrite rules must
have the same type, and f : (σ1 × . . . × σm) → σ, and g : (τ1 × . . . × τn) → σ.
Further, the rules are subject to the following conditions:

(a) i ∈ {1, . . . ,m},
(b) f � g,
(c) si →put s

′
i,

(d) f ∈ FLEX,
(e) f ∈ FMUL,
(f) we use the notation lρ for some term of type ρ; either lρ = f∗(x1, . . . , xm) or

lρ = xj for some j, as long as the type constraints are met; it is not a fixed
term: we can choose different values for lσi

and lσj
even if σi = σj ,

(g) we use the notation rj for some term of type σj : either si →put rj , or rj = xj
(h) π a type-preserving permutation of 1, . . . ,m.

The first four rewrite rules stem directly from the first-order term rewriting
system Lex defined in [10] which is used to define ILPO, an iterative definition of
the lexicographic path order. They are adapted because of the typing constraints,
just as the clauses (H1), (H2), (H3MUL), (H3LEX) in the definition of HORPO
are typed versions of the clauses of the definition of first-order RPO. We now
first discuss the intuitive meaning of the rewrite rules of HOIPO and then give
some examples.

– The put-rule can be considered as the start of a proof obligation for HORPO.
It expresses the intention to make a functional term smaller. It is exactly
the same as the put-rule of the first-order rewriting system for ILPO.

– The select-rule expresses that selecting a direct argument of a functional term
makes it smaller. It roughly corresponds to clause (H1) of the definition of
HORPO . It is exactly the same as the select-rule in the rewriting system
for ILPO. However, the use of the rule in the higher-order setting is weaker
because of the typing constraints. For instance, with f : (o → o) → o,
g : o → (o → o), a : o, we cannot reduce f(g(a)) : o to a : o in H using
the rules put and select, because we would need to go via g(a) which has
type o→ o. In the first-order setting we have f(g(a))→put f

∗(g(a))→select

g(a)→put g
∗(a)→select a.

– The copy-rule makes copies of the original term under a function symbol
that is smaller with respect to �. This corresponds to clause (H2) of the
definition of HORPO. The choice for lσi

in the right-hand side of the rule
corresponds to the �� relation used in (H2). The first-order version of the
rule is

f∗(x)→copy g(f∗(x), . . . , f∗(x)) (if f � g)

There the left-hand side is copied at all argument positions of g, which cannot
be done in the higher-order case because of the typing constraints.

– The lex-rule implements the lexicographic extension of HORPO and can be
applied to lexicographic functional terms only. The first i− 1 arguments are
not changed. The ith argument is marked, meaning we will make it smaller.
The arguments i+ 1 till m may increase, but are bounded by the left-hand
side. That is, on those positions we put either the original term (left-hand
side) or a direct argument. The first-order version of this rewrite rule is:

f∗(x, g(y), z)→lex f(x, g∗(y), l, . . . , l) (for l = f∗(x, g(y), z))

Here the put-reduct of the argument g(y) can be given directly, and at all
positions thereafter the left-hand side can be put. For the higher-order case
this is not possible because instead of a functional term we can also have an
application or an abstraction.

– The mul- and ord-rule implement the multiset extension of HORPO and
can be applied to multiset functional terms only. With a � b we have for
instance f(x, a, c) →put f

∗(x, a, c) →ord f
∗(x, c, a) →mul f(a∗, c, a∗) →copy

f(b, c, a∗)→copy f(b, c, b). We cannot reduce f(x, a, c) to f(b, c, b) using the
first-order rules put, select, copy, and lex, so the mul-rule cannot be derived
from those rules.

The ord-rule expresses that the order of the arguments of a multiset func-
tional term do not matter (but remain subject to the typing constraints).
This rule does not express a decrease in HORPO.

– The appl-rule corresponds to clause (H4) of the definition of HORPO and is
typical for the higher-order case. The idea is that the application of terms
that are all smaller than the original term is smaller than the original term.
We have lρ1→...→ρk→σ = xi and ρ1 → . . .→ ρk → σ = σi for some i.

The rewrite relation induced by the rules of H(F ,�) is denoted by→H, and the
union of →H and β-reduction is denoted by →Hβ . How can HOIPO be used to
prove termination? The claim is that a system (F ,R) is terminating if we have
l→+

Hβ r for every rewrite rule l→ r ∈ R. This is proved in the following section;
here we first look at three examples of the use of HOIPO.

Example 5 (Recursor). For the first rewrite rule we have:

rec(0, y, z)→put rec∗(0, y, z)→select y

For the second rewrite rule we assume rec ∈ FLEX. Then:

rec(S(x), y, z)→put rec∗(S(x), y, z)→appl @(z,S(x), rec∗(S(x), y, z))→put

@(z,S∗(x), rec∗(S(x), y, z))→select @(z, x, rec∗(S(x), y, z))→lex

@(z, x, rec(S∗(x), y, z))→select @(z, x, rec(x, y, z))

Example 6 (Map). We take map � cons and map ∈ FLEX. For the first rewrite
rule we have:

map(nil, z)→put map∗(nil, z)→select nil

For the second rewrite rule we have (base types are identified):

map(cons(h, t), z)→put map∗(cons(h, t), z)→copy

cons(map∗(cons(h, t), z),map∗(cons(h, t), z))→appl

cons(@(z, cons(h, t)),map∗(cons(h, t), z))→put

cons(@(z, cons∗(h, t)),map∗(cons(h, t), z))→select

cons(@(z, h),map∗(cons(h, t), z))→lex cons(@(z, h),map(cons∗(h, t), z))→select

cons(@(z, h),map(t, z))

5 Termination

In this section we prove the following theorem:

Theorem 1. A system (F ,R) is terminating if there exists a well-founded or-
dering � on the terms over F such that l→+

Hβ r in H(F ,�).

This means that HOIPO provides a termination method, as was already claimed
in the previous section. The proof of Theorem 1 proceeds as follows; we follow the
approaches of [10,6]. We define a labelled rewrite relation →Hω (Definition 7)
and consider its union with β-reduction, denoted by →Hωβ . It is shown that

→+
Hωβ and→+

Hβ coincide on the set of terms over F , so without marks or labels
(Lemma 1). Then we show termination of →Hωβ (Theorem 3). It follows that
→+
Hβ is a transitive relation on the terms over F , that is closed under contexts

and substitutions, and that is moreover well-founded. Hence it is a reduction
ordering, that is, l →+

Hβ r for every rewrite rule l → r implies that rewriting is
terminating. HOIPO is more fine-grained than HORPO and also its termination
proof is more fine-grained that the one for HORPO. We continue by presenting
the labelled version of HOIPO, which is used to prove termination of →Hβ .

5.1 The labelled system

We assume a set F of function symbols, which is the disjoint union of lexico-
graphic and multiset function symbols, and a well-founded ordering � on F .
We define a copy Fω of F as follows: for every f ∈ F , the set Fω contains the
labelled function symbol fn for every natural number n. An unlabelled function
symbol f is also denoted as fω; then every function symbol in F ∪ Fω can be
denoted by fα with α an ordinal of at most ω. The usual ordering on N is
extended by n < ω for every n ∈ N.

Definition 7 (Labelled HOIPO). The rewriting system Hω(F ,�) uses func-
tion symbols in F ∪ Fω and contains the following rules:

fω(x1, . . . , xm)→put fp(x1, . . . , xm)
fp(x1, . . . , xm)→select xi (a)

fp+1(x1, . . . , xm)→copy gω(lτ1 , . . . , lτn) (b)(f)
fp+1(x1, . . . , si, . . . , xm)→lex fω(x1, . . . , xi−1, s

′
i, lσi+1 , . . . , lσm

) (c)(d)(f)
fp+1(x1, . . . , si, . . . , xm)→mul fω(r1, . . . , ri−1, s

′
i, ri+1, . . . , rm) (c)(e)(g)

fp+1(x1, . . . , xm)→ord fp(xπ−11, . . . , xπ−1m) (e)(h)
fp+1(x1, . . . , xm)→appl @(lρ1→...→ρk→σ, lρ1 , . . . , lρk

) (f)

Here p is an arbitrary natural number. As in Definition 6 we assume that the
type- and arity constraints are met. In addition we have the following conditions;
here (a), (b), (d), (e), and (h) are exactly the same as in Definition 6, and (c),
(f) and (g), provide the crucial differences.

(a) i ∈ {1, . . . ,m},
(b) f � g,
(c) si →put s

′
i with label p

(d) f ∈ FLEX,
(e) f ∈ FMUL,
(f) we use the notation lρ for some term of type ρ; either lρ = fp(x1, . . . , xm) or

lρ = xj for some j, as long as the type constraints are met; it is not a fixed
term: we can choose different values for lσi

and lσj
even if σi = σj ,

(g) we use the notation rj for some term of type σj : either si →put rj with label
p, or rj = xj ,

(h) π a type-preserving permutation of 1, . . . ,m.

The rewrite relation induced by the rewrite rules of Hω(F ,�) is denoted by
→Hω, and the union of→Hω and β-reduction is denoted by→Hωβ . The following
examples illustrate that in Hω the labels provide more control over the reduction
relation than the marks.

Example 7 (Map). We take map � cons and map ∈ FLEX. For the first rewrite
rule we have:

map(nil, z)→put map0(nil, z)→select nil

For the second rewrite rule we have:

map(cons(h, t), z)→put map2(cons(h, t), z)→copy

cons(map1(cons(h, t), z),map1(cons(h, t), z))→appl

cons(@(z, cons(h, t)),map1(cons(h, t), z))→put

cons(@(z, cons0(h, t)),map1(cons(h, t), z))→select

cons(@(z, h),map1(cons(h, t), z))→lex cons(@(z, h),map(cons0(h, t), z))→select

cons(@(z, h),map(t, z))

Example 8. As remarked in [10], the rewriting system →H may contain loops.
For instance, for a : σ and f : σ → σ with a � f we have a →put a

∗ →copy

f(a∗)→put f
∗(a∗)→select a

∗. The loop on marked terms has no counterpart in
the labelled system.

We now show that the reflexive closures →+
Hβ and →+

Hωβ coincide on the set of
terms without labels.

Lemma 1. We have →+
Hβ =→+

Hωβ on the set of terms over F .

Proof. First note that the marks and labels do not control β-reduction.
In order to show→+

Hβ ⊆ →
+
Hωβ we consider a rewrite sequence s→+

Hβ t that
does not consist of β-reduction steps only. The first step with respect to HOIPO
is induced by the put-rule. The total number of HOIPO steps is finite, say n. We
now lift the rewrite sequence in Hβ to a rewrite sequence in Hωβ by using in
the first put-step of the latter the label n. The values for the other labels then
follow easily.

In order to show→+
Hωβ ⊆ →

+
Hβ , note that a step in labelled HOIPO is mapped

to a step in HOIPO by replacing a label p (for any natural number p) by the
mark ∗. A label ω is just a notational device and in fact denotes ‘no label’. ut

5.2 Computability

We will make use of the notion of computability due to Tait and Girard [15].
Here we define computability with respect to →Hωβ .

Definition 8. A term s : σ is said to be computable with respect to →Hωβ if:

– σ is a base type, and s is strongly normalizing with respect to →Hωβ ,
– σ = τ → ρ for some τ and ρ, and for every t : τ with t computable with

respect to →Hωβ we have that @(s, t) is computable with respect to →Hωβ .

As in [6,11] variables are not by definition computable, but are proved to be
computable. We do not consider computability modulo a convertibility relation
on terms as in [11] because we work with typed variables and not with envi-
ronments. The following two lemma’s are concerned with (standard) properties
of computability and correspond to Property 3.4 (i), (ii), (iii), (v) in [6] and to
Lemma 6.3 and Lemma 6.5 in [11].

Lemma 2.

(a) If s : σ is computable then s : σ is strongly normalizing with respect to→Hωβ.
(b) If s : σ is computable and s→Hωβ t then t is computable.
(c) If s : σ is not an abstraction (or: s : σ is neutral) and t is computable for

every t with s→Hωβ t, then s is computable.

The three items are proved simultaneously by induction on the structure of type.
A consequence of the third point is that variables are computable.

Lemma 3. Consider an abstraction λx : σ. s : σ → τ . If s[x := t] is computable
for every computable t : σ, then λx : σ. s is computable.

The proof proceeds by showing that all one-step reducts of @(λx : σ. s, t) are
computable and then applying Lemma 2(c).

We proceed by showing that a functional term f(s1, . . . , sm) is computable
if all its direct arguments are computable. The proof of the following lemma
employs a technique due to Buchholz [3], also already present in [5], that is for
instance also used in [6,10].

Lemma 4. If s1 : σ1, . . . , sm : σm are computable, then fα(s1, . . . , sm) is com-
putable.

Proof. Assume computable terms s1 : σ1, . . . , sm : σm and a function sym-
bol f : (σ1 × . . . × σm) → τ , and an ordinal α with α ≤ ω. We prove that
fα(s1, . . . , sm) is computable by well-founded induction on the triple (f, s, α),
ordered by the lexicographic product of the following three orderings: first �

on function symbols, second the lexicographic (for f ∈ FLEX) or multiset (for
f ∈ FMUL) extension of →Hωβ on vectors of computable terms, and third the
ordering > on natural numbers extended with ω > n for every n ∈ N. We denote
this ordering by >>.

The induction hypothesis is: If (f, s, α) >> (g, t, β) with t = t1, . . . , tn com-
putable terms, then gβ(t1, . . . , tn) is computable.

Because s = fα(s1, . . . , sm) is neutral (i.e. not an abstraction), by Lemma
2 (c) it is sufficient to prove that all one-step reducts of s are computable. So
we suppose that fα(s1, . . . , sm)→Hωβ t and proceed by showing computability
of t. If the rewrite step takes place inside one of the si, then t is computable
by the induction hypothesis for the second component (note that f does not
increase). Otherwise, fα(s1, . . . , sk)→Hωβ t is a head step. We consider 4 of the
7 possibilities.

– Suppose that fω(s1, . . . , sm) →put f
p(s1, . . . , sm). (Note that in this case

α = ω.) Then t = fp(s1, . . . , sm) is computable by the induction hypothesis
for the third component, because the first two components of the triple do
not change, and ω > p for every natural number p.

– Suppose that fp+1(s1, . . . , sm) →copy g
ω(t1, . . . , tn). For every tj with j ∈

{1, . . . , n} we have either tj = fp(s1, . . . , sm) or tj = sk for some k ∈
{1, . . . ,m}. In the first case tj is computable by the induction hypothesis
on the third component. In the second case tj is computable by assumption.
Therefore (t1, . . . , tn) consists of computable terms. Now computability of
t = g(t1, . . . , tn) follows by the induction hypothesis on the first component.

– Suppose that fp+1(s1, . . . , sm)→mul f
ω(t1, . . . , ti−1, s

′
i, ti+1, . . . , tm). For ev-

ery j ∈ {1, . . . , i − 1, i + 1, . . . ,m} we have either si →put tj or tj = sj . In
the first case tj is computable by the assumption that si is computable
and Lemma 2(b). In the second case tj is computable by assumption. Fur-
ther, s′i is a put-reduct of si and hence computable by assumption and
Lemma 2(b). We conclude that (t1, . . . , ti−1, s

′
i, ti+1, . . . , tm) consists of com-

putable terms. Now computability of t = fω(t1, . . . , ti−1, s
′
i, ti+1, . . . , tm) fol-

lows by the induction hypothesis on the second component, because the mul-
tiset {{s1, . . . , sm}} is greater than the multiset {{t1, . . . , ti−1, s

′
i, ti+1, . . . , tm}}

in the multiset extension of →Hωβ .
– Suppose that fp+1(s1, . . . , sm)→appl @(t0, t1, . . . , tn). For every j ∈ {0, . . . , n}

we have either tj = fp(s1, . . . , sm) or tj = sk for some k ∈ {1, . . . ,m}. In
the first case, tj is computable by the induction hypothesis on the third
component of the triple. In the second case, tj is computable by assump-
tion. Now computability of t follows because by definition the application of
computable terms is computable.

From the complete case analysis follows that all one-step reducts of s are com-
putable. Hence by Lemma 2(c) the term s is computable. ut

We now show that all terms (possibly with labels) are computable, by showing
the stronger statement that the application of a computable substitution to an
arbitrary term yields a computable term. A substitution is said to be computable
if all terms in its range are computable. The proof of the following theorem
proceeds by induction on the definition of terms.

Theorem 2 (Computability of all terms). Let s : σ be an arbitrary term
over F ∪ Fω and let γ be a computable substitution. Then sγ is computable.

Because the empty substitution is computable, it follows from this theorem
that all terms over F ∪Fω are computable. By Lemma 2 it then follows that all
terms are strongly normalizing with respect to →Hωβ .

Theorem 3 (Termination). The rewriting relation →Hωβ is terminating on
the set of terms over F ∪ Fω.

This concludes the proof of Theorem 1.

6 HOIPO contains HORPO

The rewriting system H follows the definition of HORPO quite closely. In this
section we show that indeed HOIPO contains HORPO. We assume a set of func-
tion symbols F and work also with marked terms over F ∪ F∗.

Theorem 4. Let s and t be terms over F . If s � t then s→∗H t.

Proof. Assume s � t. We prove by induction on the structure of s and t that
there is some s′ such that s→put s

′ →∗H t. The induction hypothesis (IH) is: for
all q and r, if q is a subterm of s, or (q = s and r is a subterm of t), then q � r
implies q →put q

′ →∗H r (for some term q′). We consider all possible cases for
s � t.

(H1) We have s = f(s1, . . . , sm) and there is an i ∈ {1, . . . ,m} such that si � t.
If si � t then by the IH (first component) si →put s

′
i →∗H t. If si = t then

also si →∗H t. Hence in both cases s→put f
∗(s1, . . . , sm)→select si →∗H t.

(H2) We have s = f(s1, . . . , sm), t = g(t1, . . . , tn), f � g, and s �� {t1, . . . , tn}.
For every i ∈ {1, . . . , n} we have either s � ti or sj � ti for some j ∈
{1, . . . ,m}. In the first case we define li = f∗(s1, . . . , sm). In the second case
we define li = sj .
In the first case we have by the IH s→put s

′ →∗H ti. Because for this s′ (which
is a put-reduct of s) either s′ = f∗(s1, . . . , sm) or f∗(s1, . . . , sm)→lex/mul s

′,
this yields li = f∗(s1, . . . , sm)→∗H ti.
In the second case, if sj � ti for some j ∈ {1, . . . ,m}, we have by the IH
sj →put s

′
j →∗H ti. Hence we have li = sj →∗H ti (also if sj = ti).

Now we have s→put f
∗(s1, . . . , sm)→copy g(l1, . . . , ln)→∗H g(t1, . . . , tn).

(H3LEX) We have s = f(s1, . . . , sm) and t = f(t1, . . . , tm) with f ∈ FLEX, and
[s1, . . . , sm] �LEX [t1, . . . , tm] and s �� {t1, . . . , tm}.
There is an i ∈ {1, . . . ,m} such that s1 = t1, . . . , si−1 = ti−1, si � ti. More-
over, for every j ∈ {i+1, . . . ,m} we have either s � tj or sk � tj for some k.
By an analysis as in (H2) we can define for every j ∈ {i+ 1, . . . ,m} a term
lj such that lj →∗H tj . Because si � ti we have by the IH some term s′i such
that si →put s

′
i →∗H ti. Combining this yields s →put f

∗(s1, . . . , sm) →lex

f(s1, . . . , si−1, s
′
i, li+1, . . . , ln)→∗H f(s1, . . . , si−1, ti, ti+1, . . . , tn).

(H3MUL) We have s = f(s1, . . . , sm), t = f(t1, . . . , tm), f ∈ FMUL, and moreover
{{s1, . . . , sm}} �MUL {{t1, . . . , tm}}.
By definition of the multiset ordering, we can write {{s1, . . . , sm}} = A∪B∪
C, {{t1, . . . , tm}} = A ∪ D, for all ti ∈ D there is some sj ∈ B such that
sj � ti, and, since we are working with multisets of equal size, |B| ≥ 1.
Suppose |B| = 1; write A = {{si1 , . . . , sik}} = {{tj1 , . . . , tjk}}, B = {{sn}}.
Since sn > tx for all x /∈ {j1, . . . , jk} we can derive by the induction hypoth-
esis that for such x there is some s′n where sn →put s

′
n →∗H tx.

Now, let π be a permutation that maps each ix to jx; then always sπ−1jx =
tjx , and sπ−1(πn) > tπn (because πn is not one of the jx). So f(s1, . . . , sm)→put

f∗(s1, . . . , sm)→ord f
∗(sπ−11, . . . , sπ−1m)→mul f(r1, . . . , rm)→∗H f(t1, . . . , tm),

where ri = sπ−1i = ti if i is one of the jx, sn →put ri →∗H ti otherwise.

For the case |B| > 1, we observe that a comparison X >MUL Y can always
be decomposed into a sequence X = X1 ; X2 ; . . . ; Xn = Y where
each Xi ; Xi+1 is an atomic >MUL step as described above, and that →∗H
is transitive.

(H4) We have s = f(s1, . . . , sm), t = @(t1 : ρ1, . . . , tn : ρn) with n ≥ 2, and s ��
{t1, . . . , tn}. By an analysis as in (H2), we can define for every i ∈ {1, . . . , n}
a term li such that li →∗H ti. Note that ρ1 = ρ2 → . . .→ ρn → σ. Therefore,
s→put f

∗(s1, . . . , sm)→appl @(l1, . . . , ln)→∗H @(t1, . . . , tn).
(H5) We have s = @(s1, s2), t = @(t1, t2) and {{s1, s2}} �MUL {{t1, t2}}.

Because of the typing constraints either s1 � t1 and s2 = t2 or s1 � t1 and
s2 � t2. In the first case, we have by the IH s1 →put s

′
1 →∗H t1. Therefore,

s →put @(s′1, s2) →∗H t1s2 = t. In the second case, we have by the IH
s2 →put s

′
2 →∗H t2. Additionally, s1 →∗H t1, although this may be in 0 steps.

Therefore, s→put @(s1, s′2)→∗H @(s1, t2)→∗H @(t1, t2) = t.
(H6) We have s = λx : σ. s0, t = λx : σ. t0, and s0 � t0. By the IH, s0 →put

s′0 →∗H t0. Hence s = λx : σ. s0 →put λx : σ. s′0 →∗H λx : σ. t0 = t. ut

7 HORPO does not contain HOIPO

In this section we present a rewrite rule l→ r for which l �+ r in HORPO does
not hold, but for which we can prove l →+

Hβ r. This shows that HORPO does
not contain HOIPO; the crux is that postponing the choice for a smaller term
can sometimes be useful.

We consider the the following rewrite rule l → r, using function symbols
G,H : o→ o→ o and A,B : o and f : (o×o→ o)→ o (so f is the only function
symbol that takes arguments):

f(B, λz : o.@(G, z, z))→ @(G, f(B, λz : o.@(H, z, z)), f(A, λz : o.@(G, z, z)))

In addition assume that there are rewrite rules that enforce G�H and f�B�A.
We have l→+

Hβ r:

l = f(B, λz : o.@(G, z, z))
→put f∗(B, λz : o.@(G, z, z))
→appl @(λz : o.@(G, z, z), f∗(B, λz : o.@(G, z, z)))
→β @(G, f∗(B, λz : o.@(G, z, z)), f∗(B, λz : o.@(G, z, z)))
→lex @(G, f(B, λz : o.@(G∗, z, z)), f∗(B, λz : o.@(G, z, z)))
→lex @(G, f(B, λz : o.@(G∗, z, z)), f(B∗, λz : o.@(G, z, z)))
→copy @(G, f(B, λz : o.@(H, z, z)), f(B∗, λz : o.@(G, z, z)))
→copy @(G, f(B, λz : o.@(H, z, z)), f(A, λz : o.@(G, z, z))) = r

It is easy to see that l � r does not hold. But do we have l �+ r? We show
that this is not the case. Suppose that l �+ t for some term t. We can prove by
induction, first over the length of the �-sequence, second on the size of t, that t
must have one of the following forms:

(a) f(A, λz : o.@(L, z, z)) with L ∈ {G,H}

(b) f(B, λz : o.@(H, z, z))
(c) @(λz : o.@(L, z, z),K) with L ∈ {G,H} and l �+ K
(d) @(L,K1,K2) with L ∈ {G,H} and there exists some K such that l �+ K

and K �∗ K1,K �∗ K2.

The reason that there are so few possibilities is that A and H are minimal with
respect to �, and B,G only compare to A,H.

Now, r has form (d). So there has to be some K of one of the forms above such
that K �∗ K1,K �∗ K2. However, using induction we can see that whenever
s � t it can not hold that t contains f,G or B without s containing that symbol
too. So if K has form (a) it can not reduce to a term with B in it, form (b) will
not reduce to a term with G in it, and the last two forms will never reduce to a
term with G in it.

So we see that following the same idea as in the iterative version does
not work because there is no term t satisfying the following three conditions:
f(B, λz : o.@(G, z, z)) �∗ t, and t �∗ f(B, λz : o.@(H, z, z)), and t �∗ f(A, λz :
o.@(G, z, z)).

A similar phenomenon seems to occur when comparing HOIPO to the stronger
definition of � as given in [2]. The following system can be proven to be ter-
mination using HOIPO. However, it does not seem to have an easy termination
proof using � as defined in [2]. The system consists of the following rewrite
rules: {g(x, y, z) → f(f(x, z), z), f(x, z) → B,B → A, f(B, λx : o.g(x, x, z)) →
g(f(A, λx : o.g(x, x, z)), f(B, λx : o.B), z)} using the function symbols f :
(o× (o→ o))→ o, g : (o× o× (o→ o))→ o, B : o, and A : o.

Finally, note that the problem illustrated above is easily solved by adding a
pairing operator to the system which is smaller than the other function symbols.

8 Concluding remarks

We have defined an iterative version of HORPO as defined in [6]. Other, more
advanced, definitions of HORPO are given in [7,2]. We have on purpose chosen
for the definition from [6], because it is conceptually and technically very clear;
it even has been proof-checked in Coq [11]. Moreover, because it is the most
basic variant, it is the best starting point for an investigation to stronger order-
ings. In fact, the present definition of HOIPO already lead to some ideas about
strengthening the ordering, which will be developed in more detail.

Having said that, clearly the termination method provided by HOIPO is, just
as the one provided by HORPO, rather weak. For instance, it cannot be used
to prove termination of developments in the untyped λ-calculus, which can be
done in a higher-order iterative ordering in longer versions of [10], following [13].
Therefore, in further work we intend to consider extensions of HOIPO which may
or may not be defined as iterative definitions of more sophisticated variants of
HORPO. We then need to compare those extensions with the more sophisticated
versions of HORPO [7,2], as well as with the long version of [10].

One of the natural next steps is to extend HOIPO using the notion of com-
putable closure, to define iterative versions of HORPO for other frameworks of

higher-order rewriting (CRSs or HRSs) [14], or to replace the ordering on func-
tion symbols by interpretations on terms.

Acknowledgements. We are very grateful to the referees of an earlier version and
to the referees of LPAR 2008 for their remarks.

References

1. J. Bergstra and J.W. Klop. Algebra of communicating processes. Theoretical
Computer Science, 37(1):171–199, 1985.

2. F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: the
end of a quest. In Proceedings of CSL 2008, volume 5213 of LNCS, pages 1–14,
Bertinoro, Italy, September 2008. Springer-Verlag.

3. W. Buchholz. Proof-theoretic analysis of termination proofs. Annals of Pure and
Applied Logic, 75(1–2):57–65, 1995.

4. N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Sci-
ence, 17(3):279–301, 1982.

5. J.-P. Jouannaud and M. Okada. A computation model for executable higher-
order algebraic specification languages. In Proceedings of LICS’91, pages 350–361,
Amsterdam, The Netherlands, July 1991.

6. J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In
Proceedings of LICS ’99, pages 402–411, Trento, Italy, July 1999.

7. J.-P. Jouannaud and A. Rubio. Higher-order orderings for normal rewriting. In
Proceedings of RTA 2006, volume 4098 of LNCS, pages 387–399, Seattle, USA,
August 2006.

8. J.-P. Jouannaud and A. Rubio. Polymorphic higher-order recursive path orderings.
Journal of the ACM, 54(1):1–48, March 2007.

9. S. Kamin and J-J. Lévy. Two generalizations of the recursive path ordering. Uni-
versity of Illinois, 1980.

10. J.W. Klop, V. van Oostrom, and R. de Vrijer. Iterative lexicographic path order.
In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors, Essays dedicated to
Joseph A. Goguen on the occasion of his 65th birthday, volume 4060 of LNCS,
pages 541–554. Springer Verlag, 2006. Festschrift.

11. A. Koprowski. Coq formalization of the higher-order recursive path ordering. Tech-
nical Report CSR-06-21, Eindhoven University of Technology, August 2006.

12. T. Nipkow. Higher-order critical pairs. In Proceedings of LICS ’91, pages 342–349,
Amsterdam, The Netherlands, July 1991.

13. V. van Oostrom. Personal communication, 2008.
14. F. van Raamsdonk. On termination of higher-order rewriting. In A. Middeldorp,

editor, Proceedings of RTA 2001, volume 2051 of LNCS, pages 261–275, Utrecht,
The Netherlands, May 2001.

15. W.W. Tait. Intensional interpretations of functionals of finite type I. Journal of
Symbolic Logic, 32(2):198–212, 1967.

16. Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge, UK, 2003.

