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Political swingers re-revisited, part |

e Recall the political transisition matrix

e with some iterations:
P. 100 [ 95 p2. 100\ [ 915 p3. 100\ _ (89.05)
150/ = \ 155 150/ — \158.5 150/ = \160.95

e Does this converge to a stable lefty-righty division? If so,
what is a stable division?

831 831
e Check for yourself: P - 5= 3
1662 1662

H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations



Eigenvalues and Eigenvectors

Radboud University Nijmege

Political swingers re-revisited, part |l

e When do we have P - <X> = <X> ?
y y

e This involves:

0.8x+ 0.1y = x © (08—1)x+0.1y =0
02x+09y =y 02x—(09—-1)y =0

. —0.2x4+0.1y = 0 —2x+y =0 |
'e'{ 0.2x — 0.1y = 0 th“S{ x—y =0 PV

2x 2x

e We found it by solving (homogeneous) equations given by the

matrix:
b (0201 _ 4 (21
2= \02 —01) {2 —1

e Indeed, P - <X> = <X> Twice as many righties is stable!
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Eigenvector and eigenvalues

Definition

Assume an n X n matrix A.

An eigenvector for A is a non-null vector v # 0 for which there is
an eigenvalue A € R with:

A-v=)\ v

100\ . : 1 (81 o _
(200) is an eigenvector for P = 55 <2 9> with eigenvalue A = 1.

Matrix Calculations
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Two basic results

Lemma
An eigenvector has at most one eigenvalue

Proof: Assume A-v = \jv and A-v = \v. Then:
O=A-v—A-v=X\v—v= (A1 — )V
Since v # 0 we must have A\; — Ap = 0, and thus A1 = . =

Lemma
If v is an eigenvector, then so is av, for each a # 0.

Proof: If A-v = )\v, then:

A-(av) = a(A-v) since matrix application is linear
= a(Av) = (aA\)v = (Aa)v = A(av). -
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Finding eigenvectors and eigenvalues

e We seek a eigenvector v and eigenvalue A € R with A-v = \v

e Thatis: A and v (v # 0) such that (A—X-1)-v=0

e Thus, we seek A for which the system of equations
corresponding to the matrix A — X - | has a non-zero solution

e Hence we seek A € R for which the matrix A — X - | does not
have n pivots in its echelon form

e This means: we seek A € R such that A— X1l is
not-invertible

e So we need: det(A—X-1)=0
e This can be seen as an equation, with \ as variable

e This det(A — A - 1) is called the characteristic polynomial of
the matrix A
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Eigenvalue example |

e Task: find eigenvalues of matrix A = <

1

3
¢ Note: A—)vlz(é g)—(é 2\) :<13)\ 3E>\>
e Thus:
1-X 5

3 3=

<~ (1-XN)B-A)-5:3=0
— N -4\-12=0
— (A=-6)(A+2)=0
< A=6 or \=-2.

det(A—X-1)=0 <=
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Recall: abc-formula

Consider a second-degree (quadratic) equation

ax?+bx+c=0 (for a #0)

Its solutions are:

—b++/b? —4ac
2a

S12 =

These solutions coincide (ie. s; = sp) if b> —4ac =0

Real solutions do not exist if b2 — 4ac < 0

(But “complex number” solutions do exist in this case.)

[ Recall, if s; and sp are solutions of ax? + bx 4+ ¢ = 0, then
we can write ax? 4+ bx + ¢ = a(x — s1)(x — $3) ]
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Higher degree polynomial equations

For third and fourth degree polynomial equations there are
(complicated) formulas for the solutions.

For degree > 5 no such formulas exist (proved by Abel)

In those cases one can at most use approximations.

In the examples in this course the solutions will typically be
“obvious”.
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Eigenvalue example Il

3 -1 -1
e Task: find eigenvaluesof A= | —-12 0 5
4 -2 -1
3—-\ -1 -1
e Characteristic polynomial is —12 =X 5
4 -2 —1-)
-2 5 -1 -1 -1 -1
= (3=2)\ 12 4
( ) -2 —-1-2X * -2 —-1-2A + -2 5

= (3= N(A1+2)+10) +12(1+A-2) +4( -5
= (B3=A)(A\2+A+10) +12(A — 1) — 20 — 4X

= 3A%2 4+ 30430 — A3 — A\ — 10\ + 12\ — 12 — 20 — 4\
= A 222 A2
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Eigenvalue example Il (cntd)

We need to solve —A3 +2)\2 4+ X —2=0
We try a few “obvious” values: \ =1 YES!

Reduce from degree 3 to 2, by separating (A — 1) in:

A3 20240 =2 = (A —1)(aN?> 4+ bA +©)
= a4+ (b—a) N+ (c—b)A—c

This works fora=—1, b=1,c =2
e Now we use “abc” for the equation —A\2 +\+2 =0

-1+y1+4-2 -1+3
) 2

Solutions: \ =

giving A =2, —1

All three eigenvalues: A =1, A= -1 A=2
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Getting eigenvectors

e Once we have eigenvalues \; for a matrix A we can find
corresponding eigenvectors v;, with A - v; = \;v;
e These v; appear as the solutions of (A —\;-1)-v=0
e We can make a convenient choice, using that scalar
multiplications a - v; are also a solution

e We use standard techniges for solving such equations.
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Eigenvector example |

w =
w o1

Recall the eigenvalues A = -2, A =6 for A =

— . . _(1+2 5 (35
gives matrix A — Al = < 3 3+2> = (3 5)
e Corresponding system of equations { giigi i 8
e Solution choice x = =5,y = 3, so (=5, 3) is eigenvector
(of matrix A with eigenvalue A = —2)

e Check:
15\ (=5 _(-5+15\ _(10) _ , (-5 \/
33 3) \-15+9) \-6/ 3

Matrix Calculations
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Eigenvector example | (cntd)

. . 1-6 5 -5 5
glvesmatrle—)\l—< 3 3—6> _<3 _3)

—5x+5y =0
3x—-3y =0

e Solution choice x =1,y =1, so (1,1) is eigenvector
(of matrix A with eigenvalue A = 6)

e Check:

()0 -6 -0 ¥

e Corresponding system of equations {
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Eigenvector independence theorem |

Theorem

Let A be an n x n matrix, represented wrt. a basis B. Assume A
has n (pairwise) different eigenvalues A1, ..., \,, with
corresponding eigenvectors C = {vi,...,v,}. Then:

@ These vi,...,v, are linearly independent (and thus a basis)

® There is an invertible “basis transformation” matrix Te—p
giving a diagonalisation:

A0 0

O )\2 O —1
A=Teop- ; o | (Te=n)

0 -« 0 A,

Thus, this diagonal matrix is the representation of A wrt. the
eigenvector basis C.
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Eigenvector independence theorem I

We specialize the theorem by taking S to be the standard basis.

Theorem

Let A be n X n matrix, represented wrt. the standard basis of R".
Assume A has n (pairwise) different eigenvalues A1, ..., \,, with
corresponding eigenvectors C = {vi,...,v,}. Then:

@ These vy, ...,v, are linearly independent (and thus a basis)

® The vectors vy,...,Vv, are the columns of the invertible “basis
transformation” matrix T¢e—gs

© This gives a diagonalisation of A:

A 0 0

0 )\2 O -1
A=Teos @ (Te=s)

0 0 A,
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Multiple eigenvalues

e It may happen that a particular eigenvalue occurs multiple
times for a matrix

e eg. the charachterstic polynomial of ((1) ?) has A = 1 twice

as a zero.
o for this A = 1 there are two independent eigenvectors, namely

(o) (3)
e In general, if an eigenvalue A occurs n times, then there are at
most n independent eigenvectors for this A
e this number of independent eigenvectors for A is called the the
geometric multiplicity for A
e it is the dimension of the eigenspace associated with .

e this is not a further topic of this course; in our examples,
eigenvalues have unique eigenvectors
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Where are eigenvalues/vectors used?

e In principal component analysis in statistics (implemented in SPSS)

e generalisation of mean value and covariance to
multi-dimensional data analysis

e eigenvalues of covariance matrix reveal key characteristics

o sketched in LNBS, but skipped here
(a brief explanation without statistical setting is useless)

o applied in speech recognition, data compression, data mining

e In quantum mechanics/computation

o eigenvalues/vectors represent the special states that appear in
measurements
e cool topic, but also skipped here

e In (probabilistic) transition systems (Markov chains)

o illustrated already in political swingers example
e another illustration (car rental) will be elaborated
(copied from: Johnson, Dean Riess, Arnold: Linear Algebra)
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Political swingers re-re-revisited, part |

e Recall the political transisition matrix
p_ (0801 _, (81
0.2 0.9 10129
e Eigenvalues )\ are obtained via det(P — A1) = 0:
(5N~ f=2 -t =0
e Solutions via "abc”

L+ V) -%)

OHence)\:%-%zlor/\:é%:%.
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Political swingers re-re-revisited, part |l

— [ -02x+01ly =0 . .
solve: { 0.2x+—01y = 0 giving (1,2) as eigenvector
0.8 0.1 1\ [08+02\ /1) /1
 Indeed <0.2 0.9> ' <2) - <0.2~|—1.8> - (2) =1 <2> v

— {01x+01y = - .
solve: {0.2x+0.2y _ giving (1, —1) as eigenvector

e Check:

(55 03)- (1) = (az0s) = (57) =07 () v

o o
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Political swingers re-re-revisited, part Il

e The eigenvalues 1 and 0.7 are different, and indeed the
eigenvectors (1,2) and (1, —1) are independent

e The coordinate-translation T¢_.s from the eigenvector basis
C ={(1,2),(1,—1)} to the standard basis S = {(1,0),(0,1)}
consists of the eigenvectors:

11

e In the reverse direction:

o -1 1 -1 -1 1 1 1
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Political swingers re-re-revisited, part IV

We explicitly check the diagonalisation equation:
10 11 10 (11
Te=s - Ts=c = . "3
0 0.7 2 -1 0 0.7 2 -1
1 1 07 11
*\2 07 2 —1
1 2.4 0.3
*\0.6 2.7
B 0.8 0.1
0.2 0.9

= P, the original political transition matrix!
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Political swingers re-re-revisited, part V

10
0 0.7

0 . 10 .
0.7)'T 'T'<o 0.7>'T

This diagonalisation P =T - < ) - T~ is useful for iteration

.P2:T

e |im P" =

n—o0 n—oo

) =:(2)

N———
W=
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Political swingers re-re-revisited, part VI

e In an earlier lecture we wondered how to compute P" - <1(5)8>

e We can now see that in the limit it goes to:
100 11 100
i n., -1 .
Am, P <150> 3 <2 2> (150)
_ 1250\ _ (833
3\ 500 1665
(This was already suggested earlier, but now we can calculate it!)

Recall the useful limit result

lim a" =0, for|a] <1.

n—o0
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Rental car returns, part |

e Assume a car rental company with three locations, for picking
up and returning cars, written as P, Q, R

e The weekly distribution history shows:

Location P | 60% stay at P | 10% goto @ | 30% go to R

Location Q | 10% goto P | 80% stay at @ | 10% go to R

Location R | 10% goto P | 20% go to @ | 70% stay at R
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Rental car returns, part |l

Two possible representations of these return distributions

@ As probabilistic transition system

0.6 0.1 0.8
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Rental car returns, part Il

® As a transition matrix

0.6 0.1 0.1 611
A=1010802| =182
0.3 0.1 0.7 317

This matrix A describes what is called a Markov chain:

e all entries are in the unit interval [0, 1] of probabilities
e in each column, the entries add up to 1

H. Geuvers (and A. Kissinger)
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Rental car returns, part IV

Task:

e Start from the following division of cars:

P 200
R 200

e Determine the division of cars after two weeks

e Determine the equilibrium division, reached as the number of
weeks goes to infinity
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Rental car returns, part V

e After one week we have:

200 611 200
A-[200| = {5 (182]- (200
200 317 200

1200 + 200 + 200 160

= 5| 200+ 1600 +400 | = | 220

600 + 200 + 1400 220

o After two weeks we have:

160 611 160
A-[220| = {5 (182] (220
220 317 220

960 + 220 + 220 140

= 55| 160+ 1760 + 440 | = (236

480 + 220 + 1540 224
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Rental car returns, part VI

e For the equilibrium we first compute eigenvalues and
eigenvectors of the transition matrix A

e The characteristic polynomial is:

06— 0.1 0.1 1 6 — 10X 1 1
0.1 08-X 0.2 = 1000 1 8 — 10X 2
0.3 0.1 07-2A 3 1 7 — 10X

~ a5 | (6 — 100) (8 — 100)(7 — 101) - 2)
~1((7-100) - 1) +3(2 - 1(3 - 10))]

_ 1T 3 )
~ a5 | — 1000X° + 21002 1400 + 300)

= A3+ 21X 1.4)\+023.
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Rental car returns, part VII

Next we solve —\3 +2.1\2 — 1.4\ + 0.3 = 0.

We seek a trivial solution; again A = 1 works!

Now we can write

A3 42102 - 140403 = (A —1)(=A2>+1.1A - 0.3)

e We can apply the “abc” formula to the second part:

—1.14+4/(1.1)2—4.03  _11+4/121-12
) - —2

_ —=11+v0.01
- -2

— —L1.1£01
- -2

e This yields additional eigenvalues: A = 0.5 and A = 0.6.
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Rental car returns, part VIII

has eigenvector (4,9,7); indeed:

4 611\ (4 244+9+7 4
A-[o) =F1182)- |9 =% (4+72+14) =109
7 317) \7 1249+ 49 7

has eigenvector (0, —1,1):

0 611 0 -1+1 0
Al-1| =5 182] (-1 =% |-8+2] =06[-1
1 317 1 ~1+7 1
has eigenvector (—1,—1,2):
-1 611\ /-1 —6-1+2 -1
Al-1| =4(182]|-1] =% -1-8+4] =05(-1
2 317 2 ~3-1+14 2
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Applications of Eigenvalues and Eigenvectors

Rental car returns, part IX

e Now: eigenvector base C = {(4,9,7),(0,—-1,1),(—1,-1,2)}
and standard base as S = {(1,0,0),(0,1,0),(0,0,1)}.
e Then we can do change-of-coordinates back-and-forth:

4 0 -1 1 1 1
Tees = |9 -1 -1 Tsec = 55| 25 —155
71 2 -16 4 4

e These translation matrices yield a diagonalisation:

10 O
A=Tees- (006 0 | Ts=c
0 0 05
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Rental car returns, part X

e Thus:
1" 0 0
nli—>n;oAn = nli—>n;oTC§$. 0 (06)" 0 'TS:s(,’
0 0 (05)"
100 444
= Teos 000 Tsoe = 5999
000 777

e Finally, the equilibrium starting from P = Q@ = R = 200 is:

4.4 4\ (200 120
% (999] (200 = [270
777) \200 210
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