Matrix Calculations Assignment 1, Wednesday, September 5, 2018

Exercise teachers. Recall the following split-up of students:

teacher	email	lecture room
Justin Reniers	j.reniers@student.ru.nl	E2.68 (E2.62 on 12 Oct)
Justin Hende	J.Hende@gmail.com	HG00.062
Iris Delhez	iam.delhez@student.ru.nl	HG00.108
Stefan Boneschanscher	S.Boneschanscher@student.ru.nl	HG01.028
Serena Rietbergen	serena.rietbergen@student.ru.nl	HG02.028
Jen Dusseljee	j.dusseljee@student.ru.nl	HFML0220

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 1'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-1.pdf)
 - your name and student number are included in the document (since they will be printed)

Deadline: Tuesday, September 11, 16:00 sharp!

Goals: After completing these exercises successfully you should be able to solve simple systems of equations and perform Gauss-elimination. The total number of points is 20.

Task: For each system of equations: (a) write down the coefficient matrix, (b) write the augmented matrix, (c) trasform the matrix into Echelon form, and (d) give at least one solution. Explain briefly how you proceed.

1. (5 points)	$\begin{array}{rcl} 4x + 4y &=& 8\\ 5x - 5y &=& 10 \end{array}$
2. (5 points)	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
3. (5 points)	2x + y + 2v + w = 1 4x + 4y + 6v + w = 2 6x + y + 4v + 5w = 4 2x + 3y + 5v + w = 4

4. (5 points)

$x_1 + 2x_2 + 3x_3$	=	0
$4x_1 + 5x_2 + 6x_3$	=	0
$3x_1 + 3x_2 + 3x_3$	=	0
$6x_1 + 9x_2 + 12x_3$	=	0