Matrix Calculations
 Assignment 2, Wednesday, September 12, 2018

Exercise teachers. Recall the following split-up of students:

teacher	email	lecture room
Justin Reniers	j.reniers@student.ru.nl	E2.68 (E2.62 on 12 Oct)
Justin Hende	J.Hende@gmail.com	HG00.062
Iris Delhez	iam.delhez@student.ru.nl	HG00.108
Stefan Boneschanscher	S.Boneschanscher@student.ru.nl	HG01.028
Serena Rietbergen	serena.rietbergen@student.ru.nl	HG02.028
Jen Dusseljee	j.dusseljee@student.ru.nl	HFML0220

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:

- your name and student number are written clearly on the document.

2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 2'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:

- the file is a PDF document that is well readable
- your name is part of the filename (for example MyName_assignment-2.pdf)
- your name and student number are included in the document (since they will be printed)

Deadline: Tuesday, September 18, 16:00 sharp!
Goals: After completing these exercises successfully you should be able to determine whether a set of vectors is linearly independent and whether a system of equations has zero, one, or many solutions. For homogeneous systems, you should be able to compute what its general solutions are. The total number of points is 20 .

1. (5 points)

Find the values of the parameter a and b such that the following system of linear equations:
(i) has a unique solution,
(ii) is inconsistent,
(iii) has more than one solution.

$$
\begin{aligned}
x_{1}+x_{2}+a x_{3} & =2 \\
2 x_{1}+x_{2}+(2 a+1) x_{3} & =5 \\
3 x_{1}+(a-1) x_{2}+2 x_{3} & =b+2
\end{aligned}
$$

Hint: Perform Gaussian elimination where you keep parameter a and b in the matrix.
2. (5 points) Check if the following vectors are linearly dependent/independent. Explain your answers:

$$
\text { (i) }\left(\left(\begin{array}{l}
5 \\
0 \\
3 \\
4
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
4 \\
3
\end{array}\right),\left(\begin{array}{l}
3 \\
4 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
3 \\
1
\end{array}\right)\right) \quad \text { (ii) }\left(\left(\begin{array}{l}
1 \\
5 \\
4
\end{array}\right),\left(\begin{array}{l}
6 \\
0 \\
3
\end{array}\right),\left(\begin{array}{c}
-14 \\
20 \\
7
\end{array}\right)\right)
$$

3. (5 points) A homogeneous system of linear equations is given:

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0 \\
2 x_{1}+4 x_{2}+8 x_{3}+10 x_{4}=0 \\
3 x_{1}+6 x_{2}+11 x_{3}+17 x_{4}=0
\end{array}
$$

(i) Perform Gauss elimination on the associated coefficient matrix to obtain an echelon form.
(ii) Compute basic solution(s).
(iii) Give the general solution in the format $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c_{1} \cdot \boldsymbol{v}_{1}+\ldots+c_{p} \cdot \boldsymbol{v}_{p}$, where $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}$ are the basic solution(s) that you've found under (ii).
4. (0 points) Extra exercise, for those interested

Prove that the set of solutions of a homogeneous system of linear equations is closed under scalar multiplication.
That is, show that if $\left(s_{1}, \ldots, s_{n}\right)$ is a solution of a homogeneous system of linear equations, then $c \cdot\left(s_{1}, \ldots, s_{n}\right)$ is also a solution (for any c).

