Matrix Calculations

Assignment 7, Wednesday, October 17, 2018

Exercise teachers. Recall the following split-up of students:

teacher	email	lecture room
Justin Reniers	j.reniers@student.ru.nl	HG00.622 on 19 Oct
Justin Hende	J.Hende@gmail.com	HG00.062
Iris Delhez	iam.delhez@student.ru.nl	HG00.108
Stefan Boneschanscher	S.Boneschanscher@student.ru.nl	HG01.028
Serena Rietbergen	serena.rietbergen@student.ru.nl	HG02.028
Jen Dusseljee	j.dusseljee@student.ru.nl	HFML0220

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:

- your name and student number are written clearly on the document.

2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 7'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:

- the file is a PDF document that is well readable
- your name is part of the filename (for example MyName_assignment-7.pdf)
- your name and student number are included in the document (since they will be printed)

Deadline: Tuesday, October 23, 16:00 sharp!
Goals: After completing these exercises, you should be able to compute eigenvalues, eigenvectors, the diagonalisation of a matrix, and various geometric properties of vectors involving inner products.

1. (8 points) Recall from last time that the matrix:

$$
\boldsymbol{A}=\left(\begin{array}{cc}
2 & -2 \\
-\frac{1}{2} & 2
\end{array}\right)
$$

has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=3$.
(a) Compute the associated eigenvectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2}.
(b) Diagonalise \boldsymbol{A}. That is, find basis transformation matrices $\boldsymbol{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$ and $\boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}$ and a diagonal matrix \boldsymbol{D} such that:

$$
A=T_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot D \cdot \boldsymbol{T}_{\mathcal{S} \Rightarrow \mathcal{B}}
$$

(c) Compute \boldsymbol{A}^{5} and $\sqrt{\boldsymbol{A}}$ using the diagonalisation of \boldsymbol{A}. (n.b. for $\sqrt{\boldsymbol{A}}$, expressions involving square roots in the matrix, like ' $\frac{1}{2}+2 \sqrt{2}$ ' are okay.)
2. (6 points) Consider the following "student transition matrix", denoting the fraction of RU students that will stay at / leave the RU and the fraction of non-RU students that will come to / not come to the RU:

$$
\boldsymbol{S}=\left(\begin{array}{cc}
0.7 & 0.1 \\
0.3 & 0.9
\end{array}\right)
$$

(a) Find eigenvalues and eigenvectors of \boldsymbol{S}.
(b) Diagonalise \boldsymbol{S}.
(c) Compute $\lim _{n \rightarrow \infty} \boldsymbol{S}^{n}$.
3. (6 points)

Consider vectors:

$$
\boldsymbol{u}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \quad \boldsymbol{v}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad \boldsymbol{w}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

compute the following quantities:
(a) Inner products: $\langle\boldsymbol{u}, \boldsymbol{u}\rangle,\langle\boldsymbol{v}, \boldsymbol{v}\rangle,\langle\boldsymbol{w}, \boldsymbol{w}\rangle,\langle\boldsymbol{u}, \boldsymbol{v}\rangle,\langle\boldsymbol{v}, \boldsymbol{w}\rangle$, and $\langle\boldsymbol{u}, \boldsymbol{w}\rangle$.
(b) Norms: $\|\boldsymbol{u}\|,\|\boldsymbol{v}\|,\|\boldsymbol{w}\|$
(c) Distances: $d(\boldsymbol{u}, \boldsymbol{v}), d(\boldsymbol{v}, \boldsymbol{w})$
(d) Normalised vector: $\boldsymbol{u}^{\prime}=\frac{1}{\|\boldsymbol{u}\|} \boldsymbol{u}$. Show that $\left\|\boldsymbol{u}^{\prime}\right\|=1$.
(e) Which pairs of vectors (if any) are orthogonal?

