Matrix Calculations Assignment 7, Wednesday, October 17, 2018

teacher	email	lecture room
Justin Reniers	j.reniers@student.ru.nl	HG00.622 on 19 Oct
Justin Hende	J.Hende@gmail.com	HG00.062
Iris Delhez	iam.delhez@student.ru.nl	HG00.108
Stefan Boneschanscher	S.Boneschanscher@student.ru.nl	HG01.028
Serena Rietbergen	serena.rietbergen@student.ru.nl	HG02.028
Jen Dusseljee	j.dusseljee@student.ru.nl	HFML0220

Exercise teachers. Recall the following split-up of students:

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options, depending on your exercise class teacher:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (if your teacher agrees): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 7'. This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-7.pdf)
 - your name and student number are included in the document (since they will be printed)

Deadline: Tuesday, October 23, 16:00 sharp!

Goals: After completing these exercises, you should be able to compute eigenvalues, eigenvectors, the diagonalisation of a matrix, and various geometric properties of vectors involving inner products.

1. (8 points) Recall from last time that the matrix:

$$\boldsymbol{A} = \begin{pmatrix} 2 & -2 \\ -\frac{1}{2} & 2 \end{pmatrix}$$

has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 3$.

- (a) Compute the associated eigenvectors v_1 and v_2 .
- (b) Diagonalise A. That is, find basis transformation matrices $T_{\mathcal{B}\Rightarrow\mathcal{S}}$ and $T_{\mathcal{S}\Rightarrow\mathcal{B}}$ and a diagonal matrix D such that:

$$A = T_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot D \cdot T_{\mathcal{S} \Rightarrow \mathcal{B}}$$

(c) Compute A^5 and \sqrt{A} using the diagonalisation of A. (n.b. for \sqrt{A} , expressions involving square roots in the matrix, like $\frac{1}{2} + 2\sqrt{2}$ are okay.)

2. (6 points) Consider the following "student transition matrix", denoting the fraction of RU students that will stay at / leave the RU and the fraction of non-RU students that will come to / not come to the RU:

$$oldsymbol{S} = egin{pmatrix} 0.7 & 0.1 \ 0.3 & 0.9 \end{pmatrix}$$

- (a) Find eigenvalues and eigenvectors of \boldsymbol{S} .
- (b) Diagonalise S.
- (c) Compute $\lim_{n\to\infty} S^n$.
- 3. (6 points)

Consider vectors:

$$\boldsymbol{u} = \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}$$
 $\boldsymbol{v} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$ $\boldsymbol{w} = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$

compute the following quantities:

- (a) Inner products: $\langle \boldsymbol{u}, \boldsymbol{u} \rangle$, $\langle \boldsymbol{v}, \boldsymbol{v} \rangle$, $\langle \boldsymbol{w}, \boldsymbol{w} \rangle$, $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$, $\langle \boldsymbol{v}, \boldsymbol{w} \rangle$, and $\langle \boldsymbol{u}, \boldsymbol{w} \rangle$.
- (b) Norms: ||u||, ||v||, ||w||
- (c) Distances: $d(\boldsymbol{u}, \boldsymbol{v}), d(\boldsymbol{v}, \boldsymbol{w})$
- (d) Normalised vector: $\boldsymbol{u}' = \frac{1}{\|\boldsymbol{u}\|} \boldsymbol{u}$. Show that $\|\boldsymbol{u}'\| = 1$.
- (e) Which pairs of vectors (if any) are orthogonal?