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Solutions and solvability

Radboud University Nijmegen

Solutions

When we look for solutions to a system, there are 3 possibilities:

@ A system of equations has a single, unique solution, e.g.

x1+x =3
X1 — Xp = 1

(unique solution: x3 = 2,x = 1)
® A system has many solutions, e.g.

x1—2x =1
—2x1 +4xy = —2

(we have a solution whenever: x; = 1+ 2xp)
©® A system has no solutions.

3x1 —2x% =1
6X1—4X2 =06

(the transformation E; := Ep, — 2E; yields 0 = 4.)
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Solutions and solvability
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Solutions, geometrically

Consider systems of only two variables x, y. A linear equation
ax + by = c then describes a line in the plane.
For 2 such equations/lines, there are three possibilities:

@ the lines intersect in a unique point, which is the solution to
both equations

@ the lines are parallel, in which case there are no joint solutions

© the lines coincide, giving many joint solutions.
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Solutions and solvability
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Echelon form

We can tell the difference in these 3 cases by writing the
augmented matrix and tranforming to Echelon form.

Recall: A matrix is in Echelon form if:
@ All of the rows with pivots occur before zero rows, and

® Pivots always occur to the right of previous pivots

32 5 —5]1
0 0[2] 1]-2
000 [2]2
000 0/0

A. Kissinger Version: autumn 2018 Matrix Calculation



Solutions and solvability
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(In)consistent systems

A system of equations is consistent (oplosbaar) if it has one or
more solutions. Otherwise, when there are no solutions, the system
is called inconsistent

Thus, for a system of equations:

nr. of solutions | terminology
0 inconsistent

>1
(one or many)

consistent
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Solutions and solvability
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Inconsistency and echelon forms

A system of equations is inconsistent (non-solvable) if and only if
in the echelon form of its augmented matrix there is a row with:

® only zeros before the bar |
® anon

asin: 00 --- 0| c, where c # 0.

Example
3X172X2 =1 . (3-2]1\ . (3-21
6x, —4xp = 6 © 6 —4|6 0 0|4

(using the transformation R, := R, — 2R;)
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Unique solutions

Theorem

A system of equations in n variables has a unique solution if and
only if in its Echelon form there are n pivots.

Proof. (n pivots = unique soln., on board)

In summary: A system with n variables has an augmented matrix with n
columns before the line. Its Echelon form has n pivots, so there must be
exactly one pivot in each column. The last pivot uniquely fixes x,. Then,
since x, is fixed, the second to last pivot uniquely fixes x,_; and so on.

A. Kissinger Version: autumn 2018 Matrix Calculation



Solutions and solvability
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Unique solutions: earlier example

equations matrix
2x0+x3 = —2 02 1/|-2
3X1 + 5X2 — 5X3 =1 35 -5|1
2x1 +4xp — 2x3 = 2 24 -2|2

After various transformations leads to
x1+2x —1xz3 = 1 12 -1|1 Echel
‘ot 263 = 2 01 2|2
x3 = 2 00 1 [2)\0m

There are 3 variables and 3 pivots, so there is one unique solution.
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Solutions and solvability
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Unique solutions

So, when there are n pivots, there is 1 solution, and life is good.

Question: What if there are more solutions? Can we describe them
in a generic way?
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A new tool: vectors

® A vector is a list of numbers.
e We can write it like this: (x1,x2,...,Xs)

® __.or as a matrix with just one column:

X1
X2

Xn

(which is sometimes called a ‘column vector').
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A new tool: vectors

® Vectors are useful for lots of stuff. In this lecture, we'll use
them to hold solutions.

® Since variable names don't matter, we can write this:

x1:=2 x:=-1 x3:=0

® ...more compactly as this:

e _..or even more compactly as this: (2,—1,0).
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Linear combinations

® We can multiply a vector by a number to get a new vector:

X1 CX1

X2 CX2
C- =

Xn CXn

This is called scalar multiplication.
® __.and we can add vectors together:

X1 1 X1+ w

X2 Y2 X2 + y2
A I = .

Xn Yn Xn + Yn

as long as the are the same length.
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Linear combinations

Mixing these two things together gives us a linear combination of

vectors:
X1 )41 cx1+dys + ...
X2 Y2 oo+ dys+ ...
c-| . |+d-| . |+... = ,
Xn Yn CXn+dyn+ ...
A set of vectors vi, v, ..., v is called linearly independent if no

vector can be written as a linear combination of the others.
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Vectors and linear combinations
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Linear independence

® These vectors:

o=(o) ==() ==

are NOT linearly independent, because v3 = vi + v».
® These vectors:

1 1 0
vy = 2 Vo) = 0 V3 = 1
3 1 1

are NOT linearly independent, because vi = vo +2 - v3.
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Linear independence

® These vectors:

1 0 0
Vi = 0 Vo) = 1 V3 = 0
0 0 1

are linearly independent. There is no way to write any of them
in terms of each other.

® These vectors:

1 0 0
vi=10 vo=|[1 v3 =12
0 0 2

are linearly independent. There is no way to write any of them
in terms of each other.
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Linear independence

® These vectors:

1 2 0
v, = 2 Vo) = -1 V3 = 5
3 4 2
are... 777

® ‘Eyeballing’ vectors works sometimes, but we need a better
way of checking linear independence!
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Checking linear independence

Vectors vi, ..., v, are linearly independent if and only if, for all
numbers a1, ...,a, € R one has:
ay-vi+---+a,-v,=0 implies ay=a=---=a,=0

Example
The 3 vectors (1,0,0),(0,1,0),(0,0,1) are linearly independent,
since if

a;-(1,0,0)+ a2 - (0,1,0) + a3 - (0,0,1) = (0,0,0)
then, using the computation from the previous slide,

(a1,a2,a3) =(0,0,0), sothat a;=ar=a3=0
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Checking linear independence

Vectors vi, ..., v, are linearly independent if and only if, for all
numbers ai, ..., a, € R one has:

ay-vi+---+a,-v,=0 implies ay=a=---=a,=0
Proof. Another way to say the theorem is vy, ..., v, are linearly

dependent if and only if:
ag-vita-vot+---+a,- v, =0
where some a; are non-zero. If this is true and a; # 0, then:
vi = (—a2/a1) - va+ ...+ (—an/a1) - vp

The vectors are dependent (also works for any other non-zero aj).
Exercise: prove the other direction.
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Proving (in)dependence via equation solving |

1 2 0
® Investigate (in)dependence of {2 |, [ =1 ], and |5
3 4 2
® Thus we ask: are there any non-zero ai, ap, a3 € R with:
1 2 0 0
a2l +a|-1]+a3|5] =10
3 4 2 0

® |f there is a non-zero solution, the vectors are dependent, and
if a1 = a» = a3 = 0 is the only solution, they are independent
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Vectors and linear combinations
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Proving (in)dependence via equation solving Il

e Qur question involves the systems of equations / matrix:

ai+2a =0 1 20
2a; —ap+5a3 = 0 corresponding to 0 -11
3a1 +4ay+2a3 = 0 0 0O

(in Echelon form)

® This has only 2 pivots, so multiple solutions. In particular, it
has non-zero solutions, for example: a3 =2,ap = —1,a3 = —1

(compute and check for yourself!)

® Thus the original vectors are dependent. Explicitly:

1 2 0 0
2(2)+(-1)|-1]+(-1)|5|= {0
3 4 2 0
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Proving (in)dependence via equation solving Il

1 -2 1
e Same (in)dependence question for: [ 2 |, [ 1 |, [ -1
-3 1 -2
® With corresponding matrix:
1 -2 1 50 -1
2 1 -1 reducing to 05 -3
-3 1 =2 00 —4

® Thus the only solution is a; = ap = a3 = 0. The vectors are
independent!
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Linear independence: summary

To check linear independence of vy, vo,..., v,:
@ Write the vectors as the columns of a matrix

® Convert to Echelon form

© Count the pivots

® (# pivots) = (# columns) means independent
® (# pivots) < (# columns) means dependent

® Non-zero solutions show linear dependence explicitly, e.g.

vi—2vo +v3=0 — vi=2v; — v3
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Homogeneous systems

General solutions

The Goal:

® Describe the space of solutions of a system of equations.

® In general, there can be infinitely many solutions, but only a
few are actually ‘different enough’ to matter. These are called
basic solutions.

® Using the basic solutions, we can write down a formula which
gives us any solution: the general solution.

Example (General solution for one equation)
2x1 —xp = 3 gives xp =2x3 — 3

So a general solution (for any c) is:

X1 :=¢C Xy :=2c—3
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Homogeneous systems

Linear combinations of solutions

® |t is not the case in general that linear combinations of
solutions give solutions. For example, consider:

xX1+2x+x3=0 o <12100>
X0+ X4 =2 01012

® This has as solutions:

-2 -1 -3
2 1 3
vy = 5 SV = 1 but not vi+wv, = _3 ,3 v, ...

0 1 1

® The problem is this system of equations is not homogeneous,
because the the 2 on the right-hand-side (RHS) of the second
equation.
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Homogeneous systems

Homogeneous systems of equations

A system of equations is called homogeneous if it has zeros on the
RHS of every equation. Otherwise it is called non-homogeneous.

® We can always squash a non-homogeneous system to a
homogeneous one:

02 1/]-2 021
3551 ~ 35 -5
00 —2]2 00 -2

® The solutions will change!

® _.but they are still related. We'll see how that works soon.
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Homogeneous systems

Zero solution, in homogeneous case

Lemma

Each homogeneous equation has (0, ..., 0) as solution.

Proof: A homogeneous system looks like this

aiixy+ -+ awx, = 0

amx1+ -+ amnxn = 0
Consider the equation at row i/:
ainxy+ -+ ainxp =0
Clearly it has as solution x;y = xp = --- = x, = 0.

This holds for each row i.

Matrix Calculation
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Homogeneous systems

Linear combinations of solutions

The set of solutions of a homogeneous system is closed under linear
combinations (i.e. addition and scalar multiplication of vectors).

...which means:

e if (s1,5,...,50) and (t1, t2, ..., t,) are solutions, then so is:
(s1+t1,S2+ t2,...,Sp+ tp), and
L (51,52,.

..,5p) is a solution, then so is (c-s1,¢-S,...,C"Sp)
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Homogeneous systems

Example

3x14+2x0 —x3 = 0
X1 — Xo = 0

Consider the homogeneous system {

A solution is x; = 1,x» = 1, x3 = 5, written as vector
(X17X27X3) = (17 17 5)
Another solution is (2,2, 10)

Addition yields another solution:

(1,1,5) +(2,2,10) = (1+2,1+2,1045) = (3,3,15).

Scalar multiplication also gives solutions:
~1-(1,1,5) = (-1-1,-1-1,-1-5) = (-
100-(2,2,10) = (100-2,100-2,100-10) =
c-(1,1,5) = (c-1,c-1,¢-5) = (c,¢c,5¢c
(is a solution for every c)

1,-1,-5)
(200, 200, 1000)
)
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Homogeneous systems

Proof of closure under addition

® Consider an equation aijx; + -+ apx, =0
e Assume two solutions (si,...,s,) and (t1,..., ty)

® Then (s1 + t1,...,5, + tg) is also a solution since:
ai(sy+ t1) +- -+ an(sn + tn)
= |ais1 + altl) + -+ (ansn + antn>
= |a1s1 +~-+an5n> + <81f1 +~-+anfn)

=0+0 since the s; and t; are solutions
= 0.

® Exercise: do a similar proof of closure under scalar
multiplication
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Homogeneous systems

General solution of a homogeneous system

Every solution to a homogeneous system arises from a general
solution of the form:

(517’ ° -75n) — Cl(V117 coog Vln) FeooaE Ck(Vk]_, coog an)
for some numbers c1,...,cx € R.
We call this a parametrization of our solution space. It means:
@ There is a fixed set of vectors (called basic solutions):
vi=(vit,---»V1n), oo V= (Vki,- .-, Vkn)

® such that every solution s is a linear combination of
Vi,..., V.
© That is, there exist ¢y, ..., cx € R such that

S=qCVi+...+CkVg
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Homogeneous systems

Basic solutions of a homogeneous system

Suppose a homogeneous system of equations in n variables has
p < n pivots. Then there are n — p basic solutions vy, ..., Vp_p.
This means that the general solution s can be written as a

parametrization:
s=cavi+ - ChrpVnp-

Moreover, for any solution s, the scalars ci, ..., ch—p are unique.

(p=n) < (no basic solns.) < (0 is the unique soln.)
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Homogeneous systems

Finding basic solutions

® We have two kinds of variables, pivot variables and non-pivot,
or free variables, depending on whether their column has a
pivot:

X1 X2 X3 X4 X5

(0141)
0 0 [1] 2 o

® The Echelon form lets us (easily) write pivot variables in
terms of non-pivot variables, e.g.:

x| = —x3 —4x4 — X5 X] = —2X3 — Xg
=

X3 = —2Xy X3 = —2Xa

® We can find a (non-zero) basic solution by setting exactly one
free variable to 1 and the rest to O.
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Homogeneous systems

Finding basic solutions

X1 X2 X3 X4 X5

< 0 1 4 1) N {Xl——2X4—X5

0 0 2 0 X3 = —2x4

5 variables and 2 pivots gives us 5 — 2 = 3 basic solutions:

x =0 x:=0

x =1

x2:=0 x4:=1 x4:=0

x5:=0 x5:=0 x5:=1
X1 —2x4 — X5 0 -2 -1
X2 X2 1 0 0
x3 | = —2x4 ~10 =2|,( 0
X4 Xa 0 1 0
X5 X5 0 0 1
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Homogeneous systems

General Solution

Now, any solution to the system is obtainable as a linear
combination of basic solutions:

0 -2 -1 —2b—c

1 0 0 a
al0]l+b|-2|+c| O = —2b

0 1 0 b

0 0 1 c

Picking solutions this way guarantees linear independence.
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Homogeneous systems

General Solution

Since the variable names don't matter, we could use instead:

0 -2 -1 —2X4 — X5

1 0 0 X2
|0 +x2 | -2]14+x5| 0 | = —2x4

0 1 0 X4

0 0 1 X5

...which gives us the vector from 2 slides ago.
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Homogeneous systems

Finding basic solutions: technique 2

Keep all columns with a pivot,

One-by-one, keep only the i-th non-pivot columns (while
removing the others), and find a (non-zero) solution

(this is like setting all the other free variables to zero)

Add 0's to each solution to account for the columns (i.e. free
variables) we removed
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Homogeneous systems

General solution and basic solutions, example

0 0/[2]2

There are 4 columns (variables) and 2 pivots, so 4 —2 =2
basic solutions

For the matrix: ( 1o 4)

First keep only the first non-pivot column:

<(1) (1) (2)> with chosen solution  (xi, x2, x3) = (1, —1,0)

Next keep only the second non-pivot column:

<(1) g g) with chosen solution  (xi,x3,x1) = (4,1, —1)

The general 4-variable solution is now obtained as:
c-(1,-1,0,0) + 2 - (4,0,1,-1)
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Homogeneous systems

General solutions example, check

We double-check that any vector:

(o (47 07 1’ _1) + - (1a _17070)
= (4-¢1,0,1-¢c1,~1-c1)+(1-c2,—1-,0,0)
= (4c1 + o, —, 01, —¢1)

gives a solution of:

1104 I of x1+xo+4xs = 0
0022 2x3+2x4 = 0
Just fillin xy =41+ ¢, xo=—C, x3=C1, X4 = —C1

(4C1+C2)—C2+4-—C1 =0
2C1—2C1:0 /
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Homogeneous systems

Summary of homogeneous systems

Given a homogeneous system in n variables:
® A basic solution is a non-zero solution of the system.

® If there are n pivots in its echelon form, there is no basic
solution, so only 0 = (0, ...,0) is a solution.
® Basic solutions are not unique. For instance, if v; and v, give

basic solutions, so do v; + v», vi — v», and any other linear
combination.

® If there are p < n pivots in its Echelon form, it has n — p
linearly independent basic solutions.
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