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Last time

• Vectors look different in different bases, e.g. for:

B =

{(
1
1

)
,

(
1
−1

)}
C =

{(
1
1

)
,

(
1
2

)}

• we have: (
1
0

)
S

=

(
1
2

1
2

)
B

=

(
2
−1

)
C
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Last time

B =

{(
1
1

)
,

(
1
−1

)}
C =

{(
1
1

)
,

(
1
2

)}
• We can transform bases using basis transformation matrices.

Going to standard basis is easy (basis elements are columns):

TB⇒S =

(
1 1
1 −1

)
TC⇒S =

(
1 1
1 2

)
• ...coming back means taking the inverse:

TS⇒B = (TB⇒S)−1 =
1

2

(
1 1
1 −1

)

TS⇒C = (TC⇒S)−1 =

(
2 −1
−1 1

)
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Last time

• The change of basis of a vector is computed by applying the
matrix. For example, changing from S to B is:

v
′ = TS⇒B · v

• The change of basis for a matrix is computed by surrounding
it with basis-change matrices.

• Changing from a matrix A in S to a matrix A′ in B is:

A
′ = TS⇒B · A · TB⇒S

• (Memory aid: look at the first matrix after the equals sign to
see what basis transformation you are doing.)
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• Many linear maps have their ‘own’ basis, their eigenbasis,
which has the property that all basis elements v ∈ B do this:

A · v = λv

• λ is called an eigenvalue, v is called an eigenvector.

• Eigenvalues are computed by solving:

det(A− λI ) = 0
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Outline
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Computing eigenvectors

• For an n × n matrix, the equation det(A− λI ) = 0 has n
solutions, which we’ll write as: λ1, λ2, . . . , λn
• (e.g. a 2× 2 matrix involves solving a quadratic equation,

which has 2 solutions λ1 and λ2)

• For each of these solutions, we get a homogeneous system:

(A− λi I )︸ ︷︷ ︸
matrix

·vi = 0

• Solving this homogeneous system gives us the associated
eigenvector vi for the eigenvalue λi

A. Kissinger Version: autumn 2018 Matrix Calculations 8 / 56



Eigenvectors and diagonalisation
Inner products and orthogonality

Wrapping up
Radboud University Nijmegen

Example

• This matrix:

A =

(
1 −2
0 −1

)
• Has characteristic polynomial:

det

(
−λ+ 1 −2

0 −λ− 1

)
= λ2 − 1

• The equation λ2 − 1 = 0 has 2 solutions: λ1 = 1 and
λ2 = −1.
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Example

• For λ1 = 1, we get a homogeneous system:

(A− λ1 · I ) · v1 = 0

• Computing (A− (1) · I ):(
1 −2
0 −1

)
− (1) ·

(
1 0
0 1

)
=

(
0 −2
0 −2

)
• So, we need to find a non-zero solution for:(

0 −2
0 −2

)
· v1 = 0

(just like in lecture 2)

• This works: v1 =

(
0
1

)
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Example

• For λ2 = −1, we get another homogeneous system:

(A− λ2 · I ) · v2 = 0

• Computing (A− (−1) · I ):(
1 −2
0 −1

)
− (−1) ·

(
1 0
0 1

)
=

(
2 −2
0 0

)
• So, we need to find a non-zero solution for:(

2 −2
0 0

)
· v2 = 0

• This works: v2 =

(
1
1

)
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Example

So, for the matrix A, we computed 2 eigenvalue/eigenvector pairs:

λ1 = 1, v1 =

(
0
1

)
and

λ2 = −1, v2 =

(
1
1

)
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Theorem

If the eigenvalues of a matrix A are all different, then their
associated eigenvectors form a basis.

Proof. We need to prove the vi are all linearly independent. Then suppose (for
contradiction) that v1, . . . , vn are linearly dependent, i.e.:

c1v1 + c2v2 + . . .+ cnvn = 0

for k non-zero coefficients. Then, using that they are eigvectors:

A · (c1v1 + . . .+ cnvn) = 0 =⇒ λ1c1v1 + . . .+ λncnvn = 0

Suppose cj 6= 0, then subtract 1
λj

times 2nd equation from the 1st equation:

c1v1 + c2v2 + . . .+ cnvn −
1

λj
(λ1c1v1 + . . .+ λncnvn) = 0

This has k − 1 non-zero coefficients (because all the λi ’s are distinct). Repeat
until we have just 1 non-zero coefficient, and we have:

cjvk = 0 =⇒ vk = 0

but eigenvectors are always non-zero, so this is a contradiction.
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Changing basis

• Once we have a basis of eigenvectors B = {v1, v2, . . . , vn},
translating to B gives us a diagonal matrix, whose diagonal
entries are the eigenvalues:

TS⇒B·A·TB⇒S = D where D =


λ1 0 0 0
0 λ2 0 0
0 0 · · · 0
0 0 0 λn


• Going the other direction, we can always write A in terms of a

diagonal matrix:

A = TB⇒S ·D · TS⇒B
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Definition

For a matrix A with eigenvalues λ1, . . . , λn and eigenvectors
B = {v1, . . . , vn}, decomposing A as:

A = TB⇒S ·


λ1 0 0 0
0 λ2 0 0
0 0 · · · 0
0 0 0 λn

 · TS⇒B
is called diagonalising the matrix A.
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Summary: diagonalising a matrix (study this slide!)

We diagonalise a matrix A as follows:

1 Compute each eigenvalue λ1, λ2, . . . , λn by solving the
characteristic polynomial

2 For each eigenvalue, compute the associated eigenvector vi by
solving the homogenious system (A− λi I ) · vi = 0.

3 Write down A as the product of three matrices:

A = TB⇒S ·D · TS⇒B

where:
• TB⇒S has the eigenvectors v1, . . . , vn (in order!) as its

columns
• D has the eigenvalues (in the same order!) down its diagonal,

and zeroes everywhere else
• TS⇒B is the inverse of TB⇒S .
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Example: political swingers, part I

• We take an extremely crude view on politics and distinguish
only left and right wing political supporters

• We study changes in political views, per year
• Suppose we observe, for each year:

• 80% of lefties remain lefties and 20% become righties
• 90% of righties remain righties, and 10% become lefties

Questions . . .
• start with a population L = 100,R = 150, and compute the

number of lefties and righties after one year;

• similarly, after 2 years, and 3 years, . . .

• We can represent these computations conveniently using
matrix multiplication.
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Political swingers, part II

• So if we start with a population L = 100,R = 150, then after
one year we have:
• lefties: 0.8 · 100 + 0.1 · 150 = 80 + 15 = 95
• righties: 0.2 · 100 + 0.9 · 150 = 20 + 135 = 155

• If

(
L
R

)
=

(
100
150

)
, then after one year we have:

P ·
(

100
150

)
=

(
0.8 0.1
0.2 0.9

)
·
(

100
150

)
=

(
95

155

)
• After two years we have:

P ·
(

95
155

)
=

(
0.8 0.1
0.2 0.9

)
·
(

95
155

)
=

(
91.5

158.5

)
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Political swingers, part IV

The situation after two years is obtained as:

P · P ·

(
L

R

)
=

(
0.8 0.1

0.2 0.9

)
·

(
0.8 0.1

0.2 0.9

)
·

(
L

R

)
︸ ︷︷ ︸
do this multiplication first

=

(
0.66 0.17

0.34 0.83

)
·

(
L

R

)

The situation after n years is described by the n-fold iterated
matrix:

P
n = P · P · · ·P︸ ︷︷ ︸

n times

Etc. It looks like P100 (or worse, limn→∞ P
n) is going to be a real

pain to calculate. ...or is it?
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Diagonal matrices

• Multiplying lots of matrices together is hard :(

• But multiplying diagonal matrices is easy!
a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 ·

w 0 0 0
0 x 0 0
0 0 y 0
0 0 0 z

 =


aw 0 0 0
0 bx 0 0
0 0 cy 0
0 0 0 dz


• Strategy: first diagonalise P:

P = TB⇒S ·D · TS⇒B where D is diagonal

• Then multiply (and see what happens....)
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Multiplying diagonalised matrices

• Suppose P = TB⇒S ·D · TS⇒B, then:

P · P = TB⇒S ·D · TS⇒B · TB⇒S ·D · TS⇒B

• So:
P · P = TB⇒S ·D ·D · TS⇒B

• and:
P · P · P = TB⇒S ·D ·D ·D · TS⇒B

• and so on:
P

n = TB⇒S ·Dn · TS⇒B
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Political swingers re-revisited, part I

• Suppose we diagonalise the political transition matrix:

P =

(
0.8 0.1
0.2 0.9

)
=

(
1 1
2 −1

)
︸ ︷︷ ︸
TB⇒S

·
(

1 0
0 0.7

)
︸ ︷︷ ︸

D

· 1

3

(
1 1
2 −1

)
︸ ︷︷ ︸

TS⇒B

• Then, raising it to the 10th power is not so hard:

P
10 =

(
1 1
2 −1

)
·
(

1 0
0 0.7

)10

· 1

3

(
1 1
2 −1

)
=

(
1 1
2 −1

)
·
(

110 0
0 0.710

)
· 1

3

(
1 1
2 −1

)
≈

(
1 1
2 −1

)
·
(

1 0
0 0.028

)
· 1

3

(
1 1
2 −1

)
≈

(
0.35 0.32
0.65 0.68

)
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• We can also compute:

lim
n→∞

P
n = lim

n→∞

(
1 1
2 −1

)
·
(

1n 0
0 0.7n

)
· 1

3

(
1 1
2 −1

)
=

(
1 1
2 −1

)
·
(

1 0
0 0

)
· 1

3

(
1 1
2 −1

)
=

1

3

(
1 1
2 2

)
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And more...

• Diagonalisation lets us do lots of things we can normally only
do with numbers with matrices instead
• We already saw raising to a power:

A
n = TB⇒S ·


λn1 0 0 0
0 λn2 0 0
0 0 · · · 0
0 0 0 λNn

 · TS⇒B
• We can also do other funky stuff, like take the square root of

a matrix:

√
A = TB⇒S ·


√
λ1 0 0 0
0

√
λ2 0 0

0 0 · · · 0
0 0 0

√
λn

 · TS⇒B
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And more...

• Take the square root of a matrix:

√
A = TB⇒S ·


√
λ1 0 0 0
0

√
λ2 0 0

0 0 · · · 0
0 0 0

√
λn

 · TS⇒B
• (always gives us a matrix where

√
A ·
√
A = A)
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And just because they are cool...

• Exponentiate a matrix:

eA = TB⇒S ·


eλ1 0 0 0
0 eλ2 0 0
0 0 · · · 0
0 0 0 eλn

 · TS⇒B
(e.g. to solve the Schrödinger equation in quantum mechanics)

• Take the logarithm a matrix:

log(A) = TB⇒S ·


log(λ1) 0 0 0

0 log(λ2) 0 0
0 0 · · · 0
0 0 0 log(λn)

 · TS⇒B
(e.g. to compute entropies of quantum states)
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Applications: data processing

• Problem: suppose we have a HUGE matrix, and we want to
know approximately what it looks like
• Solution: diagonalise it using its basis B of eigenvectors...then

throw away (= set to zero) all the little eigenvalues:
λ1 0 · · · 0 0
0 λ2 0 0
... 0 λ3 0

...

0 0
. . . 0

0 0 · · · 0 λn


B

≈


λ1 0 · · · 0 0
0 λ2 0 0
... 0 0 0

...

0 0
. . . 0

0 0 · · · 0 0


B

• If there are only a few big λ’s, and lots of little λ’s, we get
almost the same matrix back
• This is the basic trick used in principle compent analysis (big

data) and lossy data compression
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Length of a vector

• Each vector v = (x1, . . . , xn) ∈ Rn has a length (aka. norm),
written as ‖v‖
• This ‖v‖ is a non-negative real number: ‖v‖ ∈ R, ‖v‖ ≥ 0
• Some special cases:

• n = 1: so v ∈ R, with ‖v‖ = |v |
• n = 2: so v = (x1, x2) ∈ R2 and with Pythagoras:

‖v‖2 = x21 + x22 and thus ‖v‖ =
√
x21 + x22

• n = 3: so v = (x1, x2, x3) ∈ R3 and also with Pythagoras:

‖v‖2 = x21 + x22 + x23 and thus ‖v‖ =
√
x21 + x22 + x23

• In general, for v = (x1, . . . , xn) ∈ Rn,

‖v‖ =
√
x21 + x22 + · · ·+ x2n
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Distance between points

• Assume now we have two vectors v ,w ∈ Rn, written as:

v = (x1, . . . , xn) w = (y1, . . . , yn)

• What is the distance between the endpoints?
• commonly written as d(v ,w)
• again, d(v ,w) is a non-negative real

• For n = 2,

d(v ,w) =
√

(x1 − y1)2 + (x2 − y2)2 = ‖v −w‖ = ‖w − v‖

• This will be used also for other n, so:

d(v ,w) = ‖v −w‖
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Length is fundamental

• Distance can be obtained from length of vectors

• Angles can also be obtained from length

• Both length of vectors and angles between vectors can be
derived from the notion of inner product
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Inner product definition

Definition

For vectors v = (x1, . . . , xn),w = (y1, . . . , yn) ∈ Rn define their
inner product as the real number:

〈v ,w〉 = x1y1 + · · ·+ xnyn

=
∑

1≤i≤n
xiyi

Note: Length ‖v‖ can be expressed via inner product:

‖v‖2 = x21 + · · ·+ x2n = 〈v , v〉, so ‖v‖ =
√
〈v , v〉.
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Properties of the inner product

1 The inner product is symmetric in v and w :

〈v ,w〉 = 〈w , v〉

2 It is linear in v :

〈v + v
′,w〉 = 〈v ,w〉+ 〈v ′,w〉 〈av ,w〉 = a〈v ,w〉

...and hence also in w (by symmetry):

〈v ,w + w
′〉 = 〈v ,w〉+ 〈v ,w ′〉 〈v , aw〉 = a〈v ,w〉

3 And it is positive definite:

v 6= 0 =⇒ 〈v , v〉 > 0
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Inner products and angles, part I

For v = w = (1, 0), 〈v ,w〉 = 1.
As we start to rotate w , 〈v ,w〉 goes down until 0:

〈v ,w〉 = 1 〈v ,w〉 = 4
5 〈v ,w〉 = 3

5 〈v ,w〉 = 0

...and then goes to −1:

〈v ,w〉 = −1〈v ,w〉 = −4
5〈v ,w〉 = −3

5〈v ,w〉 = 0

...then down to 0 again, then to 1, then repeats...
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Cosine

Plotting these numbers vs. the angle between the vectors, we get:

It looks like 〈v ,w〉 depends on the cosine of the angle between v
and w .
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• In fact, if ‖v‖ = ‖w‖ = 1, it is true that 〈v ,w〉 = cos γ.

• For the general equation, we need to divide by their lengths:

cos(γ) =
〈v ,w〉
‖v‖ ‖w‖

• Remember this equation!
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Inner products and angles, part II

Proof (sketch). For 2 any two vectors, we can make a triangle like
this:

‖v‖

γ

d(v ,w) := ‖v −w‖

‖w‖

Then, we apply the cosine rule from trig to get:

cos(γ) =
a2 + b2 − c2

2ab
=
‖v‖2 + ‖w‖2 − ‖v −w‖2

2‖v‖ ‖w‖

...then after expanding the definition of ‖.‖ and some work we get:

cos(γ) =
〈v ,w〉
‖v‖ ‖w‖
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Examples

• What is the angle between (1, 1) and (−1,−1)?

cos γ =
〈v ,w〉
‖v‖‖w‖

=
−2√
2 ·
√

2
=
−2

2
= −1 =⇒ γ = π

• What is the angle between (1, 0) and (1, 1)?

cos γ =
〈v ,w〉
‖v‖‖w‖

=
1

1 ·
√

2
=

1√
2

=⇒ γ =
π

4

• What is the angle between (1, 0) and (0, 1)?

cos γ =
〈v ,w〉
‖v‖‖w‖

=
0

‖v‖‖w‖
= 0 =⇒ γ =

π

2
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Orthogonality

Definition

Two vectors v ,w are called orthogonal if 〈v ,w〉 = 0. This is
written as v ⊥ w .

Explanation: orthogonality means that the cosine of the angle
between the two vectors is 0; hence they are perpendicular.

Example

Which vectors (x , y) ∈ R2 are orthogonal to (1, 1)?

Examples, are (1,−1) or (−1, 1), or more generally (x ,−x).

This follows from an easy computation:

〈(x , y), (1, 1)〉 = 0⇐⇒ x + y = 0⇐⇒ y = −x .
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Orthogonality and independence

Lemma

Call a set {v1, . . . , vn} of non-zero vectors orthogonal if every
pair of different vectors is orthogonal.

1 orthogonal vectors are always independent,

2 independent vectors are not always orthogonal.

Proof: The second point is easy: (1, 1) and (1, 0) are
independent, but not orthogonal
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Orthogonality and independence (cntd)

(Orthogonality =⇒ Independence): assume {v1, . . . , vn} is
orthogonal and a1v1 + · · ·+ anvn = 0. Then for each i ≤ n:

0 = 〈0, vi 〉
= 〈a1v1 + · · ·+ anvn, vi 〉
= 〈a1v1, vi 〉+ · · ·+ 〈anvn, vi 〉
= a1〈v1, vi 〉+ · · ·+ an〈vn, vi 〉
= ai 〈vi , vi 〉 since 〈vj , vi 〉 = 0 for j 6= i

But since vi 6= 0 we have 〈vi , vi 〉 6= 0, and thus ai = 0.
This holds for each i , so a1 = · · · = an = 0, and we have proven
independence. -
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Orthogonal and orthonormal bases

Definition

A basis B = {v1, . . . , vn} of a vector space with an inner product is
called:

1 orthogonal if B is an orthogonal set: 〈vi , vj〉 = 0 if i 6= j

2 orthonormal if it is orthogonal and 〈vi , vi 〉 = ‖vi‖ = 1, for
each i

Example

The standard basis (1, 0, . . . , 0), (0, 1, 0, . . . , 0), · · · , (0, · · · , 0, 1) is
an orthonormal basis of Rn.
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From independence to orthogonality

• Not every basis is an orthonormal basis:

Orthonormal basis
+3

Basis
/ks

• But, by taking linear linear combinations of basis vectors, we
can transform a basis into a (better) orthonormal basis:

B = {v1, . . . , vn} 7→ B′ = {w1, . . . ,wn}

• Making basis vectors normalised is easy:

vi 7→ wi :=
1

‖vi‖
vi

• Making vectors orthogonal is also always possible, using a
procedure called Gram-Schmidt orthogonalisation.
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In summary

• The inner product gives us a means to compute the lengths of
vectors:

‖v‖ =
√
〈v , v〉

• It also lets us compute the angles between vectors:

cos(γ) =
〈v ,w〉
‖v‖ ‖w‖

• ⇒ vectors with very large inner product are very close to
pointing the same direction (because cos(0) = 1)

• ⇒ vectors with very small inner product are very close to
orthogonal (because cos(π/2) = 0)

• ⇒ inner products measure how similar two vectors are.
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Application: Computational linguistics

Computational linguistics = teaching computers to read

• Example: I have two words, and I want a program that tells
me how “similar” the two words are, e.g.

nice + kind ⇒ 95% similar
dog + cat ⇒ 61% similar

dog + xylophone ⇒ 0.1% similar

• Applications: thesaurus, smart web search, translation, ...

• Dumb solution: ask a whole bunch of people to rate similarity
and make a big database

• Smart solution: use distributional semantics
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Meaning vectors

“You shall know a word by the company it keeps.”
– J. R. Firth

• Pick about 500-1000 words (vcat, vboy, vsandwich ...) to act as
“basis vectors”

• Build up a meaning vector for each word, e.g. “dog”, by
scanng a whole lot of text

• Every time “dog” occurs within, say 200 words of a basis
vector, add that basis vector. Soon we’ll have:

vdog = 2308198 · vcat + 4291 · vboy + 4 · vsandwich + · · ·
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• Similar words cluster together:

vcat

vdog

vxylophone

vcat

vdog

vxylophone

seen with: fur, pet, train, love, poo, ...

seen with: music, mallet, hobby, ...

• ...while dissimilar words drift apart.We can measure this by:

〈vdog, vcat〉
‖vdog‖ ‖vcat‖

= 0.953
〈vdog, vxylophone〉
‖vdog‖ ‖vxylophone‖

= 0.001

• Search engines do something very similar. Learn more in the
course on Information Retrieval.
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Distributional Semantics

• This works very well, but also has weaknesses (e.g. meanings
of whole sentences, ambiguous words)

• This can be improved by incorporating other kinds of
semantics:

distributional + compositional + categorical
does not

like

John not like Mary
=

John not Mary

= DisCoCat
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About linear algebra

• Linear algebra forms a coherent body of mathematics . . .
• involving elementary algebraic and geometric notions

• systems of equations and their solutions
• vector spaces with bases and linear maps
• matrices and their operations (product, inverse, determinant)
• inner products and distance

• . . . together with various calculational techniques
• the most important/basic ones you learned in this course
• they are used all over the place: mathematics, physics,

engineering, linguistics...
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About the exam, part I

• Closed book
• Simple ‘4-function’ calculators are allowed (but not necessary)
• phones, graphing calculators, etc. are NOT allowed

• Questions are in line with exercises from assignments
• In principle, slides contain all necessary material

• LNBS lecture notes have extra material for practice
• wikipedia also explains a lot

• Theorems, definitions, etc:
• are needed to understand the theory
• are needed to answer the questions
• their proofs are not required for the exam

(but do help understanding)

• need not be reproducable literally
• but help you to understand questions
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About the exam, part II

Calculation rules (or formulas) must be known by heart for:

1 solving (non)homogeneous equations, echelon form

2 linearity, independence, matrix-vector multiplication

3 matrix multiplication & inverse, change-of-basis matrices

4 eigenvalues, eigenvectors and determinants

5 inner products, distance, length, angle, orthogonality
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About the exam, part III

• Questions are formulated in English
• you may choose to answer in Dutch or English

• Give intermediate calculation results
• just giving the outcome (say: 68) yields no points when the

answer should be 67

• Write legibly, and explain what you are doing
• giving explanations forces yourself to think systematically
• mitigates calculation mistakes

• Perform checks yourself, whenever possible, e.g.
• solutions of equations
• inverses of matrices,
• orthogonality of vectors, etc.
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Finally . . .

Practice, practice, practice!

(so that you can rely on skills, not on luck)
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Some practical issues (Autumn 2018)

• Exam: Tuesday, October 30, 8:30–10:30 in HAL 2.
(Extra time: 8:30-11:00, HG00.108)

• Vragenuur: there will be a Q&A session next week. Friday, 26
October. 13:30-15:15 in MERC1 00.28
• How we compute the final grade g for the course

• Your exam grade e, which should be ≥ 5,
• Your average assignment grade a
• Final grade is: e + a

10 , rounded to the nearest half (except 5.5).
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Final request

• Fill out the enquete form for Matrixrekenen, IPC017, when
invited to do so.

• Any constructive feedback is highly appreciated.

And good luck with the preparation & exam itself!
Start now!
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