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Last time

® Vectors look different in different bases, e.g. for:

s={()()) {00

® we have:

A. Kissinger Version: autumn 2018

Matrix Calculations 2 /56



Radboud University Nijmegen i

Last time

{0 {0-0)

® We can transform bases using basis transformation matrices.
Going to standard basis is easy (basis elements are columns):

1 1 11

® _..coming back means taking the inverse:

_ 1 /1 1
Ts—n=(Tp=s) ' = 3 (1 _1>

_ 2 -1
TS:>C = (TC:>S) b= (_1 1 >
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Last time

® The change of basis of a vector is computed by applying the
matrix. For example, changing from S to B is:

vV =Ts=p-v

® The change of basis for a matrix is computed by surrounding
it with basis-change matrices.

e Changing from a matrix A in S to a matrix A’ in B is:
A =Tsop- A Tpss
e (Memory aid: look at the first matrix after the equals sign to

see what basis transformation you are doing.)
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® Many linear maps have their ‘own’ basis, their eigenbasis,
which has the property that all basis elements v € B do this:

A v=)>\v

® ) is called an eigenvalue, v is called an eigenvector.

® Eigenvalues are computed by solving:

det(A— X)) =0
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QOutline

Eigenvectors and diagonalisation

Inner products and orthogonality

Wrapping up
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Computing eigenvectors

® For an n x n matrix, the equation det(A — Al) =0 has n
solutions, which we'll write as: A1, Ao, ..., A,

® (e.g. a 2 x 2 matrix involves solving a quadratic equation,
which has 2 solutions A1 and ;)

® For each of these solutions, we get a homogeneous system:
(A=Xl)vi=0
N——

matrix

® Solving this homogeneous system gives us the associated
eigenvector v; for the eigenvalue \;
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Example

® This matrix:

® Has characteristic polynomial:

—A+1 -2 2
det( 0 _/\_1>—/\—1

® The equation A> — 1 = 0 has 2 solutions: \; =1 and
Ao = —1.
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Example

® For A\; = 1, we get a homogeneous system:
(A—)\1~I)~v1:0
e Computing (A— (1) -1):
1 -2 10 0 -2
<0 —1) - (M- <o 1) - (o —2>
® So, we need to find a non-zero solution for:
0 -2
<o —2> n=0

(just like in lecture 2)

® This works: v; = <(1)>
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Example

® For A\, = —1, we get another homogeneous system:
(A=X2-1)-vu=0
e Computing (A—(-1)-1):
1 -2 10 2 =2
(o —1) - (=1 (o 1) B <0 o>
® So, we need to find a non-zero solution for:
2 =2
<0 0 > Vo = 0

® This works: v» = (i)
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Example

So, for the matrix A, we computed 2 eigenvalue/eigenvector pairs:

)\1 = 17 Vi = <§-)>

and
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If the eigenvalues of a matrix A are all different, then their
associated eigenvectors form a basis.

Proof. We need to prove the v; are all linearly independent. Then suppose (for
contradiction) that vi,..., v, are linearly dependent, i.e.:

avi+ov+...+cv, =0
for k non-zero coefficients. Then, using that they are eigvectors:
A-(cvit+...+cvn)=0 = Mavi+...+\cv, =0
Suppose ¢ # 0, then subtract )\% times 2nd equation from the 1st equation:

1

(Mrcavi + ...+ Apcava) =0
Aj

cavi+ v+ ...+ vy —

This has k — 1 non-zero coefficients (because all the \;’s are distinct). Repeat
until we have just 1 non-zero coefficient, and we have:
k=0 = v =0

but eigenvectors are always non-zero, so this is a contradiction. (I
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Changing basis

® Once we have a basis of eigenvectors B = {vy, va,...,v,},
translating to B gives us a diagonal matrix, whose diagonal
entries are the eigenvalues:

A0 0 0

B 10 X 0 O
Ts—pATges =D where D= 0 0 ... 0
0 0 0 A

n

® Going the other direction, we can always write A in terms of a
diagonal matrix:

A=Tpos D Ts=p
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Definition

For a matrix A with eigenvalues A1, ..., A, and eigenvectors
B={w,...,v,}, decomposing A as:

A 0 0 O

0 A 0 O
A=Ts=s | 02 .o | Ts=s

0 0 0 A\,

is called diagonalising the matrix A.
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Summary: diagonalising a matrix (study this slide!)

We diagonalise a matrix A as follows:

@ Compute each eigenvalue A1, Ao, ..., A, by solving the
characteristic polynomial

@® For each eigenvalue, compute the associated eigenvector v; by
solving the homogenious system (A — \;1) - v; = 0.

©® Write down A as the product of three matrices:

A=Tpos D - Ts_p

where:
® Tp_s has the eigenvectors vy, ..., v, (in order!) as its

columns
® D has the eigenvalues (in the same order!) down its diagonal,

and zeroes everywhere else
® Ts_pis the inverse of Tp—gs.

A. Kissinger Version: autumn 2018 Matrix Calculations



Eigenvectors and diagonalisation

Radboud University Nijmegen

Example: political swingers, part |

® We take an extremely crude view on politics and distinguish
only left and right wing political supporters

® We study changes in political views, per year

® Suppose we observe, for each year:

® 80% of lefties remain lefties and 20% become righties
® 90% of righties remain righties, and 10% become lefties

® start with a population L = 100, R = 150, and compute the
number of lefties and righties after one year;

® similarly, after 2 years, and 3 years, ...

® We can represent these computations conveniently using
matrix multiplication.
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Political swingers, part |l

® So if we start with a population L = 100, R = 150, then after
one year we have:

® |efties: 0.8-100+ 0.1-150 =80+ 15 =95
® righties: 0.2-100 4 0.9 - 150 =20 + 135 = 155

L 100 :
o If (R) = <150>, then after one year we have:

p. 100 _ (0.8 0.1\ (100 _ (9
150 ~ \0.2 09 150/  \155

® After two years we have:

p. 95 _ (08 0.1\ (9 (915
155 ~ \0.2 09 155)  \158.5
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Political swingers, part IV

The situation after two years is obtained as:
L 0.8 0.1 0.8 0.1 L
P-P. = . :
R 0.2 0.9 0.2 0.9 R
do this multiplication first
(066 0.17 L
0.34 0.83 R

The situation after n years is described by the n-fold iterated
matrix:

P"=pP.P...P
—_——
n times

Etc. It looks like P19 (or worse, lim, o, P") is going to be a real
pain to calculate. ...or is it?
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Diagonal matrices

Multiplying lots of matrices together is hard :(

But multiplying diagonal matrices is easy!

a 000 w 0 00 aw 0 0 0
0 b 0O 0 x 00| [0 bx 0 0
00 c 0 00y O 0 0 ¢ O
000 d 000 z 0 0 0 dz

Strategy: first diagonalise P:

P=Ti_.s-D-Ts_p where D is diagonal

Then multiply (and see what happens....)
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Multiplying diagonalised matrices

® Suppose P = Tpg—s-D - Ts—p, then:

P-P=Tpsos D Tsep Tp=s-D-Tsop

® So:
P-P=Tp.s-D-D-Ts=p

® and:
P.P.P=Ts.5-D-D-D-Ts_p3

® and so on:
P"=Tp.s-D" Ts—p
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Political swingers re-revisited, part |

® Suppose we diagonalise the political transition matrix:

P—0'80'1—11-10-111
~\02 09) \2 -1 0 07) 3\2 -1

Tp=s D Ts=n5

® Then, raising it to the 10th power is not so hard:
pl _ 1 1 1 o0\° 1/1 1
- -1)"\o o7 ‘§ 2 -1
110 11
710 3\2 -1
~ 11
- 0028 § 2 -1

0.35 0.32
0.65 0.68
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® We can also compute:
1 1 1" 0 1/1 1
1 n p— 1 . P
am Pr= im (2 —1) (0 0.7"> 3(2 —1)
_ (1 1Y) (1 0\ 1/1 1
- \2 -1 0 0/ 3\2 -1
11
2 2

W =
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And more...

e Diagonalisation lets us do lots of things we can normally only
do with numbers with matrices instead
® We already saw raising to a power:

AT 0 0 O
n 0 AN 0 0
A" =Tp=s | 02 o | Ts=n
0 0 0 AN
® We can also do other funky stuff, like take the square root of
a matrix:
var 0 0 0
0 VX O 0
VA= Tgs.s- 0 0 2 _ 0 Ts=n
0 0 0 VA,
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And more...

® Take the square root of a matrix:

Vi 0 0
Vi 0

0

0
0o .- 0
0 0 VvV

>

0
0 - Ts=p
0

e (always gives us a matrix where vA - VA = A)
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And just because they are cool...

® Exponentiate a matrix:

eM 0 0 0
0 e2 0 0

e = Tpos- 0 0 ... o | Ts=B
0 0 0 e

(e.g. to solve the Schrddinger equation in quantum mechanics)

® Take the logarithm a matrix:

log(\1) 0 0 0
0 log(A 0 0
log(A) = Tp=s - 0 gg 2) 0 - Ts=5
0 0 0 log(\n)

(e.g. to compute entropies of quantum states)
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Applications: data processing

® Problem: suppose we have a HUGE matrix, and we want to
know approximately what it looks like

® Solution: diagonalise it using its basis B of eigenvectors...then
throw away (= set to zero) all the little eigenvalues:

M O -~ 0 0 A O -~ 0 0
0 X O 0 0 X O 0
0 X3 0 ~|l: 0 0 O

0 0o . 0 0 0 .0
0 0 -~ 0 X\/g 0 0 -~ 0 0/,

® If there are only a few big \'s, and lots of little \'s, we get
almost the same matrix back

® This is the basic trick used in principle compent analysis (big
data) and lossy data compression

A. Kissinger Version: autumn 2018 Matrix Calculations
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Length of a vector

¢ Each vector v = (xi,...,Xp) € R” has a length (aka. norm),
written as ||v/||

® This ||v| is a non-negative real number: ||v|| € R, [jv|] >0

® Some special cases:

® n=1:sov eR, with |v|] = |v|
® n=2: sov=(xy,x) € R?and with Pythagoras:

Ivl>=x?+x3  and thus lv] = 1\/x? + x3

® n=23:s0v=(x,x,x3) € R®and also with Pythagoras:
Ivl?=x}+x3 +x3 andthus  |[[v||=/x2+x3 +x3

® In general, for v = (x1,...,x,) € R",

vl = /5§ +55 + -+ x3
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Distance between points

® Assume now we have two vectors v, w € R", written as:

v=_(x1,...,Xn) w=(y1,.-,¥n)

What is the distance between the endpoints?

® commonly written as d(v, w)
® again, d(v, w) is a non-negative real

® For n=2,

d(v.w) = /(1 —0)? + (2 —y2)? = |lv — w| = [lw — v]|

This will be used also for other n, so:

d(v,w) = [lv —w]|
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Length is fundamental

® Distance can be obtained from length of vectors
® Angles can also be obtained from length

® Both length of vectors and angles between vectors can be
derived from the notion of inner product
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Inner product definition

For vectors v = (x1,...,Xn), W = (y1,-..,¥n) € R" define their
inner product as the real number:

(v,w) = xiy1+-+ Xn¥n

= Z XiYi

1<i<n

Note: Length ||v|| can be expressed via inner product:

HVH2 = Xf++X3 = <V7V>7 SO HVH = <V7V>'
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Properties of the inner product

@ The inner product is symmetric in v and w:

® It is linear in v:
(v+ v, w)=(v,w)+ (v, w) (av,w) = a(v, w)
...and hence also in w (by symmetry):

(viw+w') = (v,w) + (v,w') (v,aw) = a(v, w)

® And it is positive definite:
v#0 = (v,v) >0
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Inner products and angles, part |

Forv=w=(1,0), (v,w)=1.
w)

As we start to rotate w, (v, w) goes down until 0:

...and then goes to —1:

N

(viw)=0 (v,w)=-3 (v,w)=—% (vyw)=-1

...then down to 0 again, then to 1, then repeats...
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Cosine

Plotting these numbers vs. the angle between the vectors, we get:

NN

-05

-2m -3n/2 -om -mf2 0 n/2 m 3n/Z 2m

360° -270° -180° 90 90° 180° 270" 360°

It looks like (v, w) depends on the cosine of the angle between v
and w.
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e In fact, if |v| = ||w| =1, it is true that (v, w) = cos~.

® For the general equation, we need to divide by their lengths:

(v, w)

o) = TolTwl

® Remember this equation!
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Inner products and angles, part |l

Proof (sketch). For 2 any two vectors, we can make a triangle like
this:

(vl d(v,w) = [lv —w]|

gl

[[wll

Then, we apply the cosine rule from trig to get:

b2 —c? [P+ ]w]? —[lv — w|?

cos() = —
2ab 2] v Tiw]

...then after expanding the definition of ||.|| and some work we get:

(v, w)

s = [l Twl
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Examples

® What is the angle between (1,1) and (—1,—1)?

(v, w) -2 -2
cosy = = = —
lvllffwll — v2-v2 2

® What is the angle between (1,0) and (1,1)?

cosy = vow) _ 1 _ 1 — 7_5
Ivillwl 1-v2 V2 4

¢ What is the angle between (1,0) and (0,1)7
(v, w) 0 T
cosy = = =0 - v==
[vllffwll f[vi[[[wl] 2

Matrix Calculations
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Orthogonality

Definition
Two vectors v, w are called orthogonal if (v, w) = 0. This is
written as v L w.

Explanation: orthogonality means that the cosine of the angle
between the two vectors is 0; hence they are perpendicular.

Example

Which vectors (x,y) € R? are orthogonal to (1,1)?
Examples, are (1,—1) or (—1,1), or more generally (x, —x).
This follows from an easy computation:

<(X7y)7(171)>:0<=>X+y=0¢>y:—x,
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Orthogonality and independence

Lemma

Call a set {vy,...,v,} of non-zero vectors orthogonal if every
pair of different vectors is orthogonal.

@ orthogonal vectors are always independent,

@® independent vectors are not always orthogonal.

Proof: The second point is easy: (1,1) and (1,0) are
independent, but not orthogonal
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Orthogonality and independence (cntd)

(Orthogonality = Independence): assume {v1,...,v,} is
orthogonal and ajvy + -+ -+ apv, = 0. Then for each i < n:

0 = (0,v)
(a1vi+ -+ anVn, vj)
(arvi, Vi) + -+ (anvn, Vi)
ar(vi, vj) + -+ an(vp, vj)
= ai(v,v) since (vj,v;) =0 for j # i

But since v; # 0 we have (v;, v;) # 0, and thus a; = 0.
This holds for each i, so a; = --- = a, = 0, and we have proven
independence. ®
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Orthogonal and orthonormal bases

A basis B = {v1,...,v,} of a vector space with an inner product is
called:

@ orthogonal if B is an orthogonal set: (v;,vj) =0 if i #

@® orthonormal if it is orthogonal and (v;, v;) = ||v;|| = 1, for
each i

The standard basis (1,0,...,0),(0,1,0,...,0),---,(0,---,0,1) is
an orthonormal basis of R”.
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From independence to orthogonality

Not every basis is an orthonormal basis:

| Orthonormal basis - Basis

But, by taking linear linear combinations of basis vectors, we
can transform a basis into a (better) orthonormal basis:

B={vi,...,vy} = B ={w,...,w,}

® Making basis vectors normalised is easy:
1
Vi — W= ——V;
[Jvil

® Making vectors orthogonal is also always possible, using a
procedure called Gram-Schmidt orthogonalisation.
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In summary

The inner product gives us a means to compute the lengths of
vectors:

lvll = v/ {v,v)

It also lets us compute the angles between vectors:

(v, w)

s = Tl Twl

® = vectors with very large inner product are very close to
pointing the same direction (because cos(0) = 1)

® = vectors with very small inner product are very close to
orthogonal (because cos(7/2) = 0)

® = inner products measure how similar two vectors are.
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Application: Computational linguistics

Computational linguistics = teaching computers to read

e Example: | have two words, and | want a program that tells
me how “similar’ the two words are, e.g.

nice + kind = 95% similar
dog +cat = 61% similar
dog + xylophone = 0.1% similar

® Applications: thesaurus, smart web search, translation, ...

® Dumb solution: ask a whole bunch of people to rate similarity
and make a big database

® Smart solution: use distributional semantics
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Meaning vectors

“You shall know a word by the company it keeps.”
— J. R. Firth

® Pick about 500-1000 words (Vcat, Vboy, Vsandwich ---) tO act as
“basis vectors”

® Build up a meaning vector for each word, e.g. “dog”, by
scanng a whole lot of text

® Every time “dog” occurs within, say 200 words of a basis
vector, add that basis vector. Soon we'll have:

Vdog = 2308198 - Veat + 4291 - Vboy + 4. Vsandwich + -
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® Similar words cluster together:

Vdog

Vcat

Vyylophone Z

e __.while dissimilar words drift apart.We can measure this by:

<Vdoga Vcat> — 0.953 <Vdoga nylophone>

— = 0.001
[[Vaog]| [| Veat|| [Vaog |l | veytophonell

® Search engines do something very similar. Learn more in the
course on Information Retrieval.
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Distributional Semantics

® This works very well, but also has weaknesses (e.g. meanings
of whole sentences, ambiguous words)

® This can be improved by incorporating other kinds of
semantics:

distributional + compositional + categorical

= DisCoCat
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About linear algebra

® Linear algebra forms a coherent body of mathematics . ..
® involving elementary algebraic and geometric notions
systems of equations and their solutions

vector spaces with bases and linear maps

matrices and their operations (product, inverse, determinant)
inner products and distance

® .. together with various calculational techniques
® the most important/basic ones you learned in this course
® they are used all over the place: mathematics, physics,
engineering, linguistics...
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Wrapping up

About the exam, part |

® (Closed book
® Simple ‘4-function’ calculators are allowed (but not necessary)
® phones, graphing calculators, etc. are NOT allowed
® Questions are in line with exercises from assignments
® |n principle, slides contain all necessary material
® | NBS lecture notes have extra material for practice
® wikipedia also explains a lot
® Theorems, definitions, etc:

® are needed to understand the theory
® are needed to answer the questions
® their proofs are not required for the exam
(but do help understanding)
® need not be reproducable literally
® but help you to understand questions
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About the exam, part Il

Calculation rules (or formulas) must be known by heart for:

@ solving (non)homogeneous equations, echelon form

® linearity, independence, matrix-vector multiplication

©® matrix multiplication & inverse, change-of-basis matrices
O cigenvalues, eigenvectors and determinants

@ inner products, distance, length, angle, orthogonality
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About the exam, part Il

Questions are formulated in English
® you may choose to answer in Dutch or English

Give intermediate calculation results

® just giving the outcome (say: 68) yields no points when the
answer should be 67

Write legibly, and explain what you are doing

® giving explanations forces yourself to think systematically
® mitigates calculation mistakes

Perform checks yourself, whenever possible, e.g.

® solutions of equations
® inverses of matrices,
® orthogonality of vectors, etc.
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Wrapping up

Finally ...

Practice, practice, practice!

(so that you can rely on skills, not on luck)
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Wrapping up

Some practical issues (Autumn 2018)

® Exam: Tuesday, October 30, 8:30-10:30 in HAL 2.
(Extra time: 8:30-11:00, HG00.108)

® Vragenuur: there will be a Q&A session next week. Friday, 26
October. 13:30-15:15 in MERC1 00.28
® How we compute the final grade g for the course
® Your exam grade e, which should be > 5,

® Your average assignment grade a

® Final grade is: e+ 13, rounded to the nearest half (except 5.5).
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Final request

® Fill out the enquete form for Matrixrekenen, IPC017, when
invited to do so.

® Any constructive feedback is highly appreciated.

And good luck with the preparation & exam itself!
Start now!
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