

Matrix Calculations: Diagonalisation, Orthogonality, and Applications

A. Kissinger

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: autumn 2018

Last time

• Vectors look different in different bases, e.g. for:

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \qquad \qquad \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$

• we have:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}_{\mathcal{S}} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}_{\mathcal{C}}$$

Last time

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \qquad \qquad \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$

 We can transform bases using basis transformation matrices. Going to standard basis is easy (basis elements are columns):

$$all_{\mathcal{B}\Rightarrow\mathcal{S}} = egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix} \qquad all_{\mathcal{C}\Rightarrow\mathcal{S}} = egin{pmatrix} 1 & 1 \ 1 & 2 \end{pmatrix}$$

...coming back means taking the inverse:

$$extbf{\textit{T}}_{\mathcal{S}\Rightarrow\mathcal{B}} = (extbf{\textit{T}}_{\mathcal{B}\Rightarrow\mathcal{S}})^{-1} = rac{1}{2} egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}$$

$$T_{\mathcal{S}\Rightarrow\mathcal{C}} = (T_{\mathcal{C}\Rightarrow\mathcal{S}})^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

A. Kissinger

Version: autumn 2018

• The change of basis of a vector is computed by applying the matrix. For example, changing from S to B is:

$$\mathbf{v}' = \mathbf{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot \mathbf{v}$$

- The change of basis for a matrix is computed by surrounding it with basis-change matrices.
- Changing from a matrix \mathbf{A} in \mathcal{S} to a matrix \mathbf{A}' in \mathcal{B} is:

$$\mathbf{A}' = \mathbf{T}_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot \mathbf{A} \cdot \mathbf{T}_{\mathcal{B} \Rightarrow \mathcal{S}}$$

 (Memory aid: look at the first matrix after the equals sign to see what basis transformation you are doing.)

• Many linear maps have their 'own' basis, their eigenbasis, which has the property that all basis elements $\mathbf{v} \in \mathcal{B}$ do this:

$$\mathbf{A} \cdot \mathbf{v} = \lambda \mathbf{v}$$

- λ is called an eigenvalue, \mathbf{v} is called an eigenvector.
- Eigenvalues are computed by solving:

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$$

Outline

Eigenvectors and diagonalisation

Inner products and orthogonality

Wrapping up

Computing eigenvectors

- For an $n \times n$ matrix, the equation $\det(\mathbf{A} \lambda \mathbf{I}) = 0$ has n solutions, which we'll write as: $\lambda_1, \lambda_2, \dots, \lambda_n$
- (e.g. a 2 \times 2 matrix involves solving a quadratic equation, which has 2 solutions λ_1 and λ_2)
- For each of these solutions, we get a homogeneous system:

$$\underbrace{(oldsymbol{A} - \lambda_i oldsymbol{I})}_{\mathsf{matrix}} \cdot oldsymbol{v}_i = oldsymbol{0}$$

 Solving this homogeneous system gives us the associated eigenvector v_i for the eigenvalue λ_i • This matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix}$$

Has characteristic polynomial:

$$\det\begin{pmatrix} -\lambda+1 & -2 \\ 0 & -\lambda-1 \end{pmatrix} = \lambda^2-1$$

• The equation $\lambda^2-1=0$ has **2 solutions**: $\lambda_1=1$ and $\lambda_2=-1$.

Example

• For $\lambda_1 = 1$, we get a homogeneous system:

$$(A - \frac{\lambda_1}{\lambda_1} \cdot I) \cdot \frac{\mathbf{v}_1}{\lambda_1} = 0$$

Computing $(\mathbf{A} - (1) \cdot \mathbf{I})$:

$$\begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix} - (1) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & -2 \end{pmatrix}$$

So, we need to find a *non-zero* solution for:

$$\begin{pmatrix} 0 & -2 \\ 0 & -2 \end{pmatrix} \cdot \mathbf{v}_1 = \mathbf{0}$$

(just like in lecture 2)

• This works: $\mathbf{v}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Example

• For $\lambda_2 = -1$, we get another homogeneous system:

$$(\mathbf{A} - \frac{\lambda_2}{\lambda_2} \cdot \mathbf{I}) \cdot \mathbf{v}_2 = \mathbf{0}$$

• Computing $(\mathbf{A} - (-1) \cdot \mathbf{I})$:

$$\begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix} - (-1) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ 0 & 0 \end{pmatrix}$$

• So, we need to find a non-zero solution for:

$$\begin{pmatrix} 2 & -2 \\ 0 & 0 \end{pmatrix} \cdot \mathbf{v}_2 = \mathbf{0}$$

• This works: $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Example

So, for the matrix **A**, we computed 2 eigenvalue/eigenvector pairs:

$$\lambda_1=1, \quad extbf{\emph{v}}_1=egin{pmatrix} 0 \ 1 \end{pmatrix}$$

and

$$\lambda_2 = -1, \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Theorem

If the eigenvalues of a matrix **A** are all different, then their associated eigenvectors form a basis.

Proof. We need to prove the v_i are all linearly independent. Then suppose (for contradiction) that v_1, \ldots, v_n are linearly dependent, i.e.:

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_n\mathbf{v}_n=\mathbf{0}$$

for k non-zero coefficients. Then, using that they are eigvectors:

$$\mathbf{A}\cdot(c_1\mathbf{v}_1+\ldots+c_n\mathbf{v}_n)=\mathbf{0} \implies \lambda_1c_1\mathbf{v}_1+\ldots+\lambda_nc_n\mathbf{v}_n=\mathbf{0}$$

Suppose $c_j \neq 0$, then subtract $\frac{1}{\lambda_i}$ times 2nd equation from the 1st equation:

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n - \frac{1}{\lambda_j} (\lambda_1 c_1 \mathbf{v}_1 + \ldots + \lambda_n c_n \mathbf{v}_n) = \mathbf{0}$$

This has k-1 non-zero coefficients (because all the λ_i 's are distinct). Repeat until we have just 1 non-zero coefficient, and we have:

$$c_j \mathbf{v}_k = \mathbf{0} \implies \mathbf{v}_k = \mathbf{0}$$

but eigenvectors are always non-zero, so this is a contradiction.

Changing basis

• Once we have a basis of eigenvectors $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$, translating to \mathcal{B} gives us a diagonal matrix, whose diagonal entries are the eigenvalues:

$$T_{\mathcal{S}\Rightarrow\mathcal{B}}\cdot\mathbf{A}\cdot T_{\mathcal{B}\Rightarrow\mathcal{S}}=\mathbf{D}$$
 where $\mathbf{D}=egin{pmatrix} \lambda_1 & 0 & 0 & 0 \ 0 & \lambda_2 & 0 & 0 \ 0 & 0 & \cdots & 0 \ 0 & 0 & 0 & \lambda_n \end{pmatrix}$

 Going the other direction, we can always write A in terms of a diagonal matrix:

$$\mathbf{A} = \mathbf{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \mathbf{D} \cdot \mathbf{T}_{\mathcal{S} \Rightarrow \mathcal{B}}$$

Definition

For a matrix \boldsymbol{A} with eigenvalues $\lambda_1,\ldots,\lambda_n$ and eigenvectors $\mathcal{B}=\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$, decomposing \boldsymbol{A} as:

$$m{A} = m{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot egin{pmatrix} \lambda_1 & 0 & 0 & 0 \ 0 & \lambda_2 & 0 & 0 \ 0 & 0 & \cdots & 0 \ 0 & 0 & 0 & \lambda_n \end{pmatrix} \cdot m{T}_{\mathcal{S} \Rightarrow \mathcal{B}}$$

is called diagonalising the matrix ${m A}$.

Summary: diagonalising a matrix (study this slide!)

We diagonalise a matrix \boldsymbol{A} as follows:

- **1** Compute each eigenvalue $\lambda_1, \lambda_2, \dots, \lambda_n$ by solving the characteristic polynomial
- **2** For each eigenvalue, compute the associated eigenvector \mathbf{v}_i by solving the homogenious system $(\mathbf{A} \lambda_i \mathbf{I}) \cdot \mathbf{v}_i = \mathbf{0}$.
- 3 Write down **A** as the product of three matrices:

$$\mathbf{A} = \mathbf{T}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot \mathbf{D} \cdot \mathbf{T}_{\mathcal{S} \Rightarrow \mathcal{B}}$$

where:

- $T_{\mathcal{B}\Rightarrow\mathcal{S}}$ has the eigenvectors $\mathbf{v}_1,\ldots,\mathbf{v}_n$ (in order!) as its columns
- D has the eigenvalues (in the same order!) down its diagonal, and zeroes everywhere else
- $T_{S \Rightarrow B}$ is the inverse of $T_{B \Rightarrow S}$.

Example: political swingers, part I

- We take an extremely crude view on politics and distinguish only left and right wing political supporters
- We study changes in political views, per year
- Suppose we observe, for each year:
 - 80% of lefties remain lefties and 20% become righties
 - 90% of righties remain righties, and 10% become lefties

Questions ...

- start with a population L = 100, R = 150, and compute the number of lefties and righties after one year;
- similarly, after 2 years, and 3 years, ...
- We can represent these computations conveniently using matrix multiplication.

18 / 56

Political swingers, part II

- So if we start with a population L = 100, R = 150, then after one year we have:
 - lefties: $0.8 \cdot 100 + 0.1 \cdot 150 = 80 + 15 = 95$
 - righties: $0.2 \cdot 100 + 0.9 \cdot 150 = 20 + 135 = 155$
- If $\binom{L}{R} = \binom{100}{150}$, then after one year we have:

$$P \cdot \begin{pmatrix} 100 \\ 150 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 150 \end{pmatrix} = \begin{pmatrix} 95 \\ 155 \end{pmatrix}$$

After two years we have:

$$P \cdot \begin{pmatrix} 95 \\ 155 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 95 \\ 155 \end{pmatrix} = \begin{pmatrix} 91.5 \\ 158.5 \end{pmatrix}$$

A. Kissinger Version: autumn 2018 Matrix Calculations

Political swingers, part IV

The situation after two years is obtained as:

$$P \cdot P \cdot \begin{pmatrix} L \\ R \end{pmatrix} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} L \\ R \end{pmatrix}$$

$$do \text{ this multiplication first}$$

$$= \begin{pmatrix} 0.66 & 0.17 \\ 0.34 & 0.83 \end{pmatrix} \cdot \begin{pmatrix} L \\ R \end{pmatrix}$$

The situation after n years is described by the n-fold iterated matrix:

$$P^n = \underbrace{P \cdot P \cdots P}_{n \text{ times}}$$

Etc. It looks like P^{100} (or worse, $\lim_{n\to\infty} P^n$) is going to be a real pain to calculate. ...or is it?

A. Kissinger Version: autumn 2018 Matrix Calculations 19 / 56

Diagonal matrices

- Multiplying lots of matrices together is hard :(
- But multiplying diagonal matrices is easy!

$$\begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix} \cdot \begin{pmatrix} w & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z \end{pmatrix} = \begin{pmatrix} aw & 0 & 0 & 0 \\ 0 & bx & 0 & 0 \\ 0 & 0 & cy & 0 \\ 0 & 0 & 0 & dz \end{pmatrix}$$

Strategy: first diagonalise P:

$$P = T_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot D \cdot T_{\mathcal{S} \Rightarrow \mathcal{B}}$$
 where D is diagonal

• Then multiply (and see what happens....)

Multiplying diagonalised matrices

• Suppose $P = T_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot D \cdot T_{\mathcal{S} \Rightarrow \mathcal{B}}$, then:

$$P \cdot P = T_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot D \cdot T_{\mathcal{S} \Rightarrow \mathcal{B}} \cdot T_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot D \cdot T_{\mathcal{S} \Rightarrow \mathcal{B}}$$

So:

$$P \cdot P = T_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot D \cdot D \cdot T_{\mathcal{S} \Rightarrow \mathcal{B}}$$

and:

$$P \cdot P \cdot P = T_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot D \cdot D \cdot D \cdot T_{\mathcal{S} \Rightarrow \mathcal{B}}$$

and so on:

$$P^n = T_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot D^n \cdot T_{\mathcal{S} \Rightarrow \mathcal{B}}$$

A. Kissinger

Political swingers re-revisited, part I

Suppose we diagonalise the political transition matrix:

$$\mathbf{P} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}}_{\mathbf{T}_{\mathcal{B} \Rightarrow \mathcal{S}}} \cdot \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix}}_{\mathbf{D}} \cdot \underbrace{\frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}}_{\mathbf{T}_{\mathcal{S} \Rightarrow \mathcal{B}}}$$

• Then, raising it to the 10th power is not so hard:

$$\begin{array}{lll} \boldsymbol{P}^{10} & = & \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0.7 \end{pmatrix}^{10} \cdot \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \\ & = & \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1^{10} & 0 \\ 0 & 0.7^{10} \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \\ & \approx & \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0.028 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \\ & \approx & \begin{pmatrix} 0.35 & 0.32 \\ 0.65 & 0.68 \end{pmatrix} \end{array}$$

A. Kissinger

Version: autumn 2018

We can also compute:

$$\lim_{n \to \infty} \mathbf{P}^n = \lim_{n \to \infty} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1^n & 0 \\ 0 & 0.7^n \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$

A. Kissinger

Version: autumn 2018

And more...

- Diagonalisation lets us do lots of things we can normally only do with numbers with matrices instead
- We already saw raising to a power:

$$oldsymbol{A}^n = oldsymbol{T}_{\mathcal{B}\Rightarrow\mathcal{S}} \cdot egin{pmatrix} \lambda_1^n & 0 & 0 & 0 \ 0 & \lambda_2^n & 0 & 0 \ 0 & 0 & \cdots & 0 \ 0 & 0 & 0 & \lambda_n^N \end{pmatrix} \cdot oldsymbol{T}_{\mathcal{S}\Rightarrow\mathcal{B}}$$

 We can also do other funky stuff, like take the square root of a matrix:

$$oldsymbol{\sqrt{A}} = oldsymbol{T}_{\mathcal{B}\Rightarrow\mathcal{S}} \cdot egin{pmatrix} \sqrt{\lambda_1} & 0 & 0 & 0 \ 0 & \sqrt{\lambda_2} & 0 & 0 \ 0 & 0 & \cdots & 0 \ 0 & 0 & 0 & \sqrt{\lambda_n} \end{pmatrix} \cdot oldsymbol{T}_{\mathcal{S}\Rightarrow\mathcal{B}}$$

And more...

• Take the square root of a matrix:

$$\sqrt{m{A}} = m{T}_{\mathcal{B}\Rightarrow\mathcal{S}} \cdot egin{pmatrix} \sqrt{\lambda_1} & 0 & 0 & 0 \ 0 & \sqrt{\lambda_2} & 0 & 0 \ 0 & 0 & \cdots & 0 \ 0 & 0 & 0 & \sqrt{\lambda_n} \end{pmatrix} \cdot m{T}_{\mathcal{S}\Rightarrow\mathcal{B}}$$

• (always gives us a matrix where $\sqrt{\mathbf{A}} \cdot \sqrt{\mathbf{A}} = \mathbf{A}$)

And just because they are cool...

Exponentiate a matrix:

$$e^{oldsymbol{A}} = oldsymbol{\mathcal{T}}_{\mathcal{B}\Rightarrow\mathcal{S}} \cdot egin{pmatrix} e^{\lambda_1} & 0 & 0 & 0 \ 0 & e^{\lambda_2} & 0 & 0 \ 0 & 0 & \cdots & 0 \ 0 & 0 & 0 & e^{\lambda_n} \end{pmatrix} \cdot oldsymbol{\mathcal{T}}_{\mathcal{S}\Rightarrow\mathcal{B}}$$

(e.g. to solve the Schrödinger equation in quantum mechanics)

Take the logarithm a matrix:

$$\mathsf{log}(m{A}) = m{ au}_{\mathcal{B} \Rightarrow \mathcal{S}} \cdot egin{pmatrix} \mathsf{log}(\lambda_1) & 0 & 0 & 0 \ 0 & \mathsf{log}(\lambda_2) & 0 & 0 \ 0 & 0 & \cdots & 0 \ 0 & 0 & 0 & \mathsf{log}(\lambda_n) \end{pmatrix} \cdot m{ au}_{\mathcal{S} \Rightarrow \mathcal{B}}$$

(e.g. to compute entropies of quantum states)

A. Kissinger Version: autumn 2018 Matrix Calculations 26 / 56

Applications: data processing

- Problem: suppose we have a HUGE matrix, and we want to know approximately what it looks like
- Solution: diagonalise it using its basis B of eigenvectors...then throw away (= set to zero) all the little eigenvalues:

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_2 & 0 & & 0 \\ \vdots & 0 & \lambda_3 & 0 & \vdots \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \lambda_n \end{pmatrix}_{\mathcal{B}} \approx \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_2 & 0 & & 0 \\ \vdots & 0 & 0 & 0 & \vdots \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}_{\mathcal{B}}$$

- If there are only a few **big** λ 's, and lots of **little** λ 's, we get almost the same matrix back
- This is the basic trick used in principle compent analysis (big data) and lossy data compression

A. Kissinger Version: autumn 2018 Matrix Calculations 27 / 56

Length of a vector

- Each vector $\mathbf{v} = (x_1, \dots, x_n) \in \mathbb{R}^n$ has a length (aka. norm), written as $\|\mathbf{v}\|$
- This $\|\mathbf{v}\|$ is a non-negative real number: $\|\mathbf{v}\| \in \mathbb{R}, \|\mathbf{v}\| \geq 0$
- Some special cases:
 - n = 1: so $\mathbf{v} \in \mathbb{R}$, with $\|\mathbf{v}\| = |\mathbf{v}|$
 - n=2: so $\mathbf{v}=(x_1,x_2)\in\mathbb{R}^2$ and with Pythagoras:

$$\|\mathbf{v}\|^2 = x_1^2 + x_2^2$$
 and thus $\|\mathbf{v}\| = \sqrt{x_1^2 + x_2^2}$

• n = 3: so $\mathbf{v} = (x_1, x_2, x_3) \in \mathbb{R}^3$ and also with Pythagoras:

$$\|\mathbf{v}\|^2 = x_1^2 + x_2^2 + x_3^2$$
 and thus $\|\mathbf{v}\| = \sqrt{x_1^2 + x_2^2 + x_3^2}$

• In general, for $\mathbf{v} = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$\|\mathbf{v}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

A. Kissinger

Distance between points

• Assume now we have two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, written as:

$$\mathbf{v}=(x_1,\ldots,x_n)$$
 $\mathbf{w}=(y_1,\ldots,y_n)$

- What is the distance between the endpoints?
 - commonly written as d(v, w)
 - again, $d(\mathbf{v}, \mathbf{w})$ is a non-negative real
- For n = 2,

$$d(\mathbf{v}, \mathbf{w}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = \|\mathbf{v} - \mathbf{w}\| = \|\mathbf{w} - \mathbf{v}\|$$

• This will be used also for other n, so:

$$d(\mathbf{v},\mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$$

A. Kissinger

Version: autumn 2018

Length is fundamental

- Distance can be obtained from length of vectors
- Angles can also be obtained from length
- Both length of vectors and angles between vectors can be derived from the notion of inner product

Inner product definition

Definition

For vectors $\mathbf{v} = (x_1, \dots, x_n), \mathbf{w} = (y_1, \dots, y_n) \in \mathbb{R}^n$ define their inner product as the real number:

$$\langle \mathbf{v}, \mathbf{w} \rangle = x_1 y_1 + \dots + x_n y_n$$

= $\sum_{1 \le i \le n} x_i y_i$

Note: Length $\|\mathbf{v}\|$ can be expressed via inner product:

$$\|\mathbf{v}\|^2 = x_1^2 + \dots + x_n^2 = \langle \mathbf{v}, \mathbf{v} \rangle, \quad \text{so} \quad \|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}.$$

A. Kissinger Version: autumn 2018

Properties of the inner product

1 The inner product is symmetric in \mathbf{v} and \mathbf{w} :

$$\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$$

2 It is linear in v:

$$\langle \mathbf{v} + \mathbf{v}', \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{v}', \mathbf{w} \rangle \qquad \langle a\mathbf{v}, \mathbf{w} \rangle = a\langle \mathbf{v}, \mathbf{w} \rangle$$

...and hence also in w (by symmetry):

$$\langle \mathbf{v}, \mathbf{w} + \mathbf{w}' \rangle = \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w}' \rangle \qquad \langle \mathbf{v}, a\mathbf{w} \rangle = a \langle \mathbf{v}, \mathbf{w} \rangle$$

3 And it is positive definite:

$$\mathbf{v} \neq \mathbf{0} \implies \langle \mathbf{v}, \mathbf{v} \rangle > 0$$

A. Kissinger

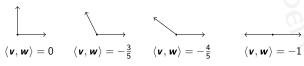
Version: autumn 2018

Inner products and angles, part I

For $\mathbf{v} = \mathbf{w} = (1, 0), \langle \mathbf{v}, \mathbf{w} \rangle = 1.$

As we start to rotate \boldsymbol{w} , $\langle \boldsymbol{v}, \boldsymbol{w} \rangle$ goes down until 0:

...and then goes to -1:



...then down to 0 again, then to 1, then repeats...

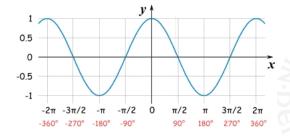
A. Kissinger

Version: autumn 2018

Matrix Calculations

Cosine

Plotting these numbers vs. the angle between the vectors, we get:



It looks like $\langle \mathbf{v}, \mathbf{w} \rangle$ depends on the cosine of the angle between \mathbf{v} and \mathbf{w} .

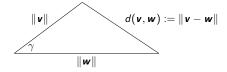
- In fact, if ||v|| = ||w|| = 1, it is true that $\langle \mathbf{v}, \mathbf{w} \rangle = \cos \gamma$.
- For the general equation, we need to divide by their lengths:

$$\cos(\gamma) = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

• Remember this equation!

Inner products and angles, part II

Proof (sketch). For 2 any two vectors, we can make a triangle like this:



Then, we apply the cosine rule from trig to get:

$$\cos(\gamma) = \frac{a^2 + b^2 - c^2}{2ab} = \frac{\|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2}{2\|\mathbf{v}\| \|\mathbf{w}\|}$$

...then after expanding the definition of $\|.\|$ and some work we get:

$$\cos(\gamma) = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

A. Kissinger

Version: autumn 2018

Examples

• What is the angle between (1,1) and (-1,-1)?

$$\cos \gamma = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{-2}{\sqrt{2} \cdot \sqrt{2}} = \frac{-2}{2} = -1 \qquad \Longrightarrow \qquad \gamma = \pi$$

• What is the angle between (1,0) and (1,1)?

$$\cos \gamma = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{1}{1 \cdot \sqrt{2}} = \frac{1}{\sqrt{2}} \qquad \Longrightarrow \qquad \gamma = \frac{\pi}{4}$$

• What is the angle between (1,0) and (0,1)?

$$\cos \gamma = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{0}{\|\mathbf{v}\| \|\mathbf{w}\|} = 0 \qquad \Longrightarrow \qquad \gamma = \frac{\pi}{2}$$

A. Kissinger

Orthogonality

Definition

Two vectors \mathbf{v} , \mathbf{w} are called orthogonal if $\langle \mathbf{v}, \mathbf{w} \rangle = 0$. This is written as $\mathbf{v} \mid \mathbf{w}$.

Explanation: orthogonality means that the cosine of the angle between the two vectors is 0; hence they are perpendicular.

Example

Which vectors $(x, y) \in \mathbb{R}^2$ are orthogonal to (1, 1)?

Examples, are (1, -1) or (-1, 1), or more generally (x, -x).

This follows from an easy computation:

$$\langle (x, y), (1, 1) \rangle = 0 \iff x + y = 0 \iff y = -x.$$

Orthogonality and independence

Lemma

Call a set $\{v_1, ..., v_n\}$ of **non-zero** vectors orthogonal if every pair of different vectors is orthogonal.

- 1 orthogonal vectors are always independent,
- 2 independent vectors are not always orthogonal.

Proof: The second point is easy: (1,1) and (1,0) are independent, but not orthogonal

Orthogonality and independence (cntd)

(Orthogonality \Longrightarrow Independence): assume $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is orthogonal and $a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n = \mathbf{0}$. Then for each $i \leq n$:

$$0 = \langle \mathbf{0}, \mathbf{v}_i \rangle$$

$$= \langle a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n, \mathbf{v}_i \rangle$$

$$= \langle a_1 \mathbf{v}_1, \mathbf{v}_i \rangle + \dots + \langle a_n \mathbf{v}_n, \mathbf{v}_i \rangle$$

$$= a_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + \dots + a_n \langle \mathbf{v}_n, \mathbf{v}_i \rangle$$

$$= a_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle \quad \text{since } \langle \mathbf{v}_j, \mathbf{v}_i \rangle = 0 \text{ for } j \neq i$$

But since $\mathbf{v}_i \neq 0$ we have $\langle \mathbf{v}_i, \mathbf{v}_i \rangle \neq 0$, and thus $a_i = 0$. This holds for each i, so $a_1 = \cdots = a_n = 0$, and we have proven independence.

42 / 56

Orthogonal and orthonormal bases

Definition

A basis $\mathcal{B} = \{ \mathbf{v}_1, \dots, \mathbf{v}_n \}$ of a vector space with an inner product is called:

- **1** orthogonal if \mathcal{B} is an orthogonal set: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ if $i \neq j$
- **2** orthonormal if it is orthogonal and $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = ||\mathbf{v}_i|| = 1$, for each i

Example

The standard basis $(1,0,\ldots,0),(0,1,0,\ldots,0),\cdots,(0,\cdots,0,1)$ is an orthonormal basis of \mathbb{R}^n .

From independence to orthogonality

Not every basis is an orthonormal basis:

 But, by taking linear linear combinations of basis vectors, we can transform a basis into a (better) orthonormal basis:

$$\mathcal{B} = \{ \mathbf{v}_1, \dots, \mathbf{v}_n \} \mapsto \mathcal{B}' = \{ \mathbf{w}_1, \dots, \mathbf{w}_n \}$$

• Making basis vectors normalised is easy:

$$\mathbf{v}_i \mapsto \mathbf{w}_i := \frac{1}{\|\mathbf{v}_i\|} \mathbf{v}_i$$

 Making vectors orthogonal is also always possible, using a procedure called Gram-Schmidt orthogonalisation.

In summary

 The inner product gives us a means to compute the lengths of vectors:

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

• It also lets us compute the angles between vectors:

$$\cos(\gamma) = \frac{\langle \, \mathbf{v}, \mathbf{w} \, \rangle}{\| \, \mathbf{v} \| \, \| \mathbf{w} \|}$$

- \Rightarrow vectors with very large inner product are very close to pointing the same direction (because $\cos(0) = 1$)
- ⇒ vectors with very small inner product are very close to orthogonal (because cos(π/2) = 0)
- \Rightarrow inner products measure *how similar* two vectors are.

Application: Computational linguistics

Computational linguistics = teaching computers to read

• Example: I have two words, and I want a program that tells me how "similar" the two words are, e.g.

$$\begin{array}{rcl} \text{nice} + \text{kind} & \Rightarrow & 95\% \text{ similar} \\ \text{dog} + \text{cat} & \Rightarrow & 61\% \text{ similar} \\ \text{dog} + \text{xylophone} & \Rightarrow & 0.1\% \text{ similar} \end{array}$$

- **Applications:** thesaurus, smart web search, translation, ...
- Dumb solution: ask a whole bunch of people to rate similarity and make a big database
- Smart solution: use distributional semantics

Meaning vectors

"You shall know a word by the company it keeps."

– J. R. Firth

- Pick about 500-1000 words (v_{cat}, v_{boy}, v_{sandwich} ...) to act as "basis vectors"
- Build up a meaning vector for each word, e.g. "dog", by scanng a whole lot of text
- Every time "dog" occurs within, say 200 words of a basis vector, add that basis vector. Soon we'll have:

$$\mathbf{v}_{\mathsf{dog}} = 2308198 \cdot \mathbf{v}_{\mathsf{cat}} + 4291 \cdot \mathbf{v}_{\mathsf{boy}} + 4 \cdot \mathbf{v}_{\mathsf{sandwich}} + \cdots$$

Similar words cluster together:

...while dissimilar words drift apart. We can measure this by:

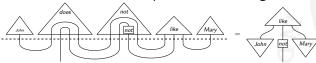
$$\frac{\left< \textit{\textbf{v}}_{\mathsf{dog}}, \textit{\textbf{v}}_{\mathsf{cat}} \right>}{\left\| \textit{\textbf{v}}_{\mathsf{dog}} \right\| \left\| \textit{\textbf{v}}_{\mathsf{cat}} \right\|} = 0.953 \qquad \frac{\left< \textit{\textbf{v}}_{\mathsf{dog}}, \textit{\textbf{v}}_{\mathsf{xylophone}} \right>}{\left\| \textit{\textbf{v}}_{\mathsf{dog}} \right\| \left\| \textit{\textbf{v}}_{\mathsf{xylophone}} \right\|} = 0.001$$

 Search engines do something very similar. Learn more in the course on Information Retrieval.

Distributional Semantics

- This works very well, but also has weaknesses (e.g. meanings of whole sentences, ambiguous words)
- This can be improved by incorporating other kinds of semantics:

distributional + **co**mpositional + **cat**egorical



= DisCoCat

About linear algebra

- Linear algebra forms a coherent body of mathematics . . .
- involving elementary algebraic and geometric notions
 - systems of equations and their solutions
 - vector spaces with bases and linear maps
 - matrices and their operations (product, inverse, determinant)
 - inner products and distance
- ... together with various calculational techniques
 - the most important/basic ones you learned in this course
 - they are used all over the place: mathematics, physics, engineering, linguistics...

About the exam, part I

- Closed book
 - Simple '4-function' calculators are allowed (but not necessary)
 - phones, graphing calculators, etc. are NOT allowed
- Questions are in line with exercises from assignments
- In principle, slides contain all necessary material
 - LNBS lecture notes have extra material for practice
 - wikipedia also explains a lot
- Theorems, definitions, etc:
 - are needed to understand the theory
 - are needed to answer the questions
 - their proofs are not required for the exam (but do help understanding)
 - need *not* be reproducable literally
 - but help you to understand questions

About the exam, part II

Calculation rules (or formulas) must be known by heart for:

- 1 solving (non)homogeneous equations, echelon form
- 2 linearity, independence, matrix-vector multiplication
- 3 matrix multiplication & inverse, change-of-basis matrices
- 4 eigenvalues, eigenvectors and determinants
- 6 inner products, distance, length, angle, orthogonality

About the exam, part III

- Questions are formulated in English
 - you may choose to answer in Dutch or English
- Give intermediate calculation results
 - just giving the outcome (say: 68) yields no points when the answer should be 67
- Write legibly, and explain what you are doing
 - giving explanations forces yourself to think systematically
 - mitigates calculation mistakes
- Perform checks yourself, whenever possible, e.g.
 - solutions of equations
 - inverses of matrices.
 - orthogonality of vectors, etc.

Practice, practice!

(so that you can rely on skills, not on luck)

Some practical issues (Autumn 2018)

- Exam: Tuesday, October 30, 8:30–10:30 in HAL 2. (Extra time: 8:30-11:00, HG00.108)
- Vragenuur: there will be a Q&A session next week. Friday, 26 October, 13:30-15:15 in MERC1 00.28
- How we compute the final grade g for the course
 - Your exam grade e, which should be > 5,
 - Your average assignment grade a
 - Final grade is: $e + \frac{a}{10}$, rounded to the nearest half (except 5.5).

Final request

- Fill out the enquete form for Matrixrekenen, IPC017, when invited to do so.
- Any constructive feedback is highly appreciated.

And good luck with the preparation & exam itself!

Start now!