

Quantum Processes and Computation

Assignment 10, Monday, May 28, 2018

Exercise teachers:

Aleks Kissinger (aleks@cs.ru.nl)
 John van de Wetering (wetering@cs.ru.nl)

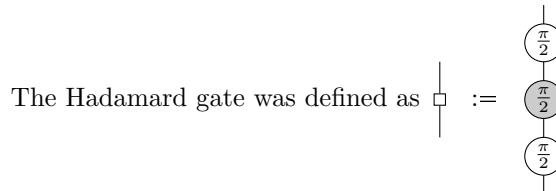
Handing in your answers: There are two options:

1. Deliver a hard copy to the mailbox of John van de Wetering. Mercator 1, 3rd floor.
2. E-mail a PDF to wetering@cs.ru.nl. Please include your name and the exercise number in the filename, e.g. ACHTERNAAM-qpc-exercise1.pdf.

Deadline: Friday, June 8, 17:00

Goals: After doing these exercises you know about a large class of quantum gates and you can reason with them. The total number of points is 100, distributed over 3 exercises.

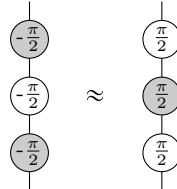
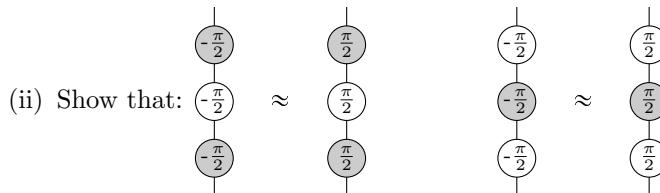
Material covered in book: sections 9.4, 12.1.



There are a few other equivalent definitions.

Exercise 1 (9.112) (40 points):

(i) Follow the instructions of Exercise 9.112 in the book to show that:



Hint: Use that = and that inverses of maps are unique.

There are a couple of sets quantum gates that crop up a lot in quantum computation. One of these

is the *controlled phase* gate $\text{CZ}(\alpha)$:

where α is any phase and

so that

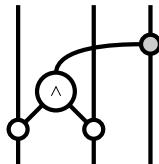
Exercise 2 (12.8) (20 points): Show using the ZX-calculus that the $\text{CZ}(\alpha)$ -gate can be built from CNOTs and \circlearrowright phase gates as follows:

Recall that a single qubit unitary can be written as a succession of phase gates using a Euler Decomposition of the unitary. Since we have controlled phase gates in the ZX-calculus, we therefore have controlled single qubit unitaries. CNOT is a 2-qubit gate. Can we also make a controlled version of it? This would then be a 'controlled controlled not' gate, more commonly known as a *Toffoli*-gate. This is a three qubit gate that performs a NOT operation on the third qubit if the first two are in the $|1\rangle$ state. This process of course involves an AND-gate. Constructing this gate is surprisingly involved.

Exercise 3 (12.10) (40 points): By evaluating on the Z-basis states $\begin{smallmatrix} 0 \\ \circlearrowright \end{smallmatrix}$ and $\begin{smallmatrix} \pi \\ \circlearrowright \end{smallmatrix}$ show that the \wedge map below acts as a AND-gate.

You will need to use the following rules (that we haven't proven):

With the AND-gate in hand we can define the Toffoli-gate:



The Toffoli-gate is a very powerful gate. As is shown in Section 12.1.3 of the book, any unitary can be implemented in the ZX-calculus with the help of the Toffoli-gate. Somewhat surprisingly, it is the only gate you need for doing reversible classical computation, and approximate universal quantum computation can be achieved using just Toffoli- and Hadamard-gates.