

Quantum Processes and Computation

Assignment 5, Monday, March 12, 2018

Exercise teachers:

Aleks Kissinger (aleks@cs.ru.nl)
 John van de Wetering (wetering@cs.ru.nl)

Handing in your answers: There are two options:

1. Deliver a hard copy to the mailbox of John van de Wetering. Mercator 1, 3rd floor.
2. E-mail a PDF to wetering@cs.ru.nl. Please include your name and the exercise number in the filename, e.g. ACHTERNAAM-qpc-exercise1.pdf.

Deadline: Friday, March 16, 17:00

Goals: After completing these exercises you will know how to work with diagonalisations of processes, and gain an understanding of the relationship between the process theories of **linear maps** and **quantum maps**. The total number of points is 100, distributed over 3 exercises.
 Material covered in book: sections 5.3.3 and 6.1.

Exercise 1 (6.10 & 6.22) (20 points):

(i) Show that doubling preserves parallel composition:

$$\text{double} \left(\begin{array}{c} \text{---} \\ | \\ \boxed{f} \\ | \\ \text{---} \end{array} \parallel \begin{array}{c} \text{---} \\ | \\ \boxed{g} \\ | \\ \text{---} \end{array} \right) = \begin{array}{c} \text{---} \\ | \\ \boxed{\hat{f}} \\ | \\ \text{---} \end{array} \parallel \begin{array}{c} \text{---} \\ | \\ \boxed{\hat{g}} \\ | \\ \text{---} \end{array}$$

(ii) Show that doubling preserves normalisation: that a state ψ is normalised if and only if its doubled state $\hat{\psi}$ is normalised.

(iii) Show that doubling preserves orthogonality: that states ψ and ϕ are orthogonal if and only if $\hat{\psi}$ and $\hat{\phi}$ are orthogonal.

Hint: Use theorem 6.17 for the latter two points.

Exercise 2 (5.77) (40 points): We call a process P a *projector* if it is self-adjoint and *idempotent*: $P \circ P = P$. Show that $f^\dagger \circ f$ detects whether f is invariant under a projector, that is, show that for any projector P :

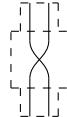
$$\left(\begin{array}{c} \text{---} \\ | \\ \boxed{P} \\ | \\ \boxed{f} \\ | \\ \boxed{f} \\ | \\ \boxed{P} \\ | \\ \text{---} \end{array} = \begin{array}{c} \text{---} \\ | \\ \boxed{f} \\ | \\ \text{---} \end{array} \right) \iff \left(\begin{array}{c} \text{---} \\ | \\ \boxed{f} \\ | \\ \boxed{P} \\ | \\ \text{---} \end{array} = \begin{array}{c} \text{---} \\ | \\ \boxed{f} \\ | \\ \text{---} \end{array} \right)$$

Hint: Look at the proof of proposition 5.74 for inspiration. More concretely: write P using the spectral theorem as

$$\boxed{P} = \sum_i \begin{array}{c} \text{upward triangle} \\ i \\ \downarrow \\ \text{downward triangle} \\ i \end{array}$$

for some orthonormal set of states $\{|i\rangle\}$ (i.e. not necessarily a full ONB). This orthonormal set can be completed to a full ONB (see proposition 5.79). How does P act on these additional orthogonal states? As a result how will $f^\dagger \circ f$ act on these orthogonal states? Use positive definiteness of the inner product to conclude the same for f , and then you're almost there.

The transpose of a positive process is again a positive process and by bending some wires we can also take the ‘transpose’ of a \otimes -positive state, i.e. of a quantum state (see **Corollary 6.36**). This transpose acts as a swap of wires on the doubled system:



and it indeed sends quantum states to quantum states:

$$\begin{array}{c} \text{doubled system with two wires} \\ \text{entering from the left} \\ \text{crossing over each other} \\ \text{and then splitting into two wires} \end{array} = \boxed{f} \quad \boxed{f}$$

In the next exercise we will show that nevertheless, this swap of wires is *not* a quantum operation.

Exercise 3 (40 points): In this exercise we will show that a swap applied to one pair of the wires of the doubled cup state will result in a state that is no longer \otimes -positive, and therefore not a quantum state. We will do this by contradiction. So suppose:

$$\begin{array}{c} \text{doubled system with two wires} \\ \text{entering from the left} \\ \text{crossing over each other} \\ \text{and then splitting into two wires} \end{array} = \begin{array}{c} \text{doubled system with two wires} \\ \text{entering from the left} \\ \text{crossing over each other} \\ \text{and then splitting into two wires} \\ \text{but the wires are swapped} \end{array} \quad (1)$$

for some process f .

(i) Let ψ be a normalised state. Show that the equation above implies that

$$\begin{array}{c} \text{upward triangle} \\ \psi \\ \downarrow \\ \text{downward triangle} \\ \psi \end{array} = \begin{array}{c} \text{upward triangle} \\ \psi \\ \downarrow \\ \boxed{f} \\ \downarrow \\ \boxed{f} \\ \downarrow \\ \text{downward triangle} \\ \psi \end{array}$$

and hence, by Proposition 5.74, that there exist states a and b such that:

$$\begin{array}{c} \text{---} \\ \text{---} \end{array} \quad \begin{array}{c} \text{---} \\ \text{---} \end{array} \quad = \quad \begin{array}{c} \text{---} \\ \text{---} \end{array} \quad \begin{array}{c} \text{---} \\ \text{---} \end{array} \quad (2)$$

(ii) Plug ψ into equation 1 and use equation 2 to show that the identity wire disconnects. Conclude that therefore the swap can't be a quantum map.

Note: In proposition 6.48 it is also shown that the swap is not a quantum operation, but it uses a specific counter-example found in **linear maps**. The proof above only uses string diagrams and the property implied by proposition 5.74.

Subnote: We came up with this proof just last week, and as far as we are aware it is the first time someone has shown that the transpose is not a quantum operation using diagrammatic operations, so by completing this proof you really are on the bleeding edge of quantum research.